Steklov problems in perforated domains with a coefficient of indefinite sign

  • Primary: 35B27.

  • We consider homogenization of Steklov spectral problem for a divergence form elliptic operator in periodically perforated domain under the assumption that the spectral weight function changes sign. We show that the limit behaviour of the spectrum depends essentially on wether the average of the weight function over the boundary of holes is positive, or negative or equal to zero. In all these cases we construct the asymptotics of the eigenpairs.

    Citation: Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign[J]. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151

    Related Papers:

  • We consider homogenization of Steklov spectral problem for a divergence form elliptic operator in periodically perforated domain under the assumption that the spectral weight function changes sign. We show that the limit behaviour of the spectrum depends essentially on wether the average of the weight function over the boundary of holes is positive, or negative or equal to zero. In all these cases we construct the asymptotics of the eigenpairs.


    加载中
    [1] E. Acerbi, V. Chiadò Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), 481-496. doi: 10.1016/0362-546X(92)90015-7
    [2] R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
    [3] G. Allaire and F. Malige, Analyse asymptotique spectrale d’un problème de diffusion neutronique, C. R. Acad. Sci. Paris, Série I, 324 (1997), 939-944.
    [4] G. Allaire and A. Piatnitski, Uniform spectral asymptotics for singularly perturbed locally periodic operators, Comm. in PDE, 27 (2002), 705-725. doi: 10.1081/PDE-120002871
    [5] H. Attouch, "Variational Convergence for Functions and Operators," Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.
    [6] T. Ya. Azizov and I. S. Iokhvidov, "Linear Operators in Spaces with an Indefinite Metric," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Ltd., Chichester, 1989.
    [7] A. Belyaev, A. Pyatnitskiĭ and G. Chechkin, Averaging in a perforated domain with an oscillating third boundary condition, Sbornik Math., 192 (2001), 933-949. doi: 10.1070/SM2001v192n07ABEH000576
    [8] V. Chiadò Piat and A. Piatnitski, $\Gamma$-convergence approach to variational problems in perforated domains with Fourier boundary conditions, ESAIM: COCV, 16 (2010), 148-175. doi: 10.1051/cocv:2008073
    [9] G. Chechkin, A. Piatnitski and A. Shamaev, "Homogenization. Methods and Applications," Translations of Mathematical Monographs, 234, American Mathematical Society, Providence, RI, 2007.
    [10] D. Cioranescu and P. Donato, On a Robin problem in perforated domains, in "Homogenization and Applications to Material Sciences" (Nice, 1995), GAKUTO Internat. Ser. Math. Sci. Appl., 9, Gakkōtosho, Tokyo, (1995), 123-135.
    [11] D. Cioranescu and F. Murat, A strange term coming from nowhere, in "Topics in the Mathematical Modelling of Composite Materials," Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser Boston, Boston, MA, (1997), 45-93.
    [12] D. Cioranescu, J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7
    [13] preprint, arXiv:1106.3904.
    [14] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
    [15] S. Kozlov, Reducibility of quasiperiodic differential operators and averaging, Trans. Moscow Math. Soc., 2 (1984), 101-126.
    [16] J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.
    [17] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Mathematics, 3 (1969), 510-585. doi: 10.1016/0001-8708(69)90009-7
    [18] S. A. Nazarov, "Asymptotic Analysis of Thin Plates and Rods," (in Russian), Novosibirsk, 2002.
    [19] S. Nazarov, I. Pankratova and A. Piatnitski, Homogenization of the spectral problem for periodic elliptic operators with sign-changing density function, Arch. Rational Mech. Anal., 200 (2011), 747-788. doi: 10.1007/s00205-010-0370-2
    [20] S. Nazarov and A. Piatnitski, Homogenization of the spectral Dirichlet problem for a system of differential equations with rapidly oscillating coefficients and changing sign sensity, Journal of Mathematical Sciences, 169 (2010), 212-248.
    [21] O. Oleĭnik, A. Shamaev and G. Yosifian, "Mathematical Problems in Elasticity and Homogenization," Studies in Mathematics and its Applications, 26, North-Holland Publishing Co., Amsterdam, 1992.
    [22] S. E. Pastukhova, On the error of averaging for the Steklov problem in a punctured domain, Differential Equations, 31 (1995), 975-986.
    [23] E. Pérez, On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 859-883. doi: 10.3934/dcdsb.2007.7.859
    [24] M. Vanninathan, Homogenization of eigenvalue problems in perforated domains, Proc. Indian Acad. Sci. Math. Sci., 90 (1981), 239-271. doi: 10.1007/BF02838079
    [25] W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989.
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4274) PDF downloads(168) Cited by(17)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog