Loading [MathJax]/jax/output/SVG/jax.js
Review Topical Sections

Critically appraised topic on Rapid Eye Movement Behavior Disorder: From protein misfolding processes to clinical pathophysiology and conversion to neurodegenerative disorders

  • Received: 24 February 2023 Revised: 19 June 2023 Accepted: 24 June 2023 Published: 29 June 2023
  • Background 

    REM Behavior Disorder (RBD) is considered one of most powerful prodromal condition in different neurodegenerative disorders, mainly alpha-synucleinopathies. A large amount of research recently explored this relationship.

    Objective and Design 

    The present critically appraised review undertakes this topic, from the perspective of the pathogenetic interplay between clinical manifestations in RBD patients and the misfolding processes that characterize neurodegeneration. In particular, evidence in favor and against the role of RBD as a biomarker of neurodegeneration is discussed.

    Results and Conclusion 

    The selected papers were functional to structure the review into three main sections: 1) Protein misfolding in neurodegenerative disorders with focus on alpha-synuclein; 2) Clinical features, diagnosis, and pathophysiology of RBD; 3) RBD as a clinical biomarker of protein misfolding. Data herein highlights the current knowledge and the areas of uncertainties in the relationship between RBD and neurodegenerative disorders; we went through preclinical, prodromal and clinical stages of neurodegenerative processes as a useful reference for clinicians involved in brain pathological aging and future research in this field.

    Citation: Andrea Bernardini, Gaia Pellitteri, Giovanni Ermanis, Gian Luigi Gigli, Mariarosaria Valente, Francesco Janes. Critically appraised topic on Rapid Eye Movement Behavior Disorder: From protein misfolding processes to clinical pathophysiology and conversion to neurodegenerative disorders[J]. AIMS Molecular Science, 2023, 10(2): 127-152. doi: 10.3934/molsci.2023010

    Related Papers:

    [1] Cameron J. Browne, Chang-Yuan Cheng . Age-structured viral dynamics in a host with multiple compartments. Mathematical Biosciences and Engineering, 2020, 17(1): 538-574. doi: 10.3934/mbe.2020029
    [2] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [3] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [4] Ran Zhang, Shengqiang Liu . Global dynamics of an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response. Mathematical Biosciences and Engineering, 2020, 17(2): 1450-1478. doi: 10.3934/mbe.2020075
    [5] Jinliang Wang, Xiu Dong . Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences and Engineering, 2018, 15(3): 569-594. doi: 10.3934/mbe.2018026
    [6] Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019
    [7] Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li . Global stability of an age-structured cholera model. Mathematical Biosciences and Engineering, 2014, 11(3): 641-665. doi: 10.3934/mbe.2014.11.641
    [8] Jinhu Xu . Dynamic analysis of a cytokine-enhanced viral infection model with infection age. Mathematical Biosciences and Engineering, 2023, 20(5): 8666-8684. doi: 10.3934/mbe.2023380
    [9] Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024
    [10] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
  • Background 

    REM Behavior Disorder (RBD) is considered one of most powerful prodromal condition in different neurodegenerative disorders, mainly alpha-synucleinopathies. A large amount of research recently explored this relationship.

    Objective and Design 

    The present critically appraised review undertakes this topic, from the perspective of the pathogenetic interplay between clinical manifestations in RBD patients and the misfolding processes that characterize neurodegeneration. In particular, evidence in favor and against the role of RBD as a biomarker of neurodegeneration is discussed.

    Results and Conclusion 

    The selected papers were functional to structure the review into three main sections: 1) Protein misfolding in neurodegenerative disorders with focus on alpha-synuclein; 2) Clinical features, diagnosis, and pathophysiology of RBD; 3) RBD as a clinical biomarker of protein misfolding. Data herein highlights the current knowledge and the areas of uncertainties in the relationship between RBD and neurodegenerative disorders; we went through preclinical, prodromal and clinical stages of neurodegenerative processes as a useful reference for clinicians involved in brain pathological aging and future research in this field.



    In the early 1930s, in order to generalize the formula of quantum mechanics, Jordan et al. introduced an important commutative non-associative algebra [1], which was initially called "r-order digital system". In 1947, Albert renamed this kind of algebra Jordan algebra and studied their structural theory [2]. Since then, Jordan algebras have attracted extensive attention. Particularly, Jacobson developed the representation theory of Jordan algebras [3,4]. Jordan superalgebras were first studied by Kac, who classified simple finite dimensional Jordan superalgebras over an algebraically closed field of characteristic zero [5]. Jordan superalgebras also have significant applications in quantum mechanics [6,7]. More results on Jordan superalgebras are available in [8,9].

    Hom-type algebras were first introduced to study the q-deformation of Witt and Virasoro algebras [10,11], which played an important role in physics, mainly in conformal field theory. Bihom-type algebras are generalizations of Hom-type algebras, which were presented by Graziani et al. from the categorical point and applied to study certain deformations of quantum groups [12]. Up to now, the (Bi)hom-structures of various algebras have been intensively investigated. The construction relationship between Hom-type algebras and the module structure on them can be found in the literature [13,14,15,16,17]. Naturally, the construction between Bihom-type algebras is studied in the literature [18,19], and the results of representation and deformation can be found in [20,21,22]. In this paper, we first generalize bimodules and representations of Bihom-Jordan algebras [23,24] to Bihom-Jordan superalgebras and then develop the theory of representations and O-operators on Bihom-Jordan superalgebras.

    The outline of the paper is presented as follows: In Section 2, we review some basics about Bihom-superalgebras, Bihom-Jordan superalgebras; we study Bihom-super modules and give some easy constructions of Bihom-Jordan superalgebras. In Section 3, we mainly study super-bimodules on Bihom-Jordan superalgebras and obtain some new constructions under the view of module. In Section 4, we study the representation of Bihom-Jordan superalgebra and give the definitions of O-operator and Rota–Baxter operator. At the same time, we also give the definition of Bihom-pre-Jordan superalgebra. Finally, the relationship between O-operator and Bihom-pre-Jordan superalgebra is studied. Actually, on the basis of this section, we can also continue to study cohomology theory.

    Throughout the paper, all algebraic systems are supposed to be over a field of characteristic 0. Let A be a linear superspace over K that is a Z2-graded linear space with a direct sum A=A¯0A¯1. The elements of Aj,j=0,1, are said to be homogenous and of parity j. The parity of a homogeneous element x is denoted by |x|. In the sequel, we will denote by H(A) the set of all homogeneous elements of A. In this paper, we need to use the elements, all of which are not specified, are homogeneous.

    In this section, we recall some basic definitions about Bihom-Jordan superalgebras, provide some construction results. A Bihom-superalgebra is a quadruple (J,μ,α,β), where μ:JJJ is an even bilinear map and α,β:JJ are even linear maps such that αμ=μα and βμ=μβ (multiplicativity).

    Definition 2.1. [25] Let (J,μ,α,β) be a Bihom-superalgebra.

    The Bihom-associator of J is an even trilinear map asα,β:J3J defined by

    asα,β=μ(μβαμ). (2.1)

    For any ε,γ,δH(J), asα,β(ε,γ,δ)=μ(μ(ε,γ),β(δ))μ(α(ε),μ(γ,δ)).

    In particular, when α=β=Id, Bihom-superalgebra is to degenerate to the superalgebra, so is Bihom-associator degenerates to the original associator. If α=β, Bihom-associator degenerates to the Hom-associator.

    Definition 2.2. Let (J,μ,α,β) be a Bihom-superalgebra. Then

    A Bihom-sub-superalgebra of J is a Z2-graded linear subspace BJ, which satisfies μ(ε,γ)B,α(ε)B and β(ε)B, for all ε,γH(J). Furthermore, if μ(ε,γ),μ(γ,ε)B, for all (ε,γ)J×B, then B is called a two-sided Bihom-ideal of J.

    J is regular if α and β are algebra automorphisms.

    J is involutive if α and β are two involutions, that is α2=β2=Id.

    Definition 2.3. Let (J,μ,α,β) and (J,μ,αβ) be two Bihom-superalgebras. If a homomorphism f:JJ satisfies the following conditions:

    fμ=μ(ff),fα=αfandfβ=βf.

    Then f is called Bihom-superalgebra morphism. And we call the set Γf={ε+f(ε)|εH(J)}JJ the graph of f.

    Proposition 2.1. Let (J,μJ,αJ,βJ) and (B,μB,αB,βB) be two Bihom-Jordan superalgebras. Then an even linear map f:JB is a morphism if and only if its graph Γf is a Bihom-subalgebra of (JB,μ=μJ+μB,α=αJ+αB,β=βJ+βB).

    Proof. Suppose that f is a morphism of Bihom-Jordan superalgebras. Clearly, Γf is a subspace of JB, we only need to prove the Γf is closed under the μ,α,β. For all ε,γH(J),

    μ(ε+f(ε),γ+f(γ))=μJ(ε,γ)+μB(f(ε),f(γ))=μJ(ε,γ)+fμJ(ε,γ).

    Moreover, by fαJ=αBf and fβJ=βBf,

    α(ε+f(ε))=αJ(ε)+αB(f(ε))=αJ(ε)+fαJ(ε),β(ε+f(ε))=βJ(ε)+βB(f(ε))=βJ(ε)+fβJ(ε).

    It follows that Γf is a Bihom-subalgebra of JB.

    Conversely, Γf is a Bihom-subalgebra of JB, so

    μ(ε+f(ε),γ+f(γ))=μJ(ε,γ)+μB(f(ε),f(γ))Γf,

    which implies that μB(f(ε),f(γ))=fμJ(ε,γ). Similarly, we also obtain αBf=fαJ and βBf=fβJ from α(Γf)Γf and β(Γf)Γf, respectively. Thus, f is a morphism of Bihom-Jordan superalgebras.

    Definition 2.4. [25] A Bihom-associative superalgebra is a quadruple (J,μ,α,β), where α,β:JJ are even linear maps and μ:J×JJ is an even bilinear map such that αβ=βα,αμ=μα2, βμ=μβ2 and satisfying Bihom-associator is zero:

    asα,β(ε,γ,δ)=0,forallε,γ,δH(J). (Bihom-associativity condition)

    Clearly, when α=β, we obtain a Hom-associative superalgebra.

    Definition 2.5. [19] A BiHom superalgebra (J,μ,α,β) is called a Bihom-Jordan superalgebra if for all ε,γ,δ,tH(J):

    (i) αβ=βα,(ii) μ(β(ε),α(γ))=(1)|ε||γ|μ(β(γ),α(ε)),(Bihom-super commutativity condition)(iii) ε,γ,t(1)|t|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(t))=0.(Bihom-Jordan super-identity)

    In particular, it is reduced to a Jordan superalgebra when α=β=Id.

    Next, we give some common construction methods. Let (J,μ,α,β) be a Bihom-superalgebra. Define its plus Bihom-superalgebra as the Bihom-superalgebra J+=(J,,α,β), where

    εγ=12(μ(ε,γ)+(1)|ε||γ|μ(α1β(γ),αβ1(ε))).

    Note that product is Bihom-supercommutative. In fact, for all ε,γH(J),

    β(ε)α(γ)=12(β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε))=(1)|ε||γ|12(β(γ)α(ε)+β(ε)α(γ))=(1)|ε||γ|β(γ)α(ε).

    Moreover, the plus Bihom-superalgebra J+=(J,,α,β) is a Bihom-Jordan superalgebra. Naturally, we define

    εγ=μ(ε,γ)+(1)|ε||γ|μ(α1β(γ),αβ1(ε)),

    the is also Bihom-supercommutative. Then J=(J,,α,β) is also a Bihom-Jordan superlagebra.

    Besides that, Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) can be obtained from Jordan superalgebra (J,μ). We also consider the quotient algebra obtained by modulo Bihom-ideal, given a Bihom-Jordan superalgebra (J,μ,α,β) and I is a Bihom-ideal. Define ˉμ,ˉα,ˉβ on J/I as follows:

    ˉμ(ˉε,ˉγ)=¯μ(ε,γ),ˉα(ˉε)=¯α(ε),ˉβ(ˉε)=¯β(ε).

    Then (J/I,ˉμ,ˉα,ˉβ) is also a Bihom-Jordan superalgebra.

    Example 2.1. Given a 3-dimensional Jordan superalgebra (J=Jˉ0Jˉ1,μ) in [5], the bases of Jˉ0 and Jˉ1 are {ε} and {u,v}, respectively. The nontrivial multiplication is defined as follows:

    μ(ε,ε)=ε,μ(ε,u)=12u,μ(ε,v)=12v,μ(u,v)=ε.

    We consider two even endomorphisms α and β, which satisfy α(ε)=ε,α(u)=u,α(v)=v, and β(ε)=ε,β(u)=u,β(v)=v. Then we obtain a Bihom-Jordan superalgebra (J,μ=μ(αβ),α,β).

    Example 2.2. In [5], let (J=Jˉ0Jˉ1,μ) be a Jordan superalgebra with the nontrivial multiplication as follows:

    μ(ε,ε)=2ε,μ(ε,u)=u,μ(ε,v)=v,μ(u,v)=1+kx,

    kK and k12, where {1,ε} and {u,v} are bases of Jˉ0 and Jˉ1, respectively. We define two even endomorphisms α and β satisfies α(1)=1,α(ε)=ε,α(u)=u,α(v)=v and β(1)=1,β(ε)=ε,β(u)=u,β(v)=v. Then we obtain a Bihom-Jordan superalgebra (J,μ=μ(αβ),α,β).

    Definition 2.6. Let (J,μ,α,β) be a Bihom-superalgebra.

    1) A Bihom-super-module (V,ϕ,ψ) is called an J-super-bimodule if it is equipped with an even left structure ρl and an even right structure map ρr on Z2-graded vector space V, ρl and ρr are given by

    ρl:(JV,αϕ,βψ)(V,ϕ,ψ),ρl(a,v)=av,

    ρr:(VJ,ϕα,ψβ)(V,ϕ,ψ),ρr(v,a)=va.

    2) An even linear map f:(V,ϕ,ψ,ρl,ρr)(V,ϕ,ψ,ρl,ρr) is a morphism of the Bihom-super-modules such that the following commutative diagrams

    3) Let (V,ϕ,ψ,ρl,ρr) be an J-super-bimodule. Then the module Bihom-associator asVϕ,ψ of V is defined as:

    asVϕ,ψIdVJJ=ρr(ρrβ)ρr(ϕμ), (2.2)
    asVϕ,ψIdJVJ=ρr(ρlβ)ρl(αρr), (2.3)
    asVϕ,ψIdJJV=ρl(μψ)ρl(αρl). (2.4)

    Definition 2.7. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ) be a Bihom-super-module. Then

    1) A left Bihom-associative J-super-module structure consists of an even morphism ρl:JVV satisfies asVϕ,ψ=0 in (2.4).

    2) A right Bihom-associative J-super-module structure consists of an even morphism ρr:VJV satisfies asVϕ,ψ=0 in (2.2).

    3) A Bihom-associative J-super-bimodule structure consists of an even morphism ρl:JVV and an even morphism ρr:VJV such that (V,ϕ,ψ,ρl) is a left Bihom-associative J-super-module, (V,ϕ,ψ,ρr) is a right Bihom-associative J-super-module, and satisfies asVϕ,ψ=0 in (2.3).

    In this section, we introduce super-bimodules of Bihom-Jordan superalgebras and give some of their constructions. Finally, we define an abelian extension in order to give an application in the next section. For convenience, the sign will subsequently be omitted from the product operation of elements in J.

    Definition 3.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. For all ε,γ,δH(J),vH(V),

    A left Bihom-Jordan J-super-module is a Bihom-super-module (V,ϕ,ψ) that is equipped with an even left structure map ρl:JVV,ρl(av)=av such that ψ is invertible and the following conditions hold:

    ε,γ,δ(1)|γ||δ|β2α2(δ)(αβ(ε)α2(γ)ϕ3(v))=ε,γ,δ(1)|ε||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v)), (3.1)
    β2α2(δ)(βα2(γ)(α2(ε)ψ1ϕ3(v)))+(1)|ε||γ|+|ε||δ|+|γ||δ|β2α2(ε)(βα2(γ)(α2(δ)ψ1ϕ3(v)))+(1)|ε||δ|+|ε||γ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)=(1)|γ||δ|β2α(γ)βα2(δ)(βα2(ε)ϕ3(v))+(1)|γ||δ|+|ε||δ|β2α(γ)βα2(ε)(βα2(δ)ϕ3(v))+(1)|ε||δ|+|ε||γ|β2α(ε)βα2(δ)(βα2(γ)ϕ3(v)). (3.2)

    A right Bihom-Jordan J-super-module is a Bihom-super-module (V,ϕ,ψ) that is equipped with an even right structure map ρr:VJV,ρr(va)=va such that the following conditions hold:

    ε,γ,δ(1)|ε||δ|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)=ε,γ,δ(1)|γ||δ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ). (3.3)
    ((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|ε||γ|+|ε||δ|+|γ||δ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(γ)=(ϕψ2(v)βα2(ε))α2β(γ)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|(ϕψ2(v)βα2(δ))α2β(γ)α3(ε)+(1)|ε||γ|(ϕψ2(v)βα2(γ))α2β(ε)α3(δ). (3.4)

    Theorem 3.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ϕ,ψ) be a Bihom-super-module and ρr:VJV,ρr(va)=va be an even linear map, which satisfies the following conditions: for all ε,γH(J),vH(V),

    ϕρr=ρr(ϕα),ψρr=ρr(ψβ), (3.5)
    ϕ(v)β(ε)α(γ)=(vβ(ε))βα(γ)+(1)|ε||γ|(vβ(γ))αβ(ε). (3.6)

    Then (V,ϕ,ψ,ρr) is a right Bihom-Jordan J-super-module, called a right special Bihom-Jordan J-super-module.

    Proof. For any ε,γ,δH(J),vH(V),

    ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ)=ε,γ,δ(1)|δ||γ|ϕ(ψ2(v)βα(δ))α2β(ε)α3(γ)(by(3.5))=ε,γ,δ(1)|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+ε,γ,δ(1)|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6))=ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα(δ)α2(ε))βα2(γ)ε,γ,δ(1)|δ||γ|+|δ||ε|((ψ2(v)βα(ε))βα2(δ))βα3(γ)+ε,γ,δ(1)|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6))=ε,γ,δ(1)|ε||δ|(ϕψ2(v)βα(ε)α2(γ))βα2(δ).

    So Eq (3.3) holds. On the other hand,

    (ϕψ2(v)βα2(ε))βα2(γ)α3(δ)+(1)|ε||γ|(ϕψ2(v)βα2(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|(ϕψ2(v)βα2(δ))βα2(γ)α3(ε)=ϕ(ψ2(v)βα(ε))βα2(γ)α3(δ)+(1)|ε||γ|ϕ(ψ2(v)βα(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|ϕ(ψ2(v)βα(δ))βα2(γ)α3(ε)(by(3.5))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ψ2(v)βα(ε))βα2(δ))βα3(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|δ||ε|+|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ϕψ2(v)βα(ε)α2(δ))α3β(γ)(1)|γ||δ|+|ε||δ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|δ||ε|+|δ||γ|((ψ2(v)βα(δ))βα2(ε))βα3(γ)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|((ϕψ2(v)βα(ε)α2(δ))α3β(γ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(δ)(1)|ε||γ|(ϕψ2(v)βα2(γ))βα2(ε)α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)+(1)|ε||γ|((ψ2(v)βα(γ))βα2(ε))βα3(δ)+(1)|ε||γ|+|ε||δ|((ψ2(v)βα(γ))βα2(δ))βα3(ε)(by(3.6))=((ψ2(v)βα(ε))βα2(γ))βα3(δ)+(1)|γ||δ|ϕ2ψ2(v)(βα(ε)α2(δ))α3(δ)+(1)|δ||ε|+|δ||γ|+|ε||γ|((ψ2(v)βα(δ))βα2(γ))βα3(ε)(by(3.6)).

    It follows Eq (3.4).

    Similarly, we have the following result.

    Theorem 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ϕ,ψ) be a Bihom-super-module such that ψ is invertible, and ρl:JVV be an even linear map given by ρl(av)=av such that the following conditions hold:

    ϕρl=ρl(αϕ),ψρl=ρl(βψ), (3.7)
    β(ε)α(γ)ψ(v)=βα(ε)(α(γ)v)+(1)|ε||γ|βα(γ)(α(ε)v). (3.8)

    Then (V,ϕ,,ψ,ρl) is a left Bihom-Jordan J-super-module called a left special super-module.

    Proof. Similar to the proof of Theorem 3.1, the conclusion can be proved by repeatedly using Eqs (3.7) and (3.8).

    Now, we give the definition super-bimodule of a BiHom-Jordan superalgebra.

    Definition 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. A Bihom-Jordan J-super-bimodule is a Bihom-super-module (V,ϕ,ψ) with an even left structure map ρl:JVV,ρl(av)=av and an even right structure map ρr:VJV,ρr(va)=va satisfying three conditions:

    ρl(βϕ)=ρr(ψα)τ1, (3.9)
    ε,γ,δ(1)|δ|(|ε|+|v|)asVϕ,ψ(μ(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=0, (3.10)
    (1)|γ||δ|asVϕ,ψ(ψ2(v)αβ(ε),βα2(γ),α3(δ))+(1)|ε||γ|+|ε||δ|asVϕ,ψ(ψ2(v)αβ(δ),βα2(γ),α3(ε))+(1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(μ(β2(ε),αβ(δ)),βα2(γ),ϕ3(v))=0. (3.11)

    Remark 3.1. 1) If α=β=IdJ and ϕ=ψ=IdV then V is reduced to the so-called Jordan supermodule of the Jordan superalgebra (J,μ).

    2) Clearly, a Bihom-Jordan A-super-bimodule is a right Bihom-Jordan super-module. Furthermore, it is a left Bihom-Jordan super-module if ψ is invertible.

    Example 3.1. Here are some examples of Bihom-Jordan super-bimodules.

    1) Let (J,μ,α,β) be a Bihom-Jordan superalgebra. Then (J,α,β) is a Bihom-Jordan J-super-bimodule where the structure maps are ρl=ρr=μ. More generally, if B is a Bihom-ideal of (J,μ,α,β), then (B,α,β) is a Bihom-Jordan J-super-bimodule where the structure maps are ρl(a,ε)=μ(a,ε)=μ(ε,a)=ρr(ε,a), for all (a,ε)H(J)×H(B).

    2) If (J,μ) is a Jordan superalgebra and M is a Jordan J-super-bimodule in the usual sense, then (M,IdM,IdM) is a BiHom-Jordan J-super-bimodule where (J,μ,IdJ,IdJ) is a Bihom-Jordan superalgebra.

    Theorem 3.3. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and (V,ϕ,ψ,ρl,ρr) be a Bihom-Jordan J-super-bimodule. Define even linear maps ˜μ,˜α and ˜β on JV,

    ˜μ:(JV)2JV,˜μ(ε+u,γ+v):=μ(ε,γ)+εv+uγ,

    ˜α,˜β:(JV)JV,

    ˜α(ε+u):=α(ε)+ϕ(v) and ˜β(ε+u):=β(ε)+ψ(v).

    Then (JV,˜μ,˜α,˜β) is a Bihom-Jordan superalgebra.

    Proof. We omitted the calculation process; it is straightforward to see Bihom-super commutativity condition and Bihom-Jordan super-identity by Definition 3.2.

    The next result shows that a special left and right Bihom-Jordan super-module has a Bihom-Jordan super-bimodule structure under a specific condition.

    Theorem 3.4. Let (J,μ,α,β) be a regular Bihom-Jordan superalgebra, (V,ϕ,ψ) be both a left and a right special BiHom-Jordan J-module with the structure maps ρ1 and ρ2 respectively, such that ϕ is invertible, and the Bihom-associativity condition holds

    ρ2(ρ1β)=ρ1(αρ2). (3.12)

    Define two even bilinear maps ρl:JVV and ρr:VJV by

    ρl=ρ1+ρ2(ψϕ1αβ1)τ1andρr=ρ1(βα1ϕψ1)τ2+ρ2. (3.13)

    Then (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule.

    Proof. ρl and ρr are even structure maps from ρ1 and ρ2. We need to check out (3.9)–(3.11). First, for any (ε,v)H(J)×H(V),

    ρl(β(ε),ϕ(v))=β(ε)ϕ(v)+(1)|a||v|ψϕ1(ϕ(v))αβ1(β(ε))=β(ε)ϕ(v)+(1)|a||v|ψ(v)α(ε),
    ρr(ψα)τ1(εv)=(1)|a||v|ρr(ψ(v),α(ε))=(1)|a||v|ψ(v)α(ε)+βα1(α(ε))ϕψ1(ϕ(v))=β(ε)ϕ(v)+(1)|a||v|ψ(v)α(ε).

    So ρl(βϕ)=ρr(ψα)τ1. Next, for any ε,γ,δH(J),vH(V)

    asVϕ,ψ(μ(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=ρr(ρl(μ(β2(ε),αβ(γ)),ϕ2ψ(v)),βα3(δ))ρl(αβ2(ε)α2β(γ),ρr(ϕ2ψ(v),α3(δ)))=ρr(β2(ε)αβ(γ)ϕ2ψ(v),βα3(δ))+(1)|ε||v|+|γ||v|ρr(ϕψ2(v)αβ(ε)α2(γ),βα3(δ))(1)|v||δ|ρl(αβ2(ε)α2β(γ),βα2(δ)ϕ3(v))ρl(αβ2(ε)α2β(γ),ϕ2ψ(v)α3(δ))(by(3.13))=(β2(ε)αβ(γ)ϕ2ψ(v))βα3(δ)+(1)|δ||ε|+|δ||γ|+|δ||v|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))+(1)|ε||v|+|γ||v|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)+(1)|ε||v|+|γ||v|+|δ||v|+|δ||ε|+|δ||γ|α2β2(δ)(ϕ2ψ(v)α2(ε)α3β1(γ))(1)|v||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))(1)|v||δ|+|δ||ε|+|δ||γ|+|v||ε|+|v||γ|(β2α(δ)ψϕ2(v))α2β(ε)α3(γ)αβ2(ε)α2β(γ)(ϕ2ψ(v)α3(δ))(1)|v||ε|+|v||γ|+|δ||ε|+|δ||γ|(ϕψ2(v)α2β(δ))α2β(ε)α3(γ)(by(3.13))=(1)|ε||v|+|γ||v|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)(1)|v||ε|+|v||γ|+|δ||ε|+|δ||γ|(ϕψ2(v)α2β(δ))α2β(ε)α3(γ)+(1)|δ||ε|+|δ||γ|+|δ||v|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))(1)|v||δ|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))(by(3.12)).

    So

    ε,γ,δ(1)|δ|(|ε|+|v|)asVϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=(1)|v|(|ε|+|γ|+|δ|){ε,γ,δ(1)|ε||δ|(ϕψ2(v)αβ(ε)α2(γ))βα3(δ)ε,γ,δ(1)|δ||γ|(ϕψ2(v)βα2(δ))α2β(ε)α3(γ)}+ε,γ,δ(1)|δ||γ|α2β2(δ)(αβ(ε)α2(γ)ϕ3(v))ε,γ,δ(1)|δ||ε|αβ2(ε)α2β(γ)(βα2(δ)ϕ3(v))=(1)|v|(|ε|+|γ|+|δ|)0+0=0.

    Finally, to prove (3.11), let us compute each of its three terms.

    (1)|γ||δ|asVϕ,ψ(ρr(ψ2(v),βα(ε)),βα2(γ),α3(δ))=(1)|γ||δ|asVϕ,ψ(ψ2(v)βα(ε),βα2(γ),α3(δ))+(1)|γ||δ|+|ε||v|asVϕ,ψ(β2(ε)ϕψ(v),βα2(γ),α3(δ))(by(3.13))=(1)|γ||δ|ρr(ρr(ψ2(v)βα(ε),βα2(γ)),α3β(δ))(1)|γ||δ|ρr(ϕψ2(v)βα2(ε),βα2(γ)α3(δ))+(1)|γ||δ|+|ε||v|ρr(ρr(β2(ε)ϕψ(v),βα2(γ)),α3β(δ))(1)|γ||δ|+|ε||v|ρr(αβ2(ε)ϕ2ψ(v),βα2(γ)α3(δ))=(1)|γ||δ|ρr((ψ2(v)βα(ε))βα2(γ),α3β(δ))+(1)|γ||δ|+|γ||v|+|ε||γ|ρr(β2α(γ)(ϕψ(v)α2(ε)),α3β(δ)(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β2α(γ)βα2(δ)(ϕ2ψ(v)α3(ε))+(1)|γ||δ|+|ε||v|ρr((β2(ε)ϕψ(v))βα2(γ),α3β(δ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|ρr(β2α(γ)(αβ(ε)ϕ2(v)),α3β(δ))(1)|γ||δ|+|ε||v|(αβ2(ε)ϕ2ψ(v))βα2(γ)α3(δ)(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v))(by(3.13))=(1)|γ||δ|((ψ2(v)βα(ε))βα2(γ))α3β(δ)+(1)|δ||ε|+|δ||v|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))+(1)|γ||δ|+|γ||v|+|ε||γ|(β2α(γ)(ϕψ(v)α2(ε)))α3β(δ)+(1)|γ||v|+|ε||γ|+|δ||v|+|δ||ε|α2β2(δ)(βα2(γ)(ϕ2(v)α3β1(ε)))+(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))α3β(δ)+(1)|ε||v|+|δ||ε|+|δ||v|α2β2(δ)((αβ(ε)ϕ2(v))α3(γ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|(β2α(γ)(αβ(ε)ϕ2(v)))α3β(δ)+(1)|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|α2β2(δ)(α2β(γ)(α2(ε)ϕ3ψ1(v)))(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β2α(γ)βα2(δ)(ϕ2ψ(v)α3(ε))B(1)|γ||δ|+|ε||v|(αβ2(ε)ϕ2ψ(v))βα2(γ)α3(δ)J(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v)).(by(3.13)andrearranging)

    Observe that

    J=(1)|γ||δ|+|ε||v|ϕ(β2(ε)ϕψ(v))β(α2(γ))α(α2(δ))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)+(1)|ε||v|((β2(ε)ϕψ(v))βα2(δ))βα3(γ)(by(3.6))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)+(1)|ε||v|(αβ2(ε)(ϕψ(v)α2(δ)))βα3(γ)(by(3.12))=(1)|γ||δ|+|ε||v|((β2(ε)ϕψ(v))βα2(γ))βα3(δ)J1+(1)|ε||v|α2β2(ε)((ϕψ(v)α2(δ))α3(γ))J2.(by(3.12))
    B=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|β(αβ(γ))α(αβ(δ))ψ(ϕ2(v)α3β1(ε))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(γ)(α2β(δ)(ϕ2(v)α3β1(ε)))+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))(by(3.8))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(γ)((αβ(δ)ϕ2(v))α3(ε))+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))(by(3.12))=(1)|γ||δ|+|γ||v|+|γ||ε|+|δ||v|+|δ||ε|(αβ2(γ)(αβ(δ)ϕ2(v)))α3β(ε)B1+(1)|γ||v|+|γ||ε|+|δ||v|+|δ||ε|α2β2(δ)(α2β(γ)(ϕ2(v)α3β1(ε)))B2.(by(3.12))

    We substitute J1+J2 and B1+B2 for J and B to obtain

    (1)|γ||δ|asVϕ,ψ(ρr(ψ2(v),βα(ε)),βα2(γ),α3(δ))=(1)|γ||δ|((ψ2(v)βα(ε))βα2(γ))α3β(δ)+(1)|δ||ε|+|δ||v|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))+(1)|γ||δ|+|γ||v|+|ε||γ|(β2α(γ)(ϕψ(v)α2(ε)))α3β(δ)+(1)|ε||v|+|δ||ε|+|δ||v|α2β2(δ)((αβ(ε)ϕ2(v))α3(γ))+(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|(β2α(γ)(αβ(ε)ϕ2(v)))α3β(δ)+(1)|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|α2β2(δ)(α2β(γ)(α2(ε)ϕ3ψ1(v)))(1)|γ||δ|(ϕψ2(v)βα2(ε))βα2(γ)α3(δ)B1J2(1)|γ||δ|+|ε||v|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|β2α(γ)βα2(δ)(α2β(γ)ϕ3(v)).

    Similarly, we have

    (1)|ε||γ|+|ε||δ|asVϕ,ψ(ρr(ψ2(v)βα(δ)),βα2(γ),α3(ε))=(1)|ε||γ|+|ε||δ|((ψ2(v)βα(δ))βα2(γ))α3β(ε)+(1)|ε||v|α2β2(ε)((ϕψ(v)α2(δ))α3(γ))+(1)|γ||v|+|δ||γ|+|ε||γ|+|ε||δ|(β2α(γ)(ϕψ(v)α2(δ)))α3β(ε)+(1)|δ||v|+|ε||v|α2β2(ε)((αβ(δ)ϕ2(v))α3(γ))+(1)|δ||v|+|γ||δ|+|γ||v|+|ε||δ|+|ε||γ|(β2α(γ)(αβ(δ)ϕ2(v)))α3β(ε)+(1)|δ||v|+|γ||δ|+|γ||v|+|ε||v|α2β2(ε)(α2β(γ)(α2(δ)ϕ3ψ1(v)))(1)|ε||γ|+|ε||δ|(ϕψ2(v)βα2(δ))βα2(γ)α3(ε)(1)|ε||v|+|δ||v|+|ε||γ|+|ε||δ|α2β2(δ)((ϕψ(v)α2(ε))α3(γ))(1)|γ||v|+|γ||δ|+|ε||v|+|ε||γ|(αβ2(γ)(αβ(ε)ϕ2(v)))α3β(δ)(1)|ε||v|+|δ||v|+|γ||δ|+|γ||v|+|ε||γ|β2α(γ)α2β(ε)(α2β(δ)ϕ3(v)).

    In addition,

    (1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(β2(ε)βα(δ),βα2(γ),ϕ3(v))=(1)|v||ε|+|v||γ|+|v||δ|ρl((β2(ε)βα(δ))βα2(γ),ϕ3ψ(v))(1)|v||ε|+|v||γ|+|v||δ|ρl(β2α(ε)βα2(δ),ρl(βα2(γ),ϕ3(v))=(1)|v||ε|+|v||γ|+|v||δ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)+ϕ2ψ2(v)((αβ(ε)α2(δ))α3(γ))(1)|v||ε|+|v||γ|+|v||δ|ρl(β2α(ε)βα2(δ),βα2(γ)ϕ3(v))(1)|v||ε|+|v||δ|ρl(β2α(ε)βα2(δ),ψϕ2(v)α3(γ))(by(3.13))=(1)|v||ε|+|v||γ|+|v||δ|((β2(ε)βα(δ))βα2(γ))ϕ3ψ(v)+ϕ2ψ2(v)((αβ(ε)α2(δ))α3(γ))(1)|v||ε|+|v||γ|+|v||δ|(β2α(ε)βα2(δ))(βα2(γ)ϕ3(v))(1)|v||γ|+|γ||ε|+|γ||δ|(β2α(γ)ϕ2ψ(v))βα2(ε)α3(δ)D(1)|v||ε|+|v||δ|β2α(ε)βα2(δ)(ψϕ2(v)α3(γ))C(1)|γ||ε|+|γ||δ|(ψ2ϕ(v)α2β(γ))α2β(ε)α3(δ).(by(3.13))

    The same way, we replace C and D as follows

    C=(1)|v||ε|+|v||δ|β(αβ(ε))α(αβ(δ))ψ(ϕ2(v)α3β1(γ))=(1)|v||ε|+|v||δ|β2α2(ε)(α2β(δ)(ϕ2(v)α3β1(γ)))+(1)|v||ε|+|v||δ|+|ε||δ|β2α2(δ)(α2β(ε)(ϕ2(v)α3β1(γ)))(by3.8)=(1)|v||ε|+|v||δ|β2α2(ε)((αβ(δ)ϕ2(v))α3(γ))C1+(1)|v||ε|+|v||δ|+|ε||δ|β2α2(δ)((αβ(ε)ϕ2(v))α3(γ))C2,(by3.12)
    D=(1)|v||γ|+|γ||ε|+|γ||δ|ϕ(β2(γ)ϕψ(v))β(α2(ε))α(α2(δ))=(1)|v||γ|+|γ||ε|+|γ||δ|((β2(γ)ϕψ(v))α2β(ε))βα3(δ)+(1)|v||γ|+|γ||ε|+|γ||δ|+|ε||δ|((β2(γ)ϕψ(v))α2β(δ))βα3(ε)(by3.6)=(1)|v||γ|+|γ||ε|+|γ||δ|(αβ2(γ)(ϕψ(v)α2(ε)))βα3(δ)D1+(1)|v||γ|+|γ||ε|+|γ||δ|+|ε||δ|(αβ2(γ)(ϕψ(v)α2(δ)))βα3(ε)D2.(by3.12)

    Finally, we have

    (1)|γ||δ|asVϕ,ψ(ψ2(v)αβ(ε),βα2(γ),α3(δ))+(1)|ε||γ|+|ε||δ|asVϕ,ψ(ψ2(v)αβ(δ),βα2(γ),α3(ε))+(1)|v||ε|+|v||γ|+|v||δ|asVϕ,ψ(μ(β2(ε),αβ(δ)),βα2(γ),ϕ3(v))=(1)|γ||δ|(3.2)+(1)|v||ε|+|γ||ε|+|γ||v|+|δ||ε|+|δ||v|(3.4)=0.

    Hence, we prove that (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule.

    Lemma 3.1. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ) be a Bihom-super-module.

    1) If (V,ϕ,ψ) is a right Bihom-associative J-super-module with the structure map ρr, then (V,ϕ,ψ) is a right special Bihom-Jordan J-super-module with the same structure map ρr.

    2) If (V,ϕ,ψ) is a left Bihom-associative J-super-module with the structure map ρl such that ψ is invertible, then (V,ϕ,ψ) is a left special Bihom-Jordan J-super-module with the same structure map ρl.

    Proof. It also suffices to prove Eqs (3.6) and (3.8).

    1) If (V,ϕ,ψ) is a right Bihom-associative J-super-module with the structure map ρr then for all (ε,γ,v)H(J)×H(J)×H(V). ϕ(v)(β(ε)α(γ))=ϕ(v)(β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε))=(vβ(ε))αβ(γ)+(1)|ε||γ|(vβ(γ))αβ(ε). Then (V,ϕ,ψ) is a right special Bihom-Jordan J-super-module by Theorem 3.1.

    2) Similarly, it is easy to obtain by Theorem 3.2.

    End of lemma proof.

    By Lemma 3.1 and Theorem 3.4, we obtain the following conclusion.

    Proposition 3.1. Let (J,μ,α,β) be a Bihom-associative superalgebra and (V,ϕ,ψ,ρ1,ρ2) be a Bihom-associative J-super-bimodule such that ϕ and ψ are inversible. Then (V,ϕ,ψ,ρl,ρr) is a Bihom-Jordan J-super-bimodule where ρl and ρr are defined as in Eq (3.13).

    That is, a Bihom-associative J-super-bimodule gives rise to a Bihom-Jordan super-bimodule for J.

    Proposition 3.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and Vϕ,ψ=(V,ϕ,ψ,ρl,ρr) be a Bihom-Jordan J-super-bimodule. Then for each nN such that ϕn=ψn=IdV, the maps

    ρ(n)l=ρl(αnψn), (3.14)

    and

    ρ(n)r=ρr(ϕnβn). (3.15)

    as structure maps, (V,ϕ,ψ,ρ(n)l,ρ(n)r) is given to be a Bihom-Jordan J-super-bimodule. Denoted it by V(n)ϕ,ψ.

    Proof. ρl and ρn are easy to prove special left and right super-modules, respectively, which are also left and right super-modules, and Eq (3.9) holds in V(n)ϕ,ψ. By direct calculation, we can convert asV(n)ϕ,ψ in V(n)ϕ,ψ to asVϕ,ψ in Vϕ,ψ, that is

    asV(n)ϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=asVϕ,ψ(β2(αn(ε))αβ(αn(γ)),ϕ2ψ(v),α3(βn(δ)))

    , furthermore, we have

    ε,γ,δ(1)|δ|(|ε|+|v|)asV(n)ϕ,ψ(β2(ε)αβ(γ),ϕ2ψ(v),α3(δ))=αn(ε),αn(γ),βn(δ)(1)|δ|(|ε|+|v|)asVϕ,ψ(β2(αn(ε))αβ(αn(γ)),ϕ2ψ(v),α3(βn(δ)))=0.

    Then we obtain Eq (3.10) in V(n)ϕ,ψ. Similarly, Eq (3.11) also holds in V(n)ϕ,ψ, which implies that V(n)ϕ,ψ is a Bihom-Jordan J-super-bimodule.

    In the sequel, we present some results of Bihom-Jordan super-bimodules constructed by Jordan super-bimodules via endomorphisms.

    Theorem 3.5. Let (J,μ) be a Jordan superalgebra, (V,ρl,ρr) be a Jordan J-super-bimodule, α,β be endomorphisms of J, which satisfies αβ=βα and ϕ,ψ be even linear self-maps of V such that ϕρl=ρl(αϕ), ϕρr=ρr(ϕα), ψρl=ρl(βψ) and ψρr=ρr(ψβ). Denote Jα,β for the Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) and Vϕ,ψ for the Bihom-super-module (V,ϕ,ψ). Define two structure maps as follows:

    ~ρl=ρl(αψ)and~ρr=ρr(ϕβ). (3.16)

    Then Vϕ,ψ=(V,ϕ,ψ,~ρl,~ρr) is a Bihom-Jordan Jα,β-super-bimodule.

    Proof. By direct calculation, it is easy to get asVϕ,ψ(μα,β(β2(ε),αβ(γ)),ϕ2ψ(v),α3(δ))=asV(α3β2(ε)α3β2(γ),ϕ3ψ2(v),α3β2(δ)), So it is clear Eqs (3.10) and (3.11) hold in Vϕ,ψ. Thus, (V,ϕ,ψ,~ρl,~ρr) is a Bihom-Jordan Jα,β-super-bimodule.

    From Proposition 3.2 and Theorem 3.5, we have the following

    Corollary 3.1. Let (J,μ) be a Jordan superalgebra, (V,ρl,ρr) be a Jordan J-super-bimodule, α,β be endomorphisms of J, which satify αβ=βα and ϕ,ψ be even linear self-maps of V such that ϕρl=ρl(αϕ), ϕρr=ρr(ϕα), ψρl=ρl(βψ) and ψρr=ρr(ψβ). Denote Jα,β for the Bihom-Jordan superalgebra (J,μα,β=μ(αβ),α,β) and Vϕ,ψ for the Bihom-super-module (V,ϕ,ψ). Define two structure maps as follows:

    ~ρl(n)=ρl(αn+1ψ)and~ρr(n)=ρr(ϕβn+1). (3.17)

    Then Vϕ,ψ=(V,ϕ,ψ,~ρl(n),~ρr(n)) is a Bihom-Jordan Jα,β-super-bimodule for each nN.

    Definition 3.3. An abelian extension of Bihom-Jordan superalgebra is a short exact sequence of Bihom-Jordan superalgebra:

    0(V,ϕ,ψ)i(J,μJ,αJ,βJ)π(B,μB,αB,βB)0.

    where (V,ϕ,ψ) is a trivial Bihom-Jordan superalgebra, i and π are even morphisms of Bihom-superalgebras. If there exists an even morphism s:(B,μB,αB,βB)(J,μJ,αJ,βJ) satisfies πs=IdB. Then the abelian extension is said to be split and s is called a section of π.

    In this section, we study the representation and O-operator. Meanwhile, we characterize Bihom-pre-Jordan superalgebras by using O-operator.

    Definition 4.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, V be a Z2-graded vector spaces, ρ:JEnd(V), ϕ,ψAug(V). Then (V,ρ,ϕ,ψ) is a representation of (J,μ,α,β), if the following conditions hold:

    ϕψ=ψϕ, (4.1)
    ρ(μ(μ(β2(ε),αβ(γ)),α2β(δ)))ϕ3ψ+(1)|δ||γ|ρ(α2β2(ε))ϕψ1ρ(αβ2(δ))ϕψ1ρ(β2(γ))ϕψ+(1)|γ||ε|+|δ||ε|ρ(α2β2(γ))ϕψ1ρ(αβ2(δ))ϕψ1ρ(β2(ε))ϕψρ(μ(αβ2(ε),α2β(γ)))ρ(α2β(δ))ϕ3(1)|ε||δ|+|δ||γ|ρ(μ(αβ2(δ),α2β(ε)))ϕ2ψ1ρ(β2(γ))ϕψ(1)|ε||δ|+|δ||γ|+|ε||γ|ρ(μ(αβ2(δ),α2β(γ)))ϕ2ψ1ρ(β2(ε))ϕψ=0. (4.2)
    ε,γ,δ(1)|ε||δ|ρ(α2β2(ε))ϕψ1ρ(μ(β2(γ),αβ(δ)))ϕ2ψ=ε,γ,δ(1)|ε||δ|ρ(μ(αβ2(ε),α2β(γ)))ρ(α2β(δ))ϕ3. (4.3)

    Example 4.1. Let (J,μ,α,β) be a regular Bihom-Jordan superalgebra. Define ad:JEnd(J), for any ε,γH(J), ad(ε)γ=μ(ε,γ). Then (J,ad,α,β) is a representation of (J,μ,α,β), which is called adjoint representation.

    Proposition 4.1. Let (J,μ,α,β) be a Bihom-Jordan superalgebra. (V,ρ,ϕ,ψ) be a representation, define an even bilinear map μ and two even linear maps α and β on JV as follows: for any ε,γH(J),a,bH(V),

    μ(ε+a,γ+b)=μ(ε,γ)+ρ(ε)b+ρ(α1β(γ))ϕψ1(a),
    (α+ϕ)(ε+a)=α(ε)+ϕ(a),(β+ψ)(ε+a)=β(a)+ψ(a).

    Then (JV,μ,α+ϕ,β+ψ) is a Bihom-Jordan superalgebra, denoted by JV and called semidirect product.

    Proof. It can be verified directly by Definition 4.1.

    We also consider the split null extension on JV in Proposition 4.1.

    Remark 4.1. Write elements a+v of JV as (a,v). There is an injective homomorphism and a surjective homomorphism of Bihom-modules, respectively, as follows:

    i:VJV, i(v)=(0,v),

    π:JV, π(a,v)=a.

    Moreover, i(V) is a Bihom-ideal of JV such that JV/i(V)J. On the other hand, there is an even morphisms σ:JJV given by σ(a)=(a,0), which is clearly a section of π. Therefore, we obtain the abelian split exact sequence:

    Definition 4.2. A BiHom superalgebra (J,,α,β) is called a Bihom-pre-Jordan superalgebra if for all ε,γ,δ,tH(J):

    1) αβ=βα, both α and β are reversible,

    1)

    ((β2(ε)αβ(γ))α2β(δ))α3β(w)+(1)|ε||γ|((β2(γ)αβ(ε))α2β(δ))α3β(w)+(1)|δ|(|ε|+|γ|)(αβ2(δ)(αβ(ε)α2(γ)))α3β(w)+(1)|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)(αβ(γ)α2(ε)))α3β(w)+(1)|δ||γ|α2β2(ε)(α2β(δ)(α2(γ)α3β1(w)))+(1)|δ||ε|+|γ||ε|α2β2(γ)(α2β(δ)(α2(ε)α3β1(w)))(αβ2(ε)α2β(γ))(α2β(δ)α3(w))(1)|ε||γ|(αβ2(γ)α2β(ε))(α2β(δ)α3(w))(1)|ε||δ|+|δ||γ|(αβ2(δ)α2β(ε))(α2β(γ)α3(w))(1)|δ||γ|(αβ2(ε)α2β(δ))(α2β(γ)α3(w))(1)|γ||δ|+|δ||ε|+|γ||ε|(αβ2(δ)α2β(γ))(α2β(ε)α3(w))(1)|δ||ε|+|γ||ε|(αβ2(γ)α2β(δ))(α2β(ε)α3(w))=0, (4.4)

    3)

    (1)|w||γ|α2β2(w)((αβ(ε)α2(γ))α3(δ))+(1)|ε||γ|+|w||γ|α2β2(w)((αβ(γ)α2(ε))α3(δ))+(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))+(1)|γ||ε|α2β2(γ)((αβ(w)α2(ε))α3(δ))+(1)|γ||ε|+|w||ε|α2β2(γ)((αβ(ε)α2(w))α3(δ))(1)|w||ε|(αβ2(ε)α2β(γ))(α2β(w)α3(δ))(1)|ε||γ|+|w||ε|(αβ2(γ)α2β(ε))(α2β(w)α3(δ))(1)|ε||γ|(αβ2(γ)α2β(w))(α2β(ε)α3(δ))(1)|γ||w|+|ε||γ|(αβ2(w)α2β(γ))(α2β(ε)α3(δ))(1)|γ||w|(αβ2(w)α2β(ε))(α2β(γ)α3(δ))(1)|w||ε|+|γ||w|(αβ2(ε)α2β(w))(α2β(γ)α3(δ)). (4.5)

    Actually, condition 3 is equivalent to

    ε,γ,w{(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))}=ε,γ,w{(1)|ε||w|(αβ2(ε)α2β(γ))(α2β(w)(δ))+(1)|ε||w|+|ε||γ|(αβ2(γ)α2β(ε))(α2β(w)(δ))}.

    Theorem 4.1. Let (J,,α,β) be a Bihom-pre-Jordan superalgebra, define an even bilinear operator μ: for all ε,γH(J)

    μ(ε,γ)=εγ+(1)|ε||γ|α1β(γ)αβ1(ε), (4.6)

    then (J,,α,β) is a Bihom-Jordan superalgebra.

    Proof. By Eq (4.6), we get

    μ(β(ε),α(γ))=β(ε)α(γ)+(1)|ε||γ|β(γ)α(ε)=(1)|ε||γ|μ(β(γ),α(ε)).

    That is to say the Bihom-super commutativity condition holds. Next, by direct calculation,

    (1)|w|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(w))=(1)|w|(|ε|+|δ|)((β2(ε)αβ(γ))α2β(δ))α3β(w)_+(1)|w||γ|α2β2(w)((αβ(ε)α2(γ))α3(δ))1+(1)|w|(|ε|+|δ|)+|δ|(|ε|+|γ|)(αβ2(δ)(αβ(ε)α2(γ)))α3β(w)_+(1)|w||γ|+|δ|(|ε|+|γ|)α2β2(w)(α2β(δ)(α2(ε)α3β1(γ)))(1)|w|(|ε|+|δ|)(αβ2(ε)α2β(γ))(α2β(δ)α3(w))_(1)|w|(|δ|+|γ|)+|δ|(|ε|+|γ|)(αβ2(δ)α2β(w))(α2β(ε)α3(γ))(1)|w||ε|(αβ2(ε)α2β(γ))(α2β(w)α3(δ))2(1)|w||γ|+|δ|(|ε|+|γ|)(αβ2(w)α2β(δ))(α2β(ε)α3(γ))+(1)|w|(|ε|+|δ|)+|ε||γ|((β2(γ)αβ(ε))α2β(δ))α3β(w)_+(1)|w||γ|+|ε||γ|α2β2(w)((αβ(γ)α2(ε))α3(δ))3+(1)|w|(|ε|+|δ|)+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)(αβ(γ)α2(ε)))α3β(w)_+(1)|w||γ|+|δ|(|ε|+|γ|)+|ε||γ|α2β2(w)(α2β(δ)(α2(γ)α3β1(ε)))(1)|w|(|ε|+|δ|)+|ε||γ|(αβ2(γ)α2β(ε))(α2β(δ)α3(w))_(1)|w|(|δ|+|γ|)+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(δ)α2β(w))(α2β(γ)α3(ε))(1)|w||ε|+|ε||γ|(αβ2(γ)α2β(ε))(α2β(w)α3(δ))4(1)|w||γ|+|δ|(|ε|+|γ|)+|ε||γ|(αβ2(w)α2β(δ))(α2β(γ)α3(ε)),
    (1)|ε|(|γ|+|δ|)~asα,β(μ(β2(γ),αβ(w)),α2β(δ),α3(ε))=(1)|ε|(|γ|+|δ|)((β2(γ)αβ(w))α2β(δ))α3β(ε)+(1)|ε||w|α2β2(ε)((αβ(γ)α2(w))α3(δ))5+(1)|ε|(|γ|+|δ|)+|δ|(|w|+|γ|)(αβ2(δ)(αβ(γ)α2(w)))α3β(ε)+(1)|ε||w|+|δ|(|γ|+|w|)α2β2(ε)(α2β(δ)(α2(γ)α3β1(w)))_(1)|ε|(|γ|+|δ|)(αβ2(γ)α2β(w))(α2β(δ)α3(ε))(1)|ε|(|δ|+|w|)+|δ|(|γ|+|w|)(αβ2(δ)α2β(ε))(α2β(γ)α3(w))_(1)|ε||γ|(αβ2(γ)α2β(w))(α2β(ε)α3(δ))6(1)|ε||w|+|δ|(|γ|+|w|)(αβ2(ε)α2β(δ))(α2β(γ)α3(w))_+(1)|ε|(|γ|+|δ|)+|γ||w|((β2(w)αβ(γ))α2β(δ))α3β(ε)+(1)|ε||w|+|γ||w|α2β2(ε)((αβ(w)α2(γ))α3(δ))7+(1)|ε|(|γ|+|δ|)+|δ|(|γ|+|w|)+|γ||w|(αβ2(δ)(αβ(w)α2(γ)))α3β(ε)+(1)|w||γ|+|δ|(|γ|+|w|)+|ε||w|α2β2(ε)(α2β(δ)(α2(w)α3β1(γ)))(1)|ε|(|γ|+|δ|)+|γ||w|(αβ2(w)α2β(γ))(α2β(δ)α3(ε))(1)|ε|(|δ|+|w|)+|δ|(|γ|+|w|)+|γ||w|(αβ2(δ)α2β(ε))(α2β(w)α3(γ))(1)|w||γ|+|ε||γ|(αβ2(w)α2β(γ))(α2β(ε)α3(δ))8(1)|w||γ|+|δ|(|γ|+|w|)+|ε||w|(αβ2(ε)α2β(δ))(α2β(w)α3(γ)),
    (1)|γ|(|w|+|δ|)~asα,β(μ(β2(w),αβ(ε)),α2β(δ),α3(γ))=(1)|γ|(|w|+|δ|)((β2(w)αβ(ε))α2β(δ))α3β(γ)+(1)|γ||ε|α2β2(γ)((αβ(w)α2(ε))α3(δ))9+(1)|γ|(|w|+|δ|)+|δ|(|w|+|ε|)(αβ2(δ)(αβ(w)α2(ε)))α3β(γ)+(1)|γ||ε|+|δ|(|w|+|ε|)α2β2(γ)(α2β(δ)(α2(w)α3β1(ε)))(1)|γ|(|w|+|δ|)(αβ2(w)α2β(ε))(α2β(δ)α3(γ))(1)|γ|(|δ|+|ε|)+|δ|(|w|+|ε|)(αβ2(δ)α2β(γ))(α2β(w)α3(ε))(1)|γ||w|(αβ2(w)α2β(ε))(α2β(γ)α3(δ))10(1)|γ||ε|+|δ|(|w|+|ε|)(αβ2(γ)α2β(δ))(α2β(w)α3(ε))+(1)|γ|(|w|+|δ|)+|w||ε|((β2(ε)αβ(w))α2β(δ))α3β(γ)+(1)|w||ε|+|ε||γ|α2β2(γ)((αβ(ε)α2(w))α3(δ))11+(1)|γ|(|w|+|δ|)+|δ|(|w|+|ε|)+|w||ε|(αβ2(δ)(αβ(ε)α2(w)))α3β(γ)+(1)|w||ε|+|δ|(|w|+|ε|)+|ε||γ|α2β2(γ)(α2β(δ)(α2(ε)α3β1(w)))_(1)|γ|(|w|+|δ|)+|w||ε|(αβ2(ε)α2β(w))(α2β(δ)α3(γ))(1)|γ|(|δ|+|ε|)+|δ|(|w|+|ε|)+|w||ε|(αβ2(δ)α2β(γ))(α2β(ε)α3(w))_(1)|w||ε|+|γ||w|(αβ2(ε)α2β(w))(α2β(γ)α3(δ))12(1)|w||ε|+|δ|(|w|+|ε|)+|ε||γ|(αβ2(γ)α2β(δ))(α2β(ε)α3(w))_,

    By Eq (4.4), we have ++=0, and by Eq (4.5), 1++12=0, Analogously, the conclusion that the sum is zero can be obtained by recombining the remaining unmarked formulas, which implies

    ε,γ,w(1)|w|(|ε|+|δ|)~asα,β(μ(β2(ε),αβ(γ)),α2β(δ),α3(w))=0.

    This completes the proof.

    Definition 4.3. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, and (V,ρ,ϕ,ψ) be its representation. If even the linear map T:JV satisfies the following conditions: for all a,bH(V),

    μ(T(a),T(b))=T(ρ(T(a))b+(1)|a||b|ρ(T(ϕ1ψ(b)))ϕψ1(a)),
    Tϕ=αT,Tψ=βT,

    then T is called O-operator with respect to representation.

    Definition 4.4. Let (J,μ,α,β) be a Bihom-Jordan superalgebra and α,β be reversible, Rgl(J), R is called Rota–Baxter operator on J, if for all ε,γH(J), the following conditions hold:

    μ(R(ε),R(γ))=R(μ(R(ε),γ)+(1)|ε||γ|μ(R(α1β(γ)),αβ1(ε))),
    Rα=αR,Rβ=βR.

    Theorem 4.2. Let (J,μ,α,β) be a Bihom-Jordan superalgebra, (V,ρ,ϕ,ψ) be its representation, and T be an O-operator with respect to representation. Define bilinear operation on V:

    ab=ρ(T(a))b,a,bH(V).

    Then (V,,ϕ,ψ) is a Bihom-pre-Jordan superalgebra.

    Proof. Actually, it can be calculated directly from Definition 4.1.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by NNSF of China (Nos. 12271085 and 12071405). The authors would like to thank the reviewers for valuable suggestions to improve the paper.

    The authors declare there are no conflicts of interest.


    Acknowledgments



    We would like to thank Prof. Gian Luigi Gigli for kindly revising this paper.

    [1] Cao Q, Tan CC, Xu W, et al. (2020) The prevalence of dementia: A systematic review and meta-analysis. J Alzheimers Dis 73: 1157-1166. https://doi.org/10.3233/JAD-191092
    [2] Heinzel S, Berg D, Gasser T, et al. (2019) Update of the MDS research criteria for prodromal Parkinson's disease. Mov Disord 34: 1464-1470. https://doi.org/10.1002/mds.27802
    [3] Ahn EH, Kang SS, Liu X, et al. (2020) Initiation of Parkinson's disease from gut to brain by δ-secretase. Cell Res 30: 70-87. https://doi.org/10.1038/s41422-019-0241-9
    [4] Sohrab SS, Suhail M, Ali A, et al. (2018) Role of viruses, prions and miRNA in neurodegenerative disorders and dementia. VirusDis 29: 419-433. https://doi.org/10.1007/s13337-018-0492-y
    [5] Baev AY, Vinokurov AY, Novikova IN, et al. (2022) Interaction of mitochondrial calcium and ROS in neurodegeneration. Cells 11: 706. https://doi.org/10.3390/cells11040706
    [6] Kovacs GG (2016) Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. Int J Mol Sci 17: 189. https://doi.org/10.3390/ijms17020189
    [7] Scialò C, De Cecco E, Manganotti P, et al. (2019) Prion and prion-like protein strains: Deciphering the molecular basis of heterogeneity in neurodegeneration. Viruses 11: 261. https://doi.org/10.3390/v11030261
    [8] Nelson PT, Dickson DW, Trojanowski JQ, et al. (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain 142: 1503-1527. https://doi.org/10.1093/brain/awz099
    [9] Ghemrawi R, Khair M (2020) Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci 21: 6127. https://doi.org/10.3390/ijms21176127
    [10] Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol-Mech 10: 173-194. https://doi.org/10.1146/annurev-pathol-012513-104649
    [11] Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28: 51-65. https://doi.org/10.1016/j.jchemneu.2003.08.007
    [12] Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu Rev Biochem 86: 27-68. https://doi.org/10.1146/annurev-biochem-061516-045115
    [13] Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27: 570-575. https://doi.org/10.1016/j.neurobiolaging.2005.04.017
    [14] Roberts HL, Brown DR (2015) Seeking a mechanism for the toxicity of oligomeric α-synuclein. Biomolecules 5: 282-305. https://doi.org/10.3390/biom5020282
    [15] Kaur S, Verma H, Dhiman M, et al. (2021) Brain exosomes: Friend or foe in Alzheimer's disease?. Mol Neurobiol 58: 6610-6624. https://doi.org/10.1007/s12035-021-02547-y
    [16] Soto C, Pritzkow S (2018) Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat Neurosci 21: 1332-1340. https://doi.org/https://doi.org/10.1038/s41593-018-0235-9
    [17] Jarrett JT, Lansbury PT (1993) Seeding “one-dimensional crystallization” of amyloid: A pathogenic mechanism in Alzheimer's disease and scrapie?. Cell 73: 1055-1058. https://doi.org/10.1016/0092-8674(93)90635-4
    [18] Soto C, Estrada L, Castilla J (2006) Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends Biochem Sci 31: 150-155. https://doi.org/10.1016/j.tibs.2006.01.002
    [19] Melki R (2018) How the shapes of seeds can influence pathology. Neurobiol Dis 109: 201-208. https://doi.org/10.1016/j.nbd.2017.03.011
    [20] Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144. https://doi.org/10.1126/science.6801762
    [21] Soto C (2012) Transmissible proteins: expanding the prion heresy. Cell 149: 968-977. https://doi.org/10.1016/j.cell.2012.05.007
    [22] Aguzzi A, Lakkaraju AKK (2016) Cell biology of prions and prionoids: A status report. Trends Cell Biol 26: 40-51. https://doi.org/10.1016/j.tcb.2015.08.007
    [23] Liberski PP, Gajos A, Sikorska B, et al. (2019) Kuru, the first human prion disease. Viruses 11: 232. https://doi.org/10.3390/v11030232
    [24] Das AS, Zou WQ (2016) Prions: Beyond a single protein. Clin Microbiol Rev 29: 633-658. https://doi.org/10.1128/CMR.00046-15
    [25] Polymenidou M, Cleveland DW (2012) Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209: 889-893. https://doi.org/10.1084/jem.20120741
    [26] Luk KC, Kehm VM, Zhang B, et al. (2012) Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 209: 975-986. https://doi.org/10.1084/jem.20112457
    [27] Bousset L, Pieri L, Ruiz-Arlandis G, et al. (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4: 2575. https://doi.org/10.1038/ncomms3575
    [28] Sacino AN, Brooks M, Thomas MA, et al. (2014) Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci U S A 111: 10732-10737. https://doi.org/10.1073/pnas.1321785111
    [29] Mougenot AL, Nicot S, Bencsik A, et al. (2012) Prion-like acceleration of a synucleinopathy in a transgenic mouse model. Neurobiol Aging 33: 2225-2228. https://doi.org/10.1016/j.neurobiolaging.2011.06.022
    [30] Carlson GA, Prusiner SB (2021) How an infection of sheep revealed prion mechanisms in Alzheimer's disease and other neurodegenerative disorders. Int J Mol Sci 22: 4861. https://doi.org/10.3390/ijms22094861
    [31] Watts JC, Giles K, Oehler A, et al. (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 110: 19555-19560. https://doi.org/10.1073/pnas.1318268110
    [32] Braak H, Del Tredici K, Rüb U, et al. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24: 197-211. https://doi.org/10.1016/s0197-4580(02)00065-9
    [33] Peelaerts W, Bousset L, der Perren AV, et al. (2015) α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522: 340-344. https://doi.org/10.1038/nature14547
    [34] Shahnawaz M, Mukherjee A, Pritzkow S, et al. (2020) Discriminating α-synuclein strains in Parkinson's disease and multiple system atrophy. Nature 578: 273-277. https://doi.org/10.1038/s41586-020-1984-7
    [35] Trotti LM (2010) REM sleep behaviour disorder in older individuals: Epidemiology, pathophysiology and management. Drugs Aging 27: 457-470. https://doi.org/10.2165/11536260-000000000-00000
    [36] Haba-Rubio J, Frauscher B, Marques-Vidal P, et al. (2018) Prevalence and determinants of rapid eye movement sleep behavior disorder in the general population. Sleep 41: zsx197. https://doi.org/10.1093/sleep/zsx197
    [37] Fernández-Arcos A, Iranzo A, Serradell M, et al. (2016) The clinical phenotype of idiopathic rapid eye movement sleep behavior disorder at presentation: A study in 203 consecutive patients. Sleep 39: 121-132. https://doi.org/10.5665/sleep.5332
    [38] Schenck CH, Bundlie SR, Ettinger MG, et al. (1986) Chronic behavioral disorders of human REM sleep: A new category of parasomnia. Sleep 9: 293-308. https://doi.org/10.1093/sleep/9.2.293
    [39] Cartwright RD (2014) Alcohol and NREM parasomnias: Evidence versus opinions in the international classification of sleep disorders, 3rd edition. J Clin Sleep Med 10: 1039-1040. Published 2014 Sep 15. https://doi.org/10.5664/jcsm.4050
    [40] Bassetti CL, Bargiotas P (2018) REM sleep behavior disorder. Front Neurol Neurosci 41: 104-116. https://doi.org/10.1159/000478914
    [41] Berry RB, Quan SF, Abreu AR, et al. (2020) The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications, Version 2.6. American Academy of Sleep Medicine.
    [42] Frauscher B, Iranzo A, Gaig C, et al. (2012) Normative EMG values during REM sleep for the diagnosis of REM sleep behavior disorder. Sleep 35: 835-847. https://doi.org/10.5665/sleep.1886
    [43] Ferri R, Rundo F, Manconi M, et al. (2010) Improved computation of the atonia index in normal controls and patients with REM sleep behavior disorder. Sleep Med 11: 947-949. https://doi.org/10.1016/j.sleep.2010.06.003
    [44] Frandsen R, Nikolic M, Zoetmulder M, et al. (2015) Analysis of automated quantification of motor activity in REM sleep behaviour disorder. J Sleep Res 24: 583-590. https://doi.org/10.1111/jsr.12304
    [45] Frauscher B, Gschliesser V, Brandauer E, et al. (2007) Video analysis of motor events in REM sleep behavior disorder. Mov Disord 22: 1464-1470. https://doi.org/10.1002/mds.21561
    [46] Manni R, Terzaghi M, Glorioso M (2009) Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep. Sleep 32: 241-245. https://doi.org/10.1093/sleep/32.2.241
    [47] Sixel-Döring F, Schweitzer M, Mollenhauer B, et al. (2011) Intraindividual variability of REM sleep behavior disorder in Parkinson's disease: A comparative assessment using a new REM sleep behavior disorder severity scale (RBDSS) for clinical routine. J Clin Sleep Med 7: 75-80.
    [48] Waser M, Stefani A, Holzknecht E, et al. (2020) Automated 3D video analysis of lower limb movements during REM sleep: a new diagnostic tool for isolated REM sleep behavior disorder. Sleep 43: zsaa100. https://doi.org/10.1093/sleep/zsaa100
    [49] Scherfler C, Frauscher B, Schocke M, et al. (2011) White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: A diffusion-tensor imaging and voxel-based morphometry study. Ann Neurol 69: 400-407. https://doi.org/10.1002/ana.22245
    [50] Ehrminger M, Latimier A, Pyatigorskaya N, et al. (2016) The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder. Brain 139: 1180-1188. https://doi.org/10.1093/brain/aww006
    [51] De Marzi R, Seppi K, Högl B, et al. (2016) Loss of dorsolateral nigral hyperintensity on 3.0 tesla susceptibility-weighted imaging in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol 79: 1026-1030. https://doi.org/10.1002/ana.24646
    [52] Iranzo A, Lomeña F, Stockner H, et al. (2010) Decreased striatal dopamine transporter uptake and substantia nigra hyperechogenicity as risk markers of synucleinopathy in patients with idiopathic rapid-eye-movement sleep behaviour disorder: A prospective study. Lancet Neurol 9: 1070-1077. https://doi.org/10.1016/S1474-4422(10)70216-7
    [53] Iranzo A, Santamaría J, Valldeoriola F, et al. (2017) Dopamine transporter imaging deficit predicts early transition to synucleinopathy in idiopathic rapid eye movement sleep behavior disorder. Ann Neurol 82: 419-428. https://doi.org/10.1002/ana.25026
    [54] Aurora RN, Zak RS, Maganti RK, et al. (2010) Best practice guide for the treatment of REM sleep behavior disorder (RBD). J Clin Sleep Med 6: 85-95.
    [55] Devnani P, Fernandes R (2015) Management of REM sleep behavior disorder: An evidence based review. Ann Indian Acad Neurol 18: 1-5.
    [56] McGrane IR, Leung JG, St Louis EK, et al. (2015) Melatonin therapy for REM sleep behavior disorder: A critical review of evidence. Sleep Med 16: 19-26. https://doi.org/10.1016/j.sleep.2014.09.011
    [57] Arnaldi D, Antelmi E, St Louis EK, et al. (2017) Idiopathic REM sleep behavior disorder and neurodegenerative risk: To tell or not to tell to the patient? How to minimize the risk?. Sleep Med Rev 36: 82-95. https://doi.org/10.1016/j.smrv.2016.11.002
    [58] Roguski A, Rayment D, Whone AL, et al. (2020) A neurologist's guide to REM sleep behavior disorder. Front Neurol 11: 610. https://doi.org/10.3389/fneur.2020.00610
    [59] Knudsen K, Fedorova TD, Hansen AK, et al. (2018) In-vivo staging of pathology in REM sleep behaviour disorder: A multimodality imaging case-control study. Lancet Neurol 17: 618-628. https://doi.org/10.1016/S1474-4422(18)30162-5
    [60] Valencia Garcia S, Libourel PA, Lazarus M, et al. (2017) Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder. Brain 140: 414-428. https://doi.org/10.1093/brain/aww310
    [61] Luppi PH, Clément O, Sapin E, et al. (2011) The neuronal network responsible for paradoxical sleep and its dysfunctions causing narcolepsy and rapid eye movement (REM) behavior disorder. Sleep Med Rev 15: 153-163. https://doi.org/10.1016/j.smrv.2010.08.002
    [62] Fraigne JJ, Torontali ZA, Snow MB, et al. (2015) REM sleep at its core–circuits, neurotransmitters, and Pathophysiology. Front Neurol 6: 123. https://doi.org/10.3389/fneur.2015.00123
    [63] Arrigoni E, Chen MC, Fuller PM (2016) The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 594: 5391-5414. https://doi.org/10.1113/JP271324
    [64] Blumberg MS, Plumeau AM (2016) A new view of “dream enactment” in REM sleep behavior disorder. Sleep Med Rev 30: 34-42. https://doi.org/10.1016/j.smrv.2015.12.002
    [65] Garcia-Rill E (2017) Bottom-up gamma and stages of waking. Med Hypotheses 104: 58-62. https://doi.org/10.1016/j.mehy.2017.05.023
    [66] Teman PT, Tippmann-Peikert M, Silber MH, et al. (2009) Idiopathic rapid-eye-movement sleep disorder: Associations with antidepressants, psychiatric diagnoses, and other factors, in relation to age of onset. Sleep Med 10: 60-65. https://doi.org/10.1016/j.sleep.2007.11.019
    [67] Lin FC, Liu CK, Hsu CY (2009) Rapid-eye-movement sleep behavior disorder secondary to acute aseptic limbic encephalitis. J Neurol 256: 1174-1176. https://doi.org/10.1007/s00415-009-5067-9
    [68] Zanigni S, Calandra-Buonaura G, Grimaldi D, et al. (2011) REM behaviour disorder and neurodegenerative diseases. Sleep Med 12: S54-S58. https://doi.org/10.1016/j.sleep.2011.10.012
    [69] Postuma RB, Iranzo A, Hu M, et al. (2019) Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: A multicentre study. Brain 142: 744-759. https://doi.org/10.1093/brain/awz030
    [70] Berg D, Postuma RB, Adler CH, et al. (2015) MDS research criteria for prodromal Parkinson's disease. Mov Disord 30: 1600-1611. https://doi.org/10.1002/mds.26431
    [71] Högl B, Stefani A, Videnovic A (2018) Idiopathic REM sleep behaviour disorder and neurodegeneration–an update. Nat Rev Neurol 14: 40-55. https://doi.org/10.1038/nrneurol.2017.157
    [72] Iranzo A, Santamaria J, Tolosa E (2009) The clinical and pathophysiological relevance of REM sleep behavior disorder in neurodegenerative diseases. Sleep Med Rev 13: 385-401. https://doi.org/10.1016/j.smrv.2008.11.003
    [73] Hoque R, Chesson AL (2010) Pharmacologically induced/exacerbated restless legs syndrome, periodic limb movements of sleep, and REM behavior disorder/REM sleep without atonia: literature review, qualitative scoring, and comparative analysis. J Clin Sleep Med 6: 79-83.
    [74] Winkelman JW, James L (2004) Serotonergic antidepressants are associated with REM sleep without atonia. Sleep 27: 317-321. https://doi.org/10.1093/sleep/27.2.317
    [75] Iranzo A, Santamaria J (1999) Bisoprolol-induced rapid eye movement sleep behavior disorder. Am J Med 107: 390-392. https://doi.org/10.1016/s0002-9343(99)00245-4
    [76] Morrison I, Frangulyan R, Riha RL, et al. (2011) Beta-blockers as a cause of violent rapid eye movement sleep behavior disorder: A poorly recognized but common cause of violent parasomnias. Am J Med 124: E11. https://doi.org/10.1016/j.amjmed.2010.04.023
    [77] Verma A, Anand V, Verma NP (2007) Sleep disorders in chronic traumatic brain injury. J Clin Sleep Med 3: 357-362.
    [78] Kimura K, Tachibana N, Kohyama J, et al. (2000) A discrete pontine ischemic lesion could cause REM sleep behavior disorder. Neurology 55: 894-895. https://doi.org/10.1212/wnl.55.6.894
    [79] Xi Z, Luning W (2009) REM sleep behavior disorder in a patient with pontine stroke. Sleep Med 10: 143-146. https://doi.org/10.1016/j.sleep.2007.12.002
    [80] Zambelis T, Paparrigopoulos T, Soldatos CR (2002) REM sleep behaviour disorder associated with a neurinoma of the left pontocerebellar angle. J Neurol Neurosurg Psychiatry 72: 821-822. https://doi.org/10.1136/jnnp.72.6.821
    [81] Jianhua C, Xiuqin L, Quancai C, et al. (2013) Rapid eye movement sleep behavior disorder in a patient with brainstem lymphoma. Internal Med 52: 617-621. https://doi.org/10.2169/internalmedicine.52.8786
    [82] Plazzi G, Montagna P (2002) Remitting REM sleep behavior disorder as the initial sign of multiple sclerosis. Sleep Med 3: 437-439. https://doi.org/10.1016/s1389-9457(02)00042-4
    [83] Tippmann-Peikert M, Boeve BF, et al. (2006) REM sleep behavior disorder initiated by acute brainstem multiple sclerosis. Neurology 66: 1277-1279. https://doi.org/10.1212/01.wnl.0000208518.72660.ff
    [84] Iranzo A, Graus F, Clover L, et al. (2006) Rapid eye movement sleep behavior disorder and potassium channel antibody–associated limbic encephalitis. Ann Neurol 59: 178-181. https://doi.org/10.1002/ana.20693
    [85] Ralls F, Cutchen L, Grigg-Damberger MM (2022) Recognizing new-onset sleep disorders in autoimmune encephalitis often prompt earlier diagnosis. J Clin Neurophysiol 39: 363-371. https://doi.org/10.1097/WNP.0000000000000820
    [86] Schenck CH, Mahowald MW (1992) Motor dyscontrol in narcolepsy: Rapid-eye-movement (REM) sleep without atonia and REM sleep behavior disorder. Ann Neurol 32: 3-10. https://doi.org/10.1002/ana.410320103
    [87] Nightingale S, Orgill JC, Ebrahim IO, et al. (2005) The association between narcolepsy and REM behavior disorder (RBD). Sleep Med 6: 253-258. https://doi.org/10.1016/j.sleep.2004.11.007
    [88] Gaig C, Graus F, Compta Y, et al. (2017) Clinical manifestations of the anti-IgLON5 disease. Neurology 88: 1736-1743. https://doi.org/10.1212/WNL.0000000000003887
    [89] Arnulf I, Merino-Andreu M, Bloch F, et al. (2005) REM sleep behavior disorder and REM sleep without atonia in patients with progressive supranuclear palsy. Sleep 28: 349-354.
    [90] De Cock VC, Lannuzel A, Verhaeghe S, et al. (2007) REM sleep behavior disorder in patients with guadeloupean parkinsonism, a tauopathy. Sleep 30: 1026-1032. https://doi.org/10.1093/sleep/30.8.1026
    [91] Lugaresi E, Provini F (2001) Agrypnia excitata: Clinical features and pathophysiological implications. Sleep Med Rev 5: 313-322. https://doi.org/10.1053/smrv.2001.0166
    [92] Friedman JH, Fernandez HH, Sudarsky LR (2003) REM behavior disorder and excessive daytime somnolence in Machado-Joseph disease (SCA-3). Mov Disord 18: 1520-1522. https://doi.org/10.1002/mds.10590
    [93] Arnulf I, Nielsen J, Lohmann E, et al. (2008) Rapid eye movement sleep disturbances in Huntington disease. Arch Neurol 65: 482-488. https://doi.org/10.1001/archneur.65.4.482
    [94] Mufti K, Yu E, Rudakou U, et al. (2021) Novel associations of BST1 and LAMP3 With REM sleep behavior disorder. Neurology 96: e1402-e1412. https://doi.org/10.1212/WNL.0000000000011464
    [95] Krohn L, Heilbron K, Blauwendraat C, et al. (2022) Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nat Commun 13: 7496. https://doi.org/10.1038/s41467-022-34732-5
    [96] Sosero YL, Yu E, Estiar MA, et al. (2022) Rare PSAP variants and possible interaction with GBA in REM sleep behavior disorder. J Parkinson's Dis 12: 333-340. https://doi.org/10.3233/JPD-212867
    [97] Bencheikh BOA, Ruskey JA, Arnulf I, et al. (2018) LRRK2 protective haplotype and full sequencing study in REM sleep behavior disorder. Parkinsonism Relat Disord 52: 98-101. https://doi.org/10.1016/j.parkreldis.2018.03.019
    [98] Somerville EN, Krohn L, Yu E, et al. NPC1 variants are not associated with Parkinson's Disease, REM-sleep behaviour disorder or Dementia with Lewy bodies in European cohorts (2022). https://doi.org/10.1101/2022.11.08.22281508
    [99] Comella CL, Nardine TM, Diederich NJ, et al. (1998) Sleep-related violence, injury, and REM sleep behavior disorder in Parkinson's disease. Neurology 51: 526-529. https://doi.org/10.1212/wnl.51.2.526
    [100] Gagnon JF, Bédard MA, Fantini ML, et al. (2002) REM sleep behavior disorder and REM sleep without atonia in Parkinson's disease. Neurology 59: 585-589. https://doi.org/10.1212/wnl.59.4.585
    [101] Boeve BF, Silber MH, Ferman TJ (2004) REM sleep behavior disorder in Parkinson's disease and dementia with Lewy bodies. J Geriatr Psych Neur 17: 146-157. https://doi.org/10.1177/0891988704267465
    [102] Plazzi G, Corsini R, Provini F, et al. (1997) REM sleep behavior disorders in multiple system atrophy. Neurology 48: 1094-1097. https://doi.org/10.1212/wnl.48.4.1094
    [103] Tachibana N, Kimura K, Kitajima K, et al. (1997) REM sleep motor dysfunction in multiple system atrophy: with special emphasis on sleep talk as its early clinical manifestation. J Neurol Neurosur Ps 63: 678-681. https://doi.org/10.1136/jnnp.63.5.678
    [104] Schenck CH, Boeve BF, Mahowald MW (2013) Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: A 16-year update on a previously reported series. Sleep Med 14: 744-748. https://doi.org/10.1016/j.sleep.2012.10.009
    [105] Iranzo A, Fernández-Arcos A, Tolosa E, et al. (2014) Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: Study in 174 patients. PLoS One 9: e89741. https://doi.org/10.1371/journal.pone.0089741
    [106] Adler CH, Beach TG, Zhang N, et al. (2019) Unified staging system for Lewy body disorders: Clinicopathologic correlations and comparison to Braak staging. J Neuropath Exp Neur 78: 891-899. https://doi.org/10.1093/jnen/nlz080
    [107] Boeve BF, Silber MH, Ferman TJ, et al. (2013) Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep Med 14: 754-762. https://doi.org/10.1016/j.sleep.2012.10.015
    [108] Uchiyama M, Isse K, Tanaka K, et al. (1995) Incidental Lewy body disease in a patient with REM sleep behavior disorder. Neurology 45: 709-712. https://doi.org/10.1212/wnl.45.4.709
    [109] Boeve BF, Dickson DW, Olson EJ, et al. (2007) Insights into REM sleep behavior disorder pathophysiology in brainstem-predominant Lewy body disease. Sleep Med 8: 60-64. https://doi.org/10.1016/j.sleep.2006.08.017
    [110] Boeve BF, Silber MH, Saper CB, et al. (2007) Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 130: 2770-2788. https://doi.org/10.1093/brain/awm056
    [111] Sixel-Döring F, Zimmermann J, Wegener A, et al. (2016) The evolution of REM sleep behavior disorder in early Parkinson Disease. Sleep 39: 1737-1742. https://doi.org/10.5665/sleep.6102
    [112] Liu Y, Zhang J, Chau SWH, et al. (2022) Evolution of prodromal REM sleep behavior disorder to neurodegeneration: A retrospective longitudinal case-control study. Neurology 99: e627-e637. https://doi.org/10.1212/WNL.0000000000200707
    [113] McCarter SJ, Sandness DJ, McCarter AR, et al. (2019) REM sleep muscle activity in idiopathic REM sleep behavior disorder predicts phenoconversion. Neurology 93: e1171-e1179. https://doi.org/10.1212/WNL.0000000000008127
    [114] Nepozitek J, Dostalova S, Dusek P, et al. (2019) Simultaneous tonic and phasic REM sleep without atonia best predicts early phenoconversion to neurodegenerative disease in idiopathic REM sleep behavior disorder. Sleep 42: zsz132. https://doi.org/10.1093/sleep/zsz132
    [115] Iranzo A, Borrego S, Vilaseca I, et al. (2018) α-Synuclein aggregates in labial salivary glands of idiopathic rapid eye movement sleep behavior disorder. Sleep 41: zsy101. https://doi.org/10.1093/sleep/zsy101
    [116] Donadio V, Doppler K, Incensi A, et al. (2019) Abnormal α-synuclein deposits in skin nerves: Intra- and inter-laboratory reproducibility. Eur J Neurol 26: 1245-1251. https://doi.org/10.1111/ene.13939
    [117] Doppler K, Jentschke HM, Schulmeyer L, et al. (2017) Dermal phospho-alpha-synuclein deposits confirm REM sleep behaviour disorder as prodromal Parkinson's disease. Acta Neuropathol 133: 535-545. https://doi.org/10.1007/s00401-017-1684-z
    [118] Antelmi E, Pizza F, Donadio V, et al. (2019) Biomarkers for REM sleep behavior disorder in idiopathic and narcoleptic patients. Ann Clin Transl Neur 6: 1872-1876. https://doi.org/10.1002/acn3.50833
    [119] Wilham JM, Orrú CD, Bessen RA, et al. (2010) Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog 6: e1001217. https://doi.org/10.1371/journal.ppat.1001217
    [120] Scialò C, Tran TH, Salzano G, et al. (2020) TDP-43 real-time quaking induced conversion reaction optimization and detection of seeding activity in CSF of amyotrophic lateral sclerosis and frontotemporal dementia patients. Brain Commun 2: fcaa142. https://doi.org/10.1093/braincomms/fcaa142
    [121] Saijo E, Ghetti B, Zanusso G, et al. (2017) Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol 133: 751-765. https://doi.org/10.1007/s00401-017-1692-z
    [122] Tennant JM, Henderson DM, Wisniewski TM, et al. (2020) RT-QuIC detection of tauopathies using full-length tau substrates. Prion 14: 249-256. https://doi.org/10.1080/19336896.2020.1832946
    [123] Fairfoul G, McGuire LI, Pal S, et al. (2016) Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Tran Neur 3: 812-818. https://doi.org/10.1002/acn3.338
    [124] Candelise N, Schmitz M, Llorens F, et al. (2019) Seeding variability of different alpha synuclein strains in synucleinopathies. Ann Neurol 85: 691-703. https://doi.org/10.1002/ana.25446
    [125] Perra D, Bongianni M, Novi G, et al. (2021) Alpha–synuclein seeds in olfactory mucosa and cerebrospinal fluid of patients with dementia with Lewy bodies. Brain Commun 3: fcab045. https://doi.org/10.1093/braincomms/fcab045
    [126] Stefani A, Iranzo A, Holzknecht E, et al. (2021) Alpha-synuclein seeds in olfactory mucosa of patients with isolated REM sleep behaviour disorder. Brain 144: 1118-1126. https://doi.org/10.1093/brain/awab005
    [127] Rossi M, Candelise N, Baiardi S, et al. (2020) Ultrasensitive RT-QuIC assay with high sensitivity and specificity for Lewy body-associated synucleinopathies. Acta Neuropathol 140: 49-62. https://doi.org/10.1007/s00401-020-02160-8
    [128] Iranzo A, Fairfoul G, Ayudhaya ACN, et al. (2021) Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: A longitudinal observational study. Lancet Neurol 20: 203-212. https://doi.org/10.1016/S1474-4422(20)30449-X
    [129] Poggiolini I, Gupta V, Lawton M, et al. (2022) Diagnostic value of cerebrospinal fluid alpha–synuclein seed quantification in synucleinopathies. Brain 145: 584-595. https://doi.org/10.1093/brain/awab431
    [130] Postuma RB, Berg D, Stern M, et al. (2015) MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 30: 1591-1601. https://doi.org/10.1002/mds.26424
    [131] McKeith IG, Boeve BF, Dickson DW, et al. (2017) Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 89: 88-100. https://doi.org/10.1212/WNL.0000000000004058
    [132] Gilman S, Wenning GK, Low PA, et al. (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71: 670-676. https://doi.org/10.1212/01.wnl.0000324625.00404.15
    [133] Howell MJ, Schenck CH (2015) Rapid eye movement sleep behavior disorder and neurodegenerative disease. JAMA Neurol 72: 707-712.
    [134] Schenck CH, Garcia-Rill E, Skinner RD, et al. (1996) A case of REM sleep behavior disorder with autopsy-confirmed Alzheimer's disease: Postmortem brain stem histochemical analyses. Biol Psychiat 40: 422-425. https://doi.org/10.1016/0006-3223(96)00070-4
    [135] Boot BP, Boeve BF, Roberts RO, et al. (2012) Probable rapid eye movement sleep behavior disorder increases risk for mild cognitive impairment and Parkinson disease: A population-based study. Ann Neurol 71: 49-56. https://doi.org/10.1002/ana.22655
    [136] Enriquez-Marulanda A, Quintana-Peña V, Takeuchi Y, et al. (2018) Case report: Rapid eye movement sleep behavior disorder as the first manifestation of multiple sclerosis: A case report and literature review. Int J MS Care 20: 180-184. https://doi.org/10.7224/1537-2073.2017-001
    [137] Gómez-Choco MJ, Iranzo A, Blanco Y, et al. (2007) Prevalence of restless legs syndrome and REM sleep behavior disorder in multiple sclerosis. Mult Scler 13: 805-808. https://doi.org/10.1177/1352458506074644
    [138] McCarter SJ, Tippmann-Peikert M, Sandness DJ, et al. (2015) Neuroimaging-evident lesional pathology associated with REM sleep behavior disorder. Sleep Med 16: 1502-1510. https://doi.org/10.1016/j.sleep.2015.07.018
    [139] Provini F, Vetrugno R, Pastorelli F, et al. (2004) Status dissociatus after surgery for tegmental ponto-mesencephalic cavernoma: A state-dependent disorder of motor control during sleep. Movement Disord 19: 719-723. https://doi.org/10.1002/mds.20027
    [140] Dauvilliers Y, Schenck CH, Postuma RB, et al. (2018) REM sleep behaviour disorder. Nat Rev Dis Primers 4: 19. https://doi.org/10.1038/s41572-018-0016-5
    [141] Sabater L, Gaig C, Gelpi E, et al. (2014) A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: A case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 13: 575-586. https://doi.org/10.1016/S1474-4422(14)70051-1
    [142] Perrone L, Valente M (2021) The emerging role of metabolism in brain-heart axis: New challenge for the therapy and prevention of Alzheimer disease. May thioredoxin interacting protein (TXNIP) play a role?. Biomolecules 11: 1652. https://doi.org/10.3390/biom11111652
    [143] Sampson TR, Debelius JW, Thron T, et al. (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167: 1469-1480. https://doi.org/10.1016/j.cell.2016.11.018
    [144] Olson CA, Vuong HE, Yano JM, et al. (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173: 1728-1741. https://doi.org/10.1016/j.cell.2018.04.027
    [145] Han JW, Ahn YD, Kim WS, et al. (2018) Psychiatric manifestation in patients with Parkinson's disease. J Korean Med Sci 33: e300. https://doi.org/10.3346/jkms.2018.33.e300
    [146] Dujardin K, Sgambato V (2020) Neuropsychiatric disorders in Parkinson's Disease: What do we know about the role of dopaminergic and non-dopaminergic systems?. Front Neurosci 14: 25. https://doi.org/10.3389/fnins.2020.00025
    [147] Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18: 435-450. https://doi.org/10.1038/nrn.2017.62
    [148] Kelly LP, Carvey PM, Keshavarzian A, et al. (2014) Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson's disease. Movement Disord 29: 999-1009. https://doi.org/10.1002/mds.25736
    [149] Riedel O, Klotsche J, Spottke A, et al. (2010) Frequency of dementia, depression, and other neuropsychiatric symptoms in 1,449 outpatients with Parkinson's disease. J Neurol 257: 1073-1082. https://doi.org/10.1007/s00415-010-5465-z
    [150] Wong JMW, Esfahani A, Singh N, et al. (2012) Gut microbiota, diet, and heart disease. J AOAC Int 95: 24-30. https://doi.org/10.5740/jaoacint.sge_wong
    [151] Singh N, Gurav A, Sivaprakasam S, et al. (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40: 128-139. https://doi.org/10.1016/j.immuni.2013.12.007
    [152] Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson's disease. World J Gastroenterol 21: 10609-10620. https://doi.org/10.3748/wjg.v21.i37.10609
    [153] Vriend C, Raijmakers P, Veltman DJ, et al. (2014) Depressive symptoms in Parkinson's disease are related to reduced [123I]FP-CIT binding in the caudate nucleus. J Neurol Neurosurg Ps 85: 159-164. https://doi.org/10.1136/jnnp-2012-304811
    [154] Remy P, Doder M, Lees A, et al. (2005) Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128: 1314-1322. https://doi.org/10.1093/brain/awh445
    [155] Boileau I, Warsh JJ, Guttman M, et al. (2008) Elevated serotonin transporter binding in depressed patients with Parkinson's disease: A preliminary PET study with [11C]DASB. Mov Disord 23: 1776-1780. https://doi.org/10.1002/mds.22212
    [156] Okun MS, Watts RL (2002) Depression associated with Parkinson's disease: Clinical features and treatment. Neurology 58: S63-S70. https://doi.org/10.1212/wnl.58.suppl_1.s63
    [157] Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson's disease: Risk factors and prevention. Lancet Neurol 15: 1257-1272. https://doi.org/10.1016/S1474-4422(16)30230-7
    [158] Perez-Pardo P, Dodiya HB, Engen PA, et al. (2019) Role of TLR4 in the gut-brain axis in Parkinson's disease: A translational study from men to mice. Gut 68: 829-843. https://doi.org/10.1136/gutjnl-2018-316844
    [159] Perez-Pardo P, Kliest T, Dodiya HB, et al. (2017) The gut-brain axis in Parkinson's disease: Possibilities for food-based therapies. Eur J Pharmacol 817: 86-95. https://doi.org/10.1016/j.ejphar.2017.05.042
    [160] Olanow CW, Wakeman DR, Kordower JH (2014) Peripheral alpha-synuclein and Parkinson's disease. Mov Disord 29: 963-966. https://doi.org/10.1002/mds.25966
    [161] Forsyth CB, Shannon KM, Kordower JH, et al. (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One 6: e28032. https://doi.org/10.1371/journal.pone.0028032
    [162] Di Lorenzo C, Ballerini G, Barbanti P, et al. (2021) Applications of ketogenic diets in patients with headache: Clinical recommendations. Nutrients 13: 2307. https://doi.org/10.3390/nu13072307
    [163] Houser MC, Tansey MG (2017) The gut-brain axis: Is intestinal inflammation a silent driver of Parkinson's disease pathogenesis?. NPJ Parkinson's Dis 3: 3. https://doi.org/10.1038/s41531-016-0002-0
    [164] Braniste V, Al-Asmakh M, Kowal C, et al. (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6: 263ra158. https://doi.org/10.1126/scitranslmed.3009759
    [165] Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17: 94. https://doi.org/10.1007/s11910-017-0802-6
    [166] Turnbaugh PJ, Ridaura VK, Faith JJ, et al. (2009) The effect of diet on the human gut microbiome: A etagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1: 6ra14. https://doi.org/10.1126/scitranslmed.3000322
    [167] Heinzel S, Aho VTE, Suenkel U, et al. (2021) Gut microbiome signatures of risk and prodromal markers of Parkinson disease. Ann Neurol 90: E1-E12. https://doi.org/10.1002/ana.26128
    [168] Heintz-Buschart A, Pandey U, Wicke T, et al. (2018) The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Movement Disord 33: 88-98. https://doi.org/10.1002/mds.27105
    [169] Bedarf JR, Hildebrand F, Coelho LP, et al. (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients. Genome Med 9: 39.
    [170] Huang B, Chau SWH, Liu Y, et al. (2023) Gut microbiome dysbiosis across early Parkinson's disease, REM sleep behavior disorder and their first-degree relatives. Nat Commun 14: 2501. https://doi.org/10.1038/s41467-023-38248-4
  • This article has been cited by:

    1. Eric Avila-Vales, Ángel G. C. Pérez, Global properties of an age-structured virus model with saturated antibody-immune response, multi-target cells, and general incidence rate, 2021, 27, 1405-213X, 10.1007/s40590-021-00315-5
    2. Yu Yang, Lan Zou, Yasuhiro Takeuchi, Global analysis of a multi-group viral infection model with age structure, 2020, 0003-6811, 1, 10.1080/00036811.2020.1721471
    3. Huaqiao Zhang, Hong Chen, Cuicui Jiang, Kaifa Wang, Effect of explicit dynamics of free virus and intracellular delay, 2017, 104, 09600779, 827, 10.1016/j.chaos.2017.09.038
    4. Shaoli Wang, Tengfei Wang, Yuming Chen, Bifurcations and Bistability of an Age-Structured Viral Infection Model with a Nonmonotonic Immune Response, 2022, 32, 0218-1274, 10.1142/S0218127422501516
    5. Peng Wu, Hongyong Zhao, Mathematical analysis of multi-target cells and multi-strain age-structured model with two HIV infection routes, 2021, 14, 1793-5245, 10.1142/S1793524521500571
    6. Junmei Liu, Yonggang Ma, Global stability of a HIV-1 CCR5 gene therapy with suicide gene, 2024, 12, 2164-2583, 10.1080/21642583.2023.2291407
    7. A. Yu. Shcheglov, S. V. Netessov, An Inverse Problem for an Age-Structured Population Dynamics Model with Migration Flows, 2024, 17, 1995-4239, 93, 10.1134/S1995423924010099
    8. S. V. Netesov, A. Yu. Shcheglov, Inverse Problem for a Nonlinear Model of Population Dynamics with the Age Structure of Individuals and Overpopulation, 2024, 48, 0278-6419, 20, 10.3103/S0278641924010072
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1891) PDF downloads(74) Cited by(0)

Figures and Tables

Figures(1)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog