Citation: William A. Toscano, Jr., Hitakshi Sehgal, Emily Yang, Lindsey Spaude, A. Frank Bettmann. Environment-Gene interaction in common complex diseases: New approaches[J]. AIMS Molecular Science, 2014, 1(4): 126-140. doi: 10.3934/molsci.2014.4.126
[1] | Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049 |
[2] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[3] | L.L. Sun, M.L. Chang . Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem. Networks and Heterogeneous Media, 2023, 18(1): 212-243. doi: 10.3934/nhm.2023008 |
[4] | Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028 |
[5] | Yinlin Ye, Hongtao Fan, Yajing Li, Ao Huang, Weiheng He . An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. Networks and Heterogeneous Media, 2023, 18(3): 1083-1104. doi: 10.3934/nhm.2023047 |
[6] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
[7] | Kexin Li, Hu Chen, Shusen Xie . Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation. Networks and Heterogeneous Media, 2023, 18(4): 1454-1470. doi: 10.3934/nhm.2023064 |
[8] | Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi . Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003 |
[9] | Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709 |
[10] | Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001 |
We will derive integrals as indicated in the abstract in terms of special functions. Some special cases of these integrals have been reported in Gradshteyn and Ryzhik [5]. In 1867 David Bierens de Haan derived hyperbolic integrals of the form
$ ∫∞0((log(a)−ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)dx $
|
(1.1) |
In our case the constants in the formulas are general complex numbers subject to the restrictions given below. The derivations follow the method used by us in [6]. The generalized Cauchy's integral formula is given by
$ ykk!=12πi∫Cewywk+1dw. $
|
(1.2) |
We use the method in [6]. Here the contour is in the upper left quadrant with $ \Re(w) < 0 $ and going round the origin with zero radius. Using a generalization of Cauchy's integral formula we first replace $ y $ by $ ix+\log(a) $ for the first equation and then $ y $ by $ -ix+\log(a) $ to get the second equation. Then we add these two equations, followed by multiplying both sides by $ \frac{1}{2} \log (\cos (\alpha) \text{sech}(x)+1) $ to get
$ ((log(a)−ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)2k!=12πi∫Caww−k−1cos(wx)log(cos(α)sech(x)+1)dw $
|
(2.1) |
where the logarithmic function is defined in Eq (4.1.2) in [2]. We then take the definite integral over $ x \in [0, \infty) $ of both sides to get
$ ∫∞0((log(a)−ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)2k!dx=12πi∫∞0∫Caww−k−1cos(wx)log(cos(α)sech(x)+1)dwdx=12πi∫C∫∞0aww−k−1cos(wx)log(cos(α)sech(x)+1)dxdw=12πi∫Cπaww−k−2cosh(πw2)csch(πw)dw−12πi∫Cπaww−k−2csch(πw)cosh(αw)dw $
|
(2.2) |
from Eq (1.7.7.120) in [1] and the integral is valid for $ \alpha $, $ a $, and $ k $ complex and $ |\Re(\alpha)| < \pi $.
In this section we will again use the generalized Cauchy's integral formula to derive equivalent contour integrals. First we replace $ y $ by $ y-\pi/2 $ for the first equation and $ y $ by $ y+\pi/2 $ for second then add these two equations to get
$ (y−π2)k+(y+π2)kk!=12πi∫C2w−k−1ewycosh(πw2)dw $
|
(3.1) |
Next we replace $ y $ by $ \log(a)+\pi(2p+1) $ then we take the infinite sum over $ p\in[0, \infty) $ to get
$ ∞∑p=02π((log(a)+π(2p+1)−π2)k+(log(a)+π(2p+1)+π2)k)k!=12πi∞∑p=0∫C4πw−k−1cosh(πw2)ew(log(a)+π(2p+1))dw=12πi∫C∞∑p=04πw−k−1cosh(πw2)ew(log(a)+π(2p+1))dw $
|
(3.2) |
where $ \Re(w) < 0 $ according to (1.232.3) in [5]. Then we simplify the left-hand side to get the Hurwitz zeta function
$ −2k+1πk+2(k+1)!(ζ(−k−1,2log(a)+π4π)+ζ(−k−1,2log(a)+3π4π))=12πi∫Cπaww−k−2cosh(πw2)csch(πw)dw $
|
(3.3) |
Then following the procedure of (3.1) and (3.2) we replace $ y $ by $ y+\alpha $ and $ y-\alpha $ to get the second equation for the contour integral given by
$ (y−α)k+(α+y)kk!=12πi∫C2w−k−1ewycosh(αw)dw $
|
(3.4) |
next we replace $ y $ by $ \log(a)+\pi(2p+1) $ and take the infinite sum over $ p\in[0, \infty) $ to get
$ ∞∑p=0(−α+log(a)+π(2p+1))k+(α+log(a)+π(2p+1))kk!=12πi∞∑p=0∫C2w−k−1cosh(αw)ew(log(a)+π(2p+1))dw=12πi∫C∞∑p=02w−k−1cosh(αw)ew(log(a)+π(2p+1))dw $
|
(3.5) |
Then we simplify to get
$ 2k+1πk+2(k+1)!(ζ(−k−1,−α+log(a)+π2π)+ζ(−k−1,α+log(a)+π2π))=12πi∫Cπ(−aw)w−k−2csch(πw)cosh(αw)dw $
|
(3.6) |
Since the right-hand sides of Eqs (2.2), (3.3) and (3.5) are equivalent we can equate the left-hand sides to get
$ ∫∞0((log(a)−ix)k+(log(a)+ix)k)log(cos(α)sech(x)+1)dx=2(2k+1πk+2(ζ(−k−1,−α+log(a)+π2π)+ζ(−k−1,α+log(a)+π2π))k+1)−2(2k+1πk+2(ζ(−k−1,2log(a)+π4π)+ζ(−k−1,2log(a)+3π4π))k+1) $
|
(4.1) |
from (9.521) in [5] where $ \zeta(z, q) $ is the Hurwitz zeta function. Note the left-hand side of Eq (4.1) converges for all finite $ k $. The integral in Eq (4.1) can be used as an alternative method to evaluating the Hurwitz zeta function. The Hurwitz zeta function has a series representation given by
$ ζ(z,q)=∞∑n=01(q+n)z $
|
(4.2) |
where $ \Re(z) > 1, q \neq 0, -1, .. $ and is continued analytically by (9.541.1) in [5] where $ z = 1 $ is the only singular point.
In this section we have evaluated integrals and extended the range of the parameters over which the integrals are valid. The aim of this section is to derive a few integrals in [5] in terms of the Lerch function. We also present errata for one of the integrals and faster converging closed form solutions.
Using Eq (4.1) and taking the first partial derivative with respect to $ \alpha $ and setting $ a = 1 $ and simplifying the left-hand side we get
$ ∫∞0xkcos(α)+cosh(x)dx=2kπk+1csc(α)sec(πk2)(ζ(−k,π−α2π)−ζ(−k,α+π2π)) $
|
(5.1) |
from Eq (7.102) in [3].
Using Eq (5.1) and taking the first partial derivative with respect to $ k $ and setting $ k = 0 $ and simplifying the left-hand side we get
$ ∫∞0log(x)cos(α)+cosh(x)dx=csc(α)(αlog(2π)−πlog(−α−π)+πlog(α−π)−πlogΓ(−α+π2π)+πlogΓ(−π−α2π)))=csc(α)(αlog(2π)+πlog(Γ(α+π2π)Γ(π−α2π))) $
|
(5.2) |
from (7.105) in [3].
Using Eq (5.2) and setting $ \alpha = \pi/2 $ and simplifying we get
$ ∫∞0log(x)sech(x)dx=πlog(√2πΓ(34)Γ(14)) $
|
(5.3) |
Using Eq (5.2) and taking the first derivative with respect to $ \alpha $ and setting $ \alpha = \pi/2 $ and simplifying we get
$ ∫∞0log(x)sech2(x)dx=log(π4)−γ $
|
(5.4) |
where $ \gamma $ is Euler's constant.
Using Eq (5.1) and taking the first partial derivative with respect to $ k $ then setting $ k = -1/2 $ and $ \alpha = \pi/2 $ and simplifying we get
$ ∫∞0log(x)sech(x)√xdx=12√π(−2ζ′(12,14)+2ζ′(12,34)+(ζ(12,34)−ζ(12,14))(π+log(14π2))) $
|
(5.5) |
The expression in [4] is correct but converges much slower than Eq (5.5).
Using Eq (5.1) and taking the first partial derivative with respect to $ \alpha $ we get
$ ∫∞0xk(cos(α)+cosh(x))2dx=−2k−1πkcsc2(α)sec(πk2)(k(ζ(1−k,π−α2π)+ζ(1−k,α+π2π)))−2k−1πkcsc2(α)sec(πk2)(2πcot(α)(ζ(−k,π−α2π)−ζ(−k,α+π2π))) $
|
(5.6) |
from (7.102) in [3]. Next we use L'Hopital's rule and take the limit as $ \alpha \to 0 $ to get
$ ∫∞0xk(cosh(x)+1)2dx=−1321−k((2k−8)ζ(k−2)−(2k−2)ζ(k))Γ(k+1) $
|
(5.7) |
Then we take the first partial derivative with respect to $ k $ to get
$ ∫∞0xklog(x)(cosh(x)+1)2dx=1324−kkΓ(k)ζ′(k−2)−23kΓ(k)ζ′(k−2)−1322−kkΓ(k)ζ′(k)+23kΓ(k)ζ′(k)−1321−kklog(256)ζ(k−2)Γ(k)+1321−kklog(4)ζ(k)Γ(k)+1324−kkζ(k−2)Γ(k)ψ(0)(k+1)−23kζ(k−2)Γ(k)ψ(0)(k+1)−1322−kkζ(k)Γ(k)ψ(0)(k+1)+23kζ(k)Γ(k)ψ(0)(k+1) $
|
(5.8) |
Finally we set $ k = 0 $ to get
$ ∫∞0log(x)(cosh(x)+1)2dx=13(14ζ′(−2)−γ+log(π2)) $
|
(5.9) |
The integral listed in [4] appears with an error in the integrand.
Using Eq (4.1) we first take the limit as $ k\to-1 $ by applying L'Hopital's rule and using (7.105) in [3] and simplifying the right-hand side we get
$ \int_0^\infty {\frac{{\log (\cos (\alpha ){\rm{sech}}(x) + 1)}}{{{a^2} + {x^2}}}\;\;} dx = \frac{\pi }{a}\log \left( {\frac{{\sqrt \pi {2^{\frac{1}{2} - \frac{a}{\pi }}}\;\;\Gamma \left( {\frac{a}{\pi } + \frac{1}{2}} \right)}}{{\Gamma \left( {\frac{{a - \alpha + \pi }}{{2\pi }}\;\;} \right)\Gamma \left( {\frac{{a + \alpha + \pi }}{{2\pi }}} \right)}}} \right) $ | (5.10) |
Next we take the first partial derivative with respect to $ \alpha $ and set $ \alpha = 0 $ to get
$ \int_0^\infty {\frac{{{\rm{sech}}(x)}}{{{a^2} + {x^2}}}} \;dx = - \frac{{{\psi ^{(0)}}\left( {\frac{{2a + \pi }}{{4\pi }}\;\;} \right) - {\psi ^{(0)}}\left( {\frac{{2a + 3\pi \;\;}}{{4\pi }}} \right)}}{{2a}} $ | (5.11) |
from Eq (8.360.1) in [5] where $ \Re(a) > 0 $, next we replace $ x $ with $ bx $ to get
$ ∫∞0sech(bx)a2+b2x2dx=−ψ(0)(2a+π4π)−ψ(0)(2a+3π4π)2ab $
|
(5.12) |
Next we set $ a = b = \pi $ to get
$ ∫∞0sech(πx)x2+1dx=12(ψ(0)(54)−ψ(0)(34))=2−π2 $
|
(5.13) |
from Eq (8.363.8) in [5].
Using Eq (5.12) and setting $ a = b = \pi/2 $ we get
$ ∫∞0sech(πx2)x2+1dx=12(−γ−ψ(0)(12))=log(2) $
|
(5.14) |
from Eq (8.363.8) in [5].
Using Eq (5.12) and setting $ a = b = \pi/4 $ we get
$ ∫∞0sech(πx4)x2+1dx=12(ψ(0)(78)−ψ(0)(38))=π−2coth−1(√2)√2 $
|
(5.15) |
from Eq (8.363.8) in [5].
Using Eq (5.10) and taking the second partial derivative with respect to $ \alpha $ we get
$ ∫∞0sech2(x)a2+x2dx=ψ(1)(aπ+12)πa $
|
(5.16) |
from Eq (8.363.8) in [5] where $ \Re(a) > 0 $.
In this paper we were able to present errata and express our closed form solutions in terms of special functions and fundamental constants such $ \pi $, Euler's constant and $ \log(2) $. The use of the trigamma function is quite often necessary in statistical problems involving beta or gamma distributions. This work provides both an accurate and extended range for the solutions of the integrals derived.
We have presented a novel method for deriving some interesting definite integrals by Bierens de Haan using contour integration. The results presented were numerically verified for both real and imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.
This research is supported by Natural Sciences and Engineering Research Council of Canada NSERC Canada under Grant 504070.
The authors declare there are no conflicts of interest.
[1] |
Nakamura J, Mutlu E, Sharma V, et al. (2014) The Endogenous Exposome. DNA Repair (Amst) 19: 3-13. doi: 10.1016/j.dnarep.2014.03.031
![]() |
[2] |
Wild CP (2012) The exposome: From concept to utility. Int J Epidemiol 41: 24-32. doi: 10.1093/ije/dyr236
![]() |
[3] | EPA, Persistent Organic Pollutants: A Global Issue, A Global Response. EPA, 2009. Available from: http://www2.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response#pops (Accessed July 17, 2014). |
[4] |
Magliano DJ, Loh VH, Harding JL, et al. (2014) Persistent Organic Pollutants and Diabetes: A Review of the Epidemiological Evidence. Diabetes Meab 40: 1-14. doi: 10.1016/j.diabet.2013.09.006
![]() |
[5] |
Myre M, Imbeault P (2014) Persistent Organic Pllutants Meet Adipose Tissue Hypoxia: Does Cross-talk Contribute to Obesity. Obes Res 15: 19-28. doi: 10.1111/obr.12086
![]() |
[6] |
Taylor KW, Novak RF, Anderson HA, et al. (2013) Evaluation of the Association Between Persistent Organic pollutants (POPs) and diabetes in Epidemiological Studies: A National Toxicology Program Workshop Review. Environ Health Perspect 121: 774-783. doi: 10.1289/ehp.1205502
![]() |
[7] |
Gascon M, Morales E, Sunyer J, et al. (2013) Effects of Persistent Organic Pollutants on the Developing Respiratory and Immune Systems: A Systematic Review. Environ Int 52: 51-65. doi: 10.1016/j.envint.2012.11.005
![]() |
[8] |
Li QQ, Loganath A, Chong YS, et al. (2006) Persistent Organic Pollutants and Adverse Health Effects in Humans. J Toxicol Env Health Part A 69: 1987-2005. doi: 10.1080/15287390600751447
![]() |
[9] |
Zielinski I, Tsui I-C (1995) Cystic Fibrosis: Genotypic and Phenotypic Variations. Ann, Rev Genet 29: 777-807. doi: 10.1146/annurev.ge.29.120195.004021
![]() |
[10] | Braun A, Roth R, McGinnis MJ (2003) Technology challenges in screening single gene disorders. Eur J Pediatr 162: S 13-16. |
[11] | WHO (2014) World Health Statistics 2014. Geneva, Switzerland: World Health Organization, 180. |
[12] | Russell JY (2010) A Philosophical Framework for an Open and Critical Transdisciplinary Inquuiry. In: Brown VA, Harris JA, Russell JY, editors. Tackling Wicked Problems Through the Transdisciplinary Imagination. NY, NY: Earthscan, 31-60. |
[13] | Stokols D, Hall KL, Vogel AL (2013) Transdisciplinary Public Health: Definitions, Core Characteristics, and Strategies for Success. In: Haire-Joshu D, McBride TD, editors. Transdisciplinary Public Health: Research, Education, and Practice. San Francisco, CA: Jossey-Bass, 1-30. |
[14] |
Jacobs JA, Frickel S (2009) Interdisciplinarity: A Critical Assessment. Annu Rev Sociol 35: 43-65. doi: 10.1146/annurev-soc-070308-115954
![]() |
[15] | Klein JT (2008) Evaluation of Interdisciplinary and Transdisciplinary Research - A Literature Review. Amer J Prev Med Suppl 2 35: S-116-S-123. |
[16] | Hays TC (2008) The Science of Team Science - Commentary on Measurements of Scientific Readiness. Amer J Prev Med Suppl 2 35: S-193-S195. |
[17] | DE (1997) Pasteur's Quadrant: Basic Science and Technological Innovation: Brookings Institution, Washington, DC. |
[18] | NRC (2014) Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering and Beyond. Washington, DC: National Academies Press, 137. |
[19] | Roche M, Glick TF (1944) Thomas Edison and Basic Science, Edison: Myths and Reality. Arbor: 39-50. |
[20] | Duggan MB (2014) Prevention of childhood malnutrition: immensity of the challenge and variety of strategies. Paediatr Int Child Health 32: 190-203. |
[21] |
Blackburn GL (2001) Pasteur's Quadrant and Malnutrition. Nature 409: 397-401. doi: 10.1038/35053187
![]() |
[22] |
Verbeke W (2005) Consumer acceptance of functional foods: Socio-demographic, cognitive and attitudinal determinants. Food Quality and Preference 16: 45-57. doi: 10.1016/j.foodqual.2004.01.001
![]() |
[23] | Bhutta ZA, Darmstadt GL (2014) A Role for Science Investments in Advancing Newborn Health. Science Translational Medicine 6: 253-258. |
[24] | Childress DS (1999) Working in Pasteur's Quadrant. J Rehabilitation Res Dev 36: xi-xii. |
[25] | De Luigi AJ, Cooper RA (2014) Adaptive sports technology and biomechanics: prosthetics. PM R 8 Suppl.: S40-S57. |
[26] |
Hardbower DM, Peek RM, Jr., Wilson KT (2014) At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 96: 201-212. doi: 10.1189/jlb.4BT0214-099R
![]() |
[27] |
Dalal RS, Moss SF (2014) At the Bedside: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer. J Leukoc Biol 96: 213-224. doi: 10.1189/jlb.4BT0214-100R
![]() |
[28] | Nobel Committee, The Nobel Prize in Physiology or Medicine Prize Announcement. The Nobel Committee for Physiology or Medicine,2005. Available from:http://www.nobelprize.org/nobel_prizes/medicine/laureates/2005/announcement.html. |
[29] | Konturek SJ, Konturek PC, Brzozowski T, et al. (2005) From nerves and hormones to bacteria in the stomach; Nobel prize for achievements in gastrology during last century. J Physiol Pharmacol 56: 507-536. |
[30] |
Marshall B (2006) Helicobacter connections. Chem Med Chem 1: 783-802. doi: 10.1002/cmdc.200600153
![]() |
[31] | Woo KT, Lau YK, Yap HK, et al. (2006) 3rd College of Physicians' lecture--translational research: From bench to bedside and from bedside to bench; incorporating a clinical research journey in IgA nephritis (1976 to 2006). Ann Acad Med Singapore 35: 735-741. |
[32] |
Hamilton JG, Edwards HM, Khoury MJ, et al. (2014) Cancer screening and genetics: a tale of two paradigms. Cancer Epidemiol Biomarkers Prev 23: 909-916. doi: 10.1158/1055-9965.EPI-13-1016
![]() |
[33] | Preston R (2000) The Genome Warrier. The New Yorker 76: 66-83. |
[34] | Tchounwou PB, Toscano WA (2011) Environmental Epidemiology and Human Health-Biomarkers of Disease and Genetic Susceptibility In: Nriagu JO, editor. Encyclopedia of Environmentl Health Sciences. San Diego, CA: Elsevier, 357-366. |
[35] |
Teo S, Morgan M, Stirling D, et al. (2000) Assessment of the In Vitro and In Vivo Genotoxicity of Thalomid (Thalidomide). Teratog Carcinog Mutagen 20: 301-311. doi: 10.1002/1520-6866(2000)20:5<301::AID-TCM6>3.0.CO;2-2
![]() |
[36] |
Portin P (2002) Historical Development of the Concept of the Gene. J Med Philosophy 27: 257-286. doi: 10.1076/jmep.27.3.257.2980
![]() |
[37] | Crick FHC (1958) Central Dogma of Molecular Biology. Symp Soc Exp Biol XII 12: 139-173. |
[38] |
Crick FHC (1970) Central Dogma of Molecular Biology. Nature (London) 227: 561-563. doi: 10.1038/227561a0
![]() |
[39] |
Hahn WC, Weinberg RA (2002) Modeling the Molecular Circuitry of Cancer. Nat Rec Cancer 2: 331-341. doi: 10.1038/nrc795
![]() |
[40] | Hocquette JF (2005) Where are we in genomics? J Physiol Pharmacol Suppl 3: 37-70. |
[41] |
Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31: 27-36. doi: 10.1093/carcin/bgp220
![]() |
[42] |
Long CR, Westhusin ME, Golding MC (2014) Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 81: 183-193. doi: 10.1002/mrd.22271
![]() |
[43] | Nilsson E, Skinner MK (2014) Definitions and History of Generational Epigeneti Inheritance. In: Tollefsbol TO, editor. Translational Epigenetics: Evidence and Debate. San Diego, CA: Academic Press, 11-24. |
[44] | Hoile SP, Lillycrop KA, Grenfel LR, et al. (2014) Phenotypic and Epigenetic Inheritance Across Multiple Generations in Mammals through the Female Line. In: Tollefsbol TO, editor. Transgenerational Epigenetics: Evidence and Debate. San Diego, CA: Academic Press, 269-278. |
[45] | Mashoodh R, Champagne FA (2014) Paternal Epigenetic Inheritance. In: Tollefsbol TO, editor. Transgenerational Epigenetics: Evidence and Debate, 231-236. |
[46] | Toscano WA, Oehlke KP (2011) Nutrigenomics: A New Frontier in Environmental Health Sciences. In: Nriagu JO, editor. Encyclopedia of Environmental Health Burlington, VT: Elsevier, 202-205. |
[47] | Toscano WA, Oehlke KP, Kafouri R (2010) An Environmental Systems Biology Approach to the Study of Asthma. In: Pawnkar R, Holgate S, Rosenwasser LJ, editors. Allergy Frontiers: Future Perspectives. Springer: NY, NY, 239-252. |
[48] | Toscano WAJ, Lee P, Oehlke KP (2008) The Role of Environmental Health Research in Understanding Chronic Conditions. Minn Physician 21: 27-28. |
[49] |
McLachlan JA (2001) Environmental Signaling: What Embryos and Evolution Teach us about Endocrine Disrupting Chemicals. Endocr Rev 22: 319-341. doi: 10.1210/edrv.22.3.0432
![]() |
[50] |
Vandenberg LN (2014) Non-monotonic Dose Responses in Studies of Endocrine Disrupting Chemicals: Bisphenol-A as a Case Study. Dose-Response 12: 259-276. doi: 10.2203/dose-response.13-020.Vandenberg
![]() |
[51] |
Vandenberg LN, Colborn T, Hayes TB, et al. (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33: 378-455. doi: 10.1210/er.2011-1050
![]() |
[52] | Vandenberg LN, Erlich S, Belcher SM, et al. (2013) Low-dose Effects of Bisphenol-A: An Integrated review of in vitro, Laboratory, Animal, and Epidemiology Studies. Endocrine Disruptors 1: 1-20. |
[53] | CDC (2014) National Diabetes Statistics Report, 2014. Center for Disease Control, Atlanta, GA. |
[54] |
Misra A, Bhardwai S (2014) Obesity and the Metbolic Syndrome in Developing Countries: Focus on South Asians. Nestle Nutr Inst Workshop Ser 78: 133-140. doi: 10.1159/000354952
![]() |
[55] |
Chase K, Sharma RP (2013) Epigenetic Developmental Programs and Adipogenesis - Implications for Psychotropic Induced Obesity. Epigenetics 8: 1133-1140. doi: 10.4161/epi.26027
![]() |
[56] | Janesick A, Blumberg B (2011) Minireview: PPARγ as the target of obesogens. J Ster Biochem & Mol Biol 127: 4-8. |
[57] | Janesick A, Blumberg B (2011) The role of environmental obesogens in the obesity epidemic. Obesity before birth: Springer. 383-399. |
[58] | Kishida K, Shimomura H, Nishizawa N, et al. (2001) Enhancement of the aquaporin adipose gene expression by a peroxisome proliferator-activated receptor gamma. J Biol Chem 276: 48572-48579. |
[59] |
Grun F, Blumberg B (2009) Minireview: the case for obesogens. Mol Endocrinol 23: 1127-1134. doi: 10.1210/me.2008-0485
![]() |
[60] |
Kemper MF, Stirone C, N. KD, et al. (2014) Genomic and non-genomic regulation of PGC1 isoforms by estrogen to increase cerebral vascular mitochondrial biogenesis and reactive oxygen species. Eur J Pharmacol 723: 322-329. doi: 10.1016/j.ejphar.2013.11.009
![]() |
[61] |
Riu A, Grimaldi M, le Maire A, et al. (2011) Peroxisome Proliferator-Activated Receptor γ Is a Target for Halogenated Analogs of Bisphenol A. Environ Health Perspect 119: 1227-1232. doi: 10.1289/ehp.1003328
![]() |
[62] |
Swedenborg E, Ruegg J, Mäkelä S, et al. (2009) Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endovrinol 43: 1-10. doi: 10.1677/JME-08-0132
![]() |
[63] |
Willy PJ, Murray IR, Busch BB, et al. (2004) Regulation of PPARγ coactivator 1α (PGC-1α) signaling by an estrogen-related receptor α (ERRα) ligand. Proc Natl Acad Sci (USA) 101: 8912-8917. doi: 10.1073/pnas.0401420101
![]() |
[64] | Alaynick WA (2006) Nuclear Receptors, Mitochondria and Lipid Metabolism. Mitochondrion 8: 329-337. |
[65] |
Koo S-H, Satoh H, Herzig S, et al. (2004) PGC-1 Promotes Insulin Resistance in Liver through PPAR-alpha-dependent Induction of TRB-3. Nature Med 10: 530-534. doi: 10.1038/nm1044
![]() |
[66] |
Sargis RM, Johnson DN, Choudhury RA, et al. (2010) Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 18: 1283-1288. doi: 10.1038/oby.2009.419
![]() |
[67] |
Unterberger C, Stapls KJ, Smallie T, et al. (2008) Role of STAT3 in Glucocorticoid-induced Expression of the Human IL-10 Gene. Mol Immunol 45: 3230-3237. doi: 10.1016/j.molimm.2008.02.020
![]() |
[68] |
Tanaka T, Nobuiaki Y, Kishimoto T, et al. (1997) Defective Adipocyte Differentiation in Mice Lacking the C/EBP or C/EBP Gene. EMBO J 16: 7432-7443. doi: 10.1093/emboj/16.24.7432
![]() |
[69] |
Berger J, Tanen M, Elbrecht A, et al. (2001) Peroxisome Proliferator-activated Receptor-γ Ligands Inhibit Adipocyte 11β-Hydroxysteroid Dehydrogenase Type 1 Expression and Activity. J Biol Chem 276: 12629-12635. doi: 10.1074/jbc.M003592200
![]() |
[70] |
Fukazawa H, Hoshino K, Shiozawa T, et al. (2001) Identification and Quantification of Chlorinated Bisphenol A in Wastewater from Wastepaper Recycling Plants. Chemosphere 44: 973-979. doi: 10.1016/S0045-6535(00)00507-5
![]() |
[71] |
Guerra P, Eljarrat E, Barcelo D (2010) Simultaneous Determination Hexabromocyclododecane, Tetrabromobisphenol A, and Related Compounds in Sewage Sludge and Sediment tsamples from the Ebro River Basin (Spain). Anal Bianal Chem 397: 2817-2824. doi: 10.1007/s00216-010-3670-3
![]() |
[72] | Kolpin DW, Furlong ET, Meyer MT, et al. (2002) Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000: A National Reconnaissance. Environ Sci Technol 36: 1202-1211. |
[73] |
Korshin G, Kim J, Gan L (2006) Comparative Study of Reactions of Endocrine Eisruptors, Bisphenol-A and Diethylstilbestrol in Electrochemical Treatment and Chlorination. Water Res 40: 1070-1078. doi: 10.1016/j.watres.2006.01.003
![]() |
[74] |
Gallard H, Leclercq A, Croué J-P (2004) Chlorination of Bisphenol A: Kinetics and By-products Formation. Chemosphere 56: 465-473. doi: 10.1016/j.chemosphere.2004.03.001
![]() |
[75] | Levian C, Ruiz E, Yang X (2014) The Pathogenesis of Obesity from a Genomic and Systems Biology Perspective. Yale J Biol Med 87: 113-126. |
[76] |
Zhao S, Iyengar R (2012) Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Ann Rev Pharmacol Toxicol 52: 505-521. doi: 10.1146/annurev-pharmtox-010611-134520
![]() |
[77] |
Toscano WA, Oehlke KP (2005) Systems Biology: New Approaches to Old Environmental Health Problems. Int J Environ Res Public Health 2: 4-9. doi: 10.3390/ijerph2005010004
![]() |
[78] | Leischow SJ, Best A, Trochim WM, et al. (2008) Systems Thinking to Improve the Public's Health. Amer J Prev Med Suppl 2 35: S-196 - S-203. |
[79] |
Cox J, Mann M (2011) Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annu Rev Biochem 80: 273-299. doi: 10.1146/annurev-biochem-061308-093216
![]() |
[80] |
Li H, Deng H (2010) Systems Genetics, Bioinformatics and eQTL Mapping. Genetica 138: 915-924. doi: 10.1007/s10709-010-9480-x
![]() |
[81] |
Majithia AR, Flannick J, Shahanian P, et al. (2014) Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes. Proc Natl Acad Sci (USA) 111: 13127-13132. doi: 10.1073/pnas.1410428111
![]() |
[82] |
Hoffman S (2011) Computational Analysis of High Throughput Sequencing Data. Methods Mol Biol 719: 199-217. doi: 10.1007/978-1-61779-027-0_9
![]() |
[83] | Dondorp WJ, de Wert GM (2013) The Thousand-Dollar Genome: An Ethical Exploration. Eur J Hum Genet Suppl 1: S6-S-26. |
[84] | Zhang L, Kim S (2014) Learning Gene Networks under SNP Perturbations using eQTL Datasets. PLoS Comput Biol 10: e1003420. |
[85] |
Meaburn E, Schulz R (2012) Next generation sequencing in epigenetics: insights and challenges. Semin Cell Dev Biol 23: 192-199. doi: 10.1016/j.semcdb.2011.10.010
![]() |
[86] |
Pellegrini M, Ferrri R (2012) Epigenetic analysis: ChIP-chip and ChIP-seq. Methods Mol Biol 802: 377-387. doi: 10.1007/978-1-61779-400-1_25
![]() |
[87] |
Ku CS, Naidoo N, Wu M, et al. (2011) Studying the epigenome using next generation sequencing. J Med Genet 48: 721-730. doi: 10.1136/jmedgenet-2011-100242
![]() |
[88] |
Patel CJ, Battacharya J, Butte AJ (2010) An Environment-Wide Association Study (EWAS) on Type 2 Diabetes Mellitus. PLoS One 5: e10746. doi: 10.1371/journal.pone.0010746
![]() |
[89] |
Manolio TA, Brooks LD, Collins F (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118: 1590-1605. doi: 10.1172/JCI34772
![]() |
[90] | Zeggini E, Weeden MN, Lindgren CM, et al. Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes. Science (Washington) 316: 1336-1341. |
[91] | Ioannidis J, Loy EY, Poulton R, et al. (2009) Researching Nongenetic Determinants of Disease A Comparison and Proposed Unification. Sci Transl Med 1: 7ps8. |
[92] |
Davis AP, Rosenstein MC, Wiegers TC, et al. (2011) DiseaseComps: a metric that discovers similar diseases based upon common toxicogenomic profiles at CTD. Bioinformation 7: 154-156. doi: 10.6026/97320630007154
![]() |