Review

Viral load and interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer

  • Received: 25 March 2021 Accepted: 22 June 2021 Published: 23 July 2021
  • Cervical cancer is the sequel of a multi-factorial, long-term unresolved disease that includes genetic, epigenetic, and viral components responsible for its development and progression. It is the second most common cancer of females in India. Human papillomavirus (HPV) is considered the primary causative agent of pre-neoplastic and cancerous lesions and 90% of all cervical carcinomas are linked to high-risk HPV type 16 and type 18. Although most HR-HPV infections are asymptomatic, transient, and self-limiting, the persistent infection with a high risk (HR-HPV) may cause precancerous lesions that can progress to cervical cancer. HPV type 16 is the most common HPV in India associated with more than 75% of cervical cancer, followed by HPV type 18 and other high-risk types. Infection with HPV alone is not sufficient for the development of cervical cancer but there is the involvement of some host genetic factors also that are responsible for the development and progression of cervical cancer. This article briefly reviews molecular pathogenesis, viral load, and the interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer.

    Citation: Bilal Ahmad Mir, P. F. Rahaman, Arif Ahmad. Viral load and interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer[J]. AIMS Molecular Science, 2021, 8(3): 184-192. doi: 10.3934/molsci.2021014

    Related Papers:

  • Cervical cancer is the sequel of a multi-factorial, long-term unresolved disease that includes genetic, epigenetic, and viral components responsible for its development and progression. It is the second most common cancer of females in India. Human papillomavirus (HPV) is considered the primary causative agent of pre-neoplastic and cancerous lesions and 90% of all cervical carcinomas are linked to high-risk HPV type 16 and type 18. Although most HR-HPV infections are asymptomatic, transient, and self-limiting, the persistent infection with a high risk (HR-HPV) may cause precancerous lesions that can progress to cervical cancer. HPV type 16 is the most common HPV in India associated with more than 75% of cervical cancer, followed by HPV type 18 and other high-risk types. Infection with HPV alone is not sufficient for the development of cervical cancer but there is the involvement of some host genetic factors also that are responsible for the development and progression of cervical cancer. This article briefly reviews molecular pathogenesis, viral load, and the interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer.



    加载中


    Conflict of interest



    Authors declare no conflict of interest in this manuscript.

    [1] Singh G (2012) Global inequalities in cervical cancer incidence and mortality are linked to deprivation, low socioeconomic status, and human development. Int J MCH AIDS 1: 17-30.
    [2] Mohammad A, Moheman A, El-desoky GE (2012) Amino acid and vitamin determinations by TLC/HPTLC: review of the current state. Cent Eur J Chem 10: 731-750.
    [3] Kim HJ, Kim HJ (2017) Current status and future prospects for human papillomavirus vaccines. Arch Pharm Res 40: 1050-1063. doi: 10.1007/s12272-017-0952-8
    [4] Muñoz N, Bosch FX, de Sanjosé S, et al. (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348: 518-527. doi: 10.1056/NEJMoa021641
    [5] Das BC, Hussain S, Nasare V, et al. (2008) Prospects and prejudices of human papillomavirus vaccines in India. Vaccine 26: 2669-2679. doi: 10.1016/j.vaccine.2008.03.056
    [6] Franceschi S, Rajkumar T, Vaccarella S, et al. (2003) Human papillomavirus and risk factors for cervical cancer in Chennai, India: A case-control study. Int J Cancer 107: 127-133. doi: 10.1002/ijc.11350
    [7] Sowjanaya AP, Jain M, Poli UR, et al. (2005) Prevalence and distribution of high-risk human papillomavirus (HPV) types in invasive squamous cell carcinoma of the cervix and in normal women in Andhra Pradesh, India. BMC Infect Dis 5: 116. doi: 10.1186/1471-2334-5-116
    [8] Walboomers JM, Jacobs MV, Manos MM, et al. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189: 12-19. doi: 10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F
    [9] Scheffner M, Munger K, Byrne JC, et al. (1991) The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci U S A 88: 5523-5527. doi: 10.1073/pnas.88.13.5523
    [10] Scheffner M, Werness BA, Huibregtse JM, et al. (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129-1136. doi: 10.1016/0092-8674(90)90409-8
    [11] Woodman CBJ, Collins SI, Young LS (2007) The natural history of cervical HPV infection: Unresolved issues. Nat Rev Cancer 7: 11-22. doi: 10.1038/nrc2050
    [12] Zur Hausen H (2002) Papillomaviruses and cancer: From basic studies to clinical application. Nat Rev Cancer 2: 342-350. doi: 10.1038/nrc798
    [13] Münger K, Baldwin A, Edwards KM, et al. (2004) Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78: 11451-11460. doi: 10.1128/JVI.78.21.11451-11460.2004
    [14] Josefsson AM, Magnusson PK, Ylitalo N, et al. (2000) Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: A nested case-control study. Lancet 355: 2189-2193. doi: 10.1016/S0140-6736(00)02401-6
    [15] Swan DC, Tucker RA, Tortolero-Luna G, et al. (1999) Human papillomavirus (HPV) DNA copy number is dependent on grade of cervical disease and HPV type. J Clin Microbiol 37: 1030-1034. doi: 10.1128/JCM.37.4.1030-1034.1999
    [16] Obeid DA, Almatrrouk SA, Khayat HH, et al. (2020) Human papillomavirus type 16 and 18 viral loads as predictors associated with abnormal cervical cytology among women in Saudi Arabia. Heliyon 6: e03473. doi: 10.1016/j.heliyon.2020.e03473
    [17] Van Duin M, Snijders PJF, Schrijnemakers HFJ, et al. (2002) Human papillomavirus 16 load in normal and abnormal cervical scrapes: An indicator of CIN II/III and viral clearance. Int J Cancer 98: 590-595. doi: 10.1002/ijc.10232
    [18] Das D, Bhattacharjee B, Sen S, et al. (2010) Association of viral load with HPV16 positive cervical cancer pathogenesis: Causal relevance in isolates harboring intact viral E2 gene. Virology 402: 197-202. doi: 10.1016/j.virol.2010.03.030
    [19] Cao M, Shah W, Qi J, et al. (2016) Prognostic significance of human papillomavirus viral load in correlation with different therapeutic modalities in cervical cancer patients. Pathol Res Pract 212: 804-810. doi: 10.1016/j.prp.2016.06.011
    [20] Shukla S, Mahata S, Shishodia G, et al. (2014) Physical state & copy number of high-risk human papillomavirus type 16 DNA in the progression of cervical cancer. Indian J Med Res 139: 531-543.
    [21] Xi LF, Hughes JP, Castle PE, et al. (2011) Viral load in the natural history of human papillomavirus type 16 infection: A nested case-control study. J Infect Dis 203: 1425-1433. doi: 10.1093/infdis/jir049
    [22] Vinokurova S, Wentzensen N, Einenkel J, et al. (2005) Clonal history of papillomavirus-induced dysplasia in the female lower genital tract. J Natl Cancer Inst 97: 1816-1821. doi: 10.1093/jnci/dji428
    [23] Wilke CM, Hall BK, Hoge A, et al. (1996) FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: Direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5: 187-195. doi: 10.1093/hmg/5.2.187
    [24] Wentzensen N, Clarke MA, Bremer R, et al. (2019) Clinical evaluation of human papillomavirus screening with p16/Ki-67 dual stain triage in a large organized cervical cancer screening program. JAMA Intern Med 179: 881-888. doi: 10.1001/jamainternmed.2019.0306
    [25] Mcintyre MC, Frattini MG, Grossman SR, et al. (1993) Human papillomavirus type 18 E7 protein requires intact Cys-X-X-Cys motifs for zinc binding, dimerization, and transformation but not for Rb binding. J Virol 67: 3142-3150. doi: 10.1128/jvi.67.6.3142-3150.1993
    [26] Incassati A, Patel D, McCance DJ (2006) Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16 E6. Oncogene 25: 2444-2451. doi: 10.1038/sj.onc.1209276
    [27] Band V, De Caprio JA, Delmolino L, et al. (1991) Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 65: 6671-6676. doi: 10.1128/jvi.65.12.6671-6676.1991
    [28] Werness BA, Levine AJ, Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76-79. doi: 10.1126/science.2157286
    [29] Klingelhutz AJ, Foster SA, McDougall JK (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380: 79-82. doi: 10.1038/380079a0
    [30] Fischer M, Uxa S, Stanko C, et al. (2017) Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci Rep 7: 1-11. doi: 10.1038/s41598-016-0028-x
    [31] Kiyono T, Hiraiwa A, Fujita M, et al. (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci U S A 94: 11612-11616. doi: 10.1073/pnas.94.21.11612
    [32] Ganguly N, Parihar SP (2009) Human papillomavirus E6 and E7 oncoproteins as risk factors for tumorigenesis. J Biosci 34: 113-123. doi: 10.1007/s12038-009-0013-7
    [33] Olmedo-Nieva L, Muñoz-Bello JO, Contreras-Paredes A, et al. (2018) The role of E6 spliced isoforms (E6*) in human papillomavirus-induced carcinogenesis. Viruses 10: 45. doi: 10.3390/v10010045
    [34] Thomas M, Pim D, Banks L (1999) The role of the E6-p53 interaction in the molecular pathogenesis of HPV. Oncogene 18: 7690-7700. doi: 10.1038/sj.onc.1202953
    [35] Yim EK, Park JS (2005) The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat 37: 319. doi: 10.4143/crt.2005.37.6.319
    [36] McMurray HR, McCance DJ (2003) Human papillomavirus type 16 E6 activates TERT gene transcription through induction of c-Myc and release of USF-mediated repression. J Virol 77: 9852-9861. doi: 10.1128/JVI.77.18.9852-9861.2003
    [37] Yugawa T, Handa K, Narisawa-Saito M, et al. (2007) Regulation of notch1 gene expression by p53 in epithelial cells. Mol Cell Biol 27: 3732-3742. doi: 10.1128/MCB.02119-06
    [38] Riley RR, Duensing S, Brake T, et al. (2003) Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis 1. Cancer Res 63: 4862-4871.
    [39] Liu X, Marmorstein R (2007) Structure of the retinoblastoma protein bound to adenovirus E1A reveals the molecular basis for viral oncoprotein inactivation of a tumor suppressor. Genes Dev 21: 2711-2716. doi: 10.1101/gad.1590607
    [40] Lee HG, Yu KA, Oh WK, et al. (2005) Inhibitory effect of jaceosidin isolated from Artemisia argyi on the function of E6 and E7 oncoproteins of HPV 16. J Ethnopharmacol 98: 339-343. doi: 10.1016/j.jep.2005.01.054
    [41] Wise-Draper TM, Allen HV, Thobe MN, et al. (2005) The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol 79: 14309-14317. doi: 10.1128/JVI.79.22.14309-14317.2005
    [42] Ishikawa M, Fujii T, Saito M, et al. (2006) Overexpression of p16INK4a as an indicator for human papillomavirus oncogenic activity in cervical squamous neoplasia. Int J Gynecol Cancer 16: 347-353. doi: 10.1111/j.1525-1438.2006.00355.x
    [43] Arroyo M, Bagchi S, Raychaudhuril P (1993) Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin a complex. Mol Cell Biol 13: 6537-6546.
    [44] Pitti RM, Marsters SA, Ruppert S (1996) Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271: 12687-12690. doi: 10.1074/jbc.271.22.12687
    [45] Zur Hausen H (2000) Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. JNCI J Natl Cancer Inst 92: 690-698. doi: 10.1093/jnci/92.9.690
    [46] Oda H, Kumar S, Howley PM (1999) Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A 96: 9557-9562. doi: 10.1073/pnas.96.17.9557
    [47] Caberg JHD, Hubert PM, Begon DY, et al. (2008) Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis 29: 1441-1447. doi: 10.1093/carcin/bgn145
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2246) PDF downloads(132) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog