A continuum-discrete model for supply chains dynamics

  • Received: 01 April 2007 Revised: 01 August 2007
  • 90B10, 65M06, 65N05.

  • This paper is focused on continuum-discrete models for supply chains. In particular, we consider the model introduced in [10], where a system of conservation laws describe the evolution of the supply chain status on sub-chains, while at some nodes solutions are determined by Riemann solvers. Fixing the rule of flux maximization, two new Riemann Solvers are defined. We study the equilibria of the resulting dynamics, moreover some numerical experiments on sample supply chains are reported. We provide also a comparison, both of equilibria and experiments, with the model of [15].

    Citation: Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics[J]. Networks and Heterogeneous Media, 2007, 2(4): 661-694. doi: 10.3934/nhm.2007.2.661

    Related Papers:

    [1] Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli . A continuum-discrete model for supply chains dynamics. Networks and Heterogeneous Media, 2007, 2(4): 661-694. doi: 10.3934/nhm.2007.2.661
    [2] Ciro D'Apice, Rosanna Manzo . A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1(3): 379-398. doi: 10.3934/nhm.2006.1.379
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [5] Fabio Camilli, Adriano Festa, Silvia Tozza . A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12(1): 93-112. doi: 10.3934/nhm.2017004
    [6] Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem . A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663
    [7] Alexandre M. Bayen, Alexander Keimer, Nils Müller . A proof of Kirchhoff's first law for hyperbolic conservation laws on networks. Networks and Heterogeneous Media, 2023, 18(4): 1799-1819. doi: 10.3934/nhm.2023078
    [8] Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969
    [9] Qing Li, Steinar Evje . Learning the nonlinear flux function of a hidden scalar conservation law from data. Networks and Heterogeneous Media, 2023, 18(1): 48-79. doi: 10.3934/nhm.2023003
    [10] Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497
  • This paper is focused on continuum-discrete models for supply chains. In particular, we consider the model introduced in [10], where a system of conservation laws describe the evolution of the supply chain status on sub-chains, while at some nodes solutions are determined by Riemann solvers. Fixing the rule of flux maximization, two new Riemann Solvers are defined. We study the equilibria of the resulting dynamics, moreover some numerical experiments on sample supply chains are reported. We provide also a comparison, both of equilibria and experiments, with the model of [15].


  • This article has been cited by:

    1. C. D'Apice, R. Manzo, B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks, 2010, 362, 0022247X, 374, 10.1016/j.jmaa.2009.07.058
    2. Simone Göttlich, Patrick Schindler, Optimal inflow control of production systems with finite buffers, 2015, 20, 1553-524X, 107, 10.3934/dcdsb.2015.20.107
    3. P. I. Kogut, R. Manzo, On Vector-Valued Approximation of State Constrained Optimal Control Problems for Nonlinear Hyperbolic Conservation Laws, 2013, 19, 1079-2724, 381, 10.1007/s10883-013-9184-5
    4. Simone Göttlich, Axel Klar, Patrick Schindler, Discontinuous Conservation Laws for Production Networks with Finite Buffers, 2013, 73, 0036-1399, 1117, 10.1137/120882573
    5. C. D’Apice, R. Manzo, B. Piccoli, Modelling supply networks with partial differential equations, 2009, 67, 0033-569X, 419, 10.1090/S0033-569X-09-01129-1
    6. C. D'Apice, R. Manzo, B. Piccoli, Numerical Schemes for the Optimal Input Flow of a Supply Chain, 2013, 51, 0036-1429, 2634, 10.1137/120889721
    7. Simone Göttlich, Michael Herty, Christian Ringhofer, 2012, Chapter 11, 978-0-85729-643-6, 265, 10.1007/978-0-85729-644-3_11
    8. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    9. Dieter Armbruster, Simone Göttlich, Michael Herty, A Scalar Conservation Law with Discontinuous Flux for Supply Chains with Finite Buffers, 2011, 71, 0036-1399, 1070, 10.1137/100809374
    10. Alfredo Cutolo, Benedetto Piccoli, Luigi Rarità, An Upwind-Euler Scheme for an ODE-PDE Model of Supply Chains, 2011, 33, 1064-8275, 1669, 10.1137/090767479
    11. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains, 2014, 9, 1556-181X, 501, 10.3934/nhm.2014.9.501
    12. Agnes Dittel, Simone Göttlich, Ute Ziegler, Optimal design of capacitated production networks, 2011, 12, 1389-4420, 583, 10.1007/s11081-010-9123-1
    13. Maria Pia D'Arienzo, Luigi Rarità, 2020, 2293, 0094-243X, 420041, 10.1063/5.0026464
    14. Ciro D'Apice, Peter I. Kogut, Rosanna Manzo, On optimization of a highly re-entrant production system, 2016, 11, 1556-1801, 415, 10.3934/nhm.2016003
    15. Mauro Garavello, Benedetto Piccoli, Time-varying Riemann solvers for conservation laws on networks, 2009, 247, 00220396, 447, 10.1016/j.jde.2008.12.017
    16. Simone Göttlich, Stephan Martin, Thorsten Sickenberger, Time-continuous production networks with random breakdowns, 2011, 6, 1556-181X, 695, 10.3934/nhm.2011.6.695
    17. Ciro D’Apice, Peter I. Kogut, 2017, 1863, 0094-243X, 560055, 10.1063/1.4992738
    18. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    19. Shelly Gandhi, Rajnish Verma, Review on various Edutainment techniques of Mathematics pedagogy, 2022, 2321-581X, 112, 10.52711/2321-581X.2022.00016
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4367) PDF downloads(109) Cited by(19)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog