Citation: Xavier Blanc, Claude Le Bris, Pierre-Louis Lions. From the Newton equation to the wave equation in some simple cases[J]. Networks and Heterogeneous Media, 2012, 7(1): 1-41. doi: 10.3934/nhm.2012.7.1
| [1] | Robert A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
| [2] | M. Berezhnyy and L. Berlyand, Continuum limit for three-dimensional mass-spring networks and discrete Korn's inequality, J. Mech. Phys. Solids, 54 (2006), 635-669. |
| [3] |
Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal., 41 (2003), 306-324 (electronic). doi: 10.1137/S0036142902401311
|
| [4] | Constantine M. Dafermos and William J. Hrusa, Energy methods for quasilinear hyperbolic initial-boundary value problems. Applications to elastodynamics, Arch. Ration. Mech. Anal., 87 (1985), 267-292. |
| [5] |
Wei-nan E and Ping-bing Ming, Cauchy-Born rule and the stability of crystalline solids: Dynamic problems, Acta Math. Appl. Sin. Engl. Ser., 23 (2007), 529-550. doi: 10.1007/s10255-007-0393
|
| [6] | P. Joly, Finite element methods with continuous displacement, in "Effective Computational Methods for Wave Propagation," Numer. Insights, 5, Chapman & Hall/CRC, Boca Raton, FL, (2008), 267-329. |
| [7] |
Tosio Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Archive for Rational Mechanics and Analysis, 58 (1975), 181-205. doi: 10.1007/BF00280740
|
| [8] |
B. G. Pachpatte, On discrete inequalities of the Poincaré type, Period. Math. Hungar., 19 (1988), 227-233. doi: 10.1007/BF01850291
|
| [9] |
Denis Serre, "Systems of Conservation Laws. 1. Hyperbolicity, Entropies, Shock Waves," Translated from the French by I. N. Sneddon, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9780511612374
|
| [10] | Antoni Zygmund, "Trigonometrical Series," Dover Publications, New York, 1955. |