Robot's finger and expansions in non-integer bases

  • 70E60, 11A63.

  • We study a robot finger model in the framework of the theory of expansions in non-integer bases. We investigate the reachable set and its closure. A control policy to get approximate reachability is also proposed.

    Citation: Anna Chiara Lai, Paola Loreti. Robot's finger and expansions in non-integer bases[J]. Networks and Heterogeneous Media, 2012, 7(1): 71-111. doi: 10.3934/nhm.2012.7.71

    Related Papers:

  • We study a robot finger model in the framework of the theory of expansions in non-integer bases. We investigate the reachable set and its closure. A control policy to get approximate reachability is also proposed.


    加载中
    [1] A. Bicchi, Robotic grasping and contact: A review, Proc. IEEE Int. Conf. on Robotics and Automation, (2000), 348-353.
    [2] Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set, Mathematics of Control Signals and Systems, 14 (2001), 173-193. doi: 10.1007/PL00009881
    [3] P. Erd\Hos and V. Komornik, Developments in non-integer bases, Acta Math. Hungar., 79 (1998), 57-83. doi: 10.1023/A:1006557705401
    [4] K. J. Falconer, "Fractal Geometry," Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.
    [5] W. J. Gilbert, Geometry of radix representations, in "The Geometric Vein," Springer, New York-Berlin, (1981), 129-139. doi: 10.1007/978-1-4612-5648-9_7
    [6] W. J. Gilbert, The fractal dimension of sets derived from complex bases, Canad. Math. Bull., 29 (1986), 495-500. doi: 10.4153/CMB-1986-078-1
    [7] W. J. Gilbert, Complex bases and fractal similarity, Ann. Sci. Math. Québec, 11 (1987), 65-77.
    [8] P. S. Heckbert, ed., "Graphics Gems IV," Academic Press, 1994.
    [9] J. Easudes C. J. H. Moravec and F. Dellaert, Fractal branching ultra-dexterous robots (bush robots), Technical report, NASA Advanced Concepts Research Project, 1996.
    [10] J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747. doi: 10.1512/iumj.1981.30.30055
    [11] K.-H. Indlekofer, I. Kátai and P. Racskó, Number systems and fractal geometry, in "Probability Theory and Applications," Math. Appl., 80, Kluwer Acad. Publ., Dordrecht, (1992), 319-334.
    [12] A. C. Lai, "On Expansions in Non-Integer Base," Ph.D thesis, Sapienza Università di Roma and Université Paris Diderot, 2010.
    [13] W. Parry, On the $\beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11 (1960), 401-416. doi: 10.1007/BF02020954
    [14] J. Pineda, A parallel algorithm for polygon rasterization, Proceedings of the 15th annual conference on Computer graphics and interactive techniques, 22 (1988), 17-20.
    [15] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, 8 (1957), 477-493. doi: 10.1007/BF02020331
    [16] 2008.
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4278) PDF downloads(78) Cited by(10)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog