A distributed model of traffic flows on extended regions

  • Primary: 35Q70, 76S05; Secondary: 76M50, 82C80.

  • This work deals with the modelling of traffic flows in complex networks, spanning two-dimensional regions whose size ( macroscale ) is much greater than the characteristic size of the network arcs ( microscale). A typical example is the modelling of traffic flow in large urbanized areas with diameter of hundreds of kilometers, where standard models of traffic flows on networks resolving all the streets are computationally too expensive. Starting from a stochastic lattice gas model with simple constitutive laws, we derive a distributed two-dimensional model of traffic flow, in the form of a non-linear diffusion-advection equation for the particle density. The equation is formally equivalent to a (non-linear) Darcy's filtration law. In particular, it contains two parameters that can be seen as the porosity and the permeability tensor of the network. We provide suitable algorithms to extract these parameters starting from the geometry of the network and a given microscale model of traffic flow (for instance based on cellular automata). Finally, we compare the fully microscopic simulation with the finite element solution of our upscaled model in realistic cases, showing that our model is able to capture the large-scale feature of the flow.

    Citation: Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni. A distributed model of traffic flows on extended regions[J]. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525

    Related Papers:

  • This work deals with the modelling of traffic flows in complex networks, spanning two-dimensional regions whose size ( macroscale ) is much greater than the characteristic size of the network arcs ( microscale). A typical example is the modelling of traffic flow in large urbanized areas with diameter of hundreds of kilometers, where standard models of traffic flows on networks resolving all the streets are computationally too expensive. Starting from a stochastic lattice gas model with simple constitutive laws, we derive a distributed two-dimensional model of traffic flow, in the form of a non-linear diffusion-advection equation for the particle density. The equation is formally equivalent to a (non-linear) Darcy's filtration law. In particular, it contains two parameters that can be seen as the porosity and the permeability tensor of the network. We provide suitable algorithms to extract these parameters starting from the geometry of the network and a given microscale model of traffic flow (for instance based on cellular automata). Finally, we compare the fully microscopic simulation with the finite element solution of our upscaled model in realistic cases, showing that our model is able to capture the large-scale feature of the flow.


    加载中
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4248) PDF downloads(154) Cited by(21)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog