We established positivity of $ \nabla{f} $ obtained from a systematic computation of a composition of sequential fractional differences of the function $ {f} $ that satisfy certain conditions in a negative lower bound setup. First, we considered the different order sequential fractional differences in which we need a complicated condition. Next, we equalled the order of fractional differences and we saw that a simpler condition will be needed. We illustrated our positivity results for an increasing function of the rising type.
Citation: Pshtiwan Othman Mohammed. Some positive results for exponential-kernel difference operators of Riemann-Liouville type[J]. Mathematical Modelling and Control, 2024, 4(1): 133-140. doi: 10.3934/mmc.2024012
We established positivity of $ \nabla{f} $ obtained from a systematic computation of a composition of sequential fractional differences of the function $ {f} $ that satisfy certain conditions in a negative lower bound setup. First, we considered the different order sequential fractional differences in which we need a complicated condition. Next, we equalled the order of fractional differences and we saw that a simpler condition will be needed. We illustrated our positivity results for an increasing function of the rising type.
| [1] | C. S. Goodrich, A. C. Peterson, Discrete fractional calculus, Springer, 2015. https://doi.org/10.1007/978-3-319-25562-0 |
| [2] |
C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111–124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022
|
| [3] |
M. Y. Almusawa, P. O. Mohammed, Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators, Chaos Solitons Fract., 176 (2023), 114098. https://doi.org/10.1016/j.chaos.2023.114098 doi: 10.1016/j.chaos.2023.114098
|
| [4] |
P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using $h$-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Methods Appl. Sci., 46 (2020), 7688–7713. https://doi.org/10.1002/mma.7083 doi: 10.1002/mma.7083
|
| [5] |
F. M. Atici, N. Nguyen, K. Dadashova, S. Pedersen, G. Koch, Pharmacokinetics and pharmacodynamics models of tumor growth and anticancer effects in discrete time, Comput. Math. Biophys., 8 (2020), 114–125. https://doi.org/10.1515/cmb-2020-0105 doi: 10.1515/cmb-2020-0105
|
| [6] |
Z. Wang, B. Shiri, D. Baleanu, Discrete fractional watermark technique, Front. Inf. Technol. Electron. Eng., 21 (2020), 880–883. https://doi.org/10.1631/FITEE.2000133 doi: 10.1631/FITEE.2000133
|
| [7] |
B. Shiri, D. Baleanu, C. Y. Ma, Pathological study on uncertain numbers and proposed solutions for discrete fuzzy fractional order calculus, Open Phys., 21 (2023), 20230135. https://doi.org/10.1515/phys-2023-0135 doi: 10.1515/phys-2023-0135
|
| [8] |
G. C. Wu, J. L. Wei, M. Luo, Right fractional calculus to inverse-time chaotic maps and asymptotic stability analysis., J. Differ. Equations Appl., 29 (2023), 1140–1155. https://doi.org/10.1080/10236198.2023.2198043 doi: 10.1080/10236198.2023.2198043
|
| [9] |
G. C. Wu, D. Baleanu, S. Zeng, Several fractional differences and their applications to discrete maps, J. Appl. Nonlinear Dyn., 4 (2015), 339–348. https://doi.org/10.5890/JAND.2015.11.001 doi: 10.5890/JAND.2015.11.001
|
| [10] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
|
| [11] |
P. O. Mohammed, R. Dahal, C. S. Goodrich, Y. S. Hamed, D. Baleanu, Analytical and numerical negative boundedness of fractional differences with Mittag-Leffler kernel, AIMS Math., 8 (2023), 5540–5550. https://doi.org/10.3934/math.2023279 doi: 10.3934/math.2023279
|
| [12] |
F. Atici, M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math., 9 (2015), 139–149. https://doi.org/10.2298/AADM150218007A doi: 10.2298/AADM150218007A
|
| [13] |
I. Suwan, S. Owies, T. Abdeljawad, Monotonicity results for $h$-discrete fractional operators and application, Adv. Differ. Equations, 2018 (2018), 207. https://doi.org/10.1186/s13662-018-1660-5 doi: 10.1186/s13662-018-1660-5
|
| [14] |
P. O. Mohammed, H. M. Srivastava, D. Baleanu, E. E. Elattar, Y. S. Hamed, Positivity analysis for the discrete delta fractional differences of the Riemann-Liouville and Liouville-Caputo types, Electron. Res. Arch., 2022, 30, 3058–3070. https://doi.org/10.3934/era.2022155 doi: 10.3934/era.2022155
|
| [15] |
H. M. Srivastava, P. O. Mohammed, J. L. G. Guirao, D. Baleanu, E. Al-Sarairah, R. Jan, A study of positivity analysis for difference operators in the Liouville-Caputo setting, Symmetry, 15 (2023), 391. https://doi.org/10.3390/sym15020391 doi: 10.3390/sym15020391
|
| [16] |
T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equations, 2017 (2017), 78. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
|
| [17] |
C. S. Goodrich, J. M. Jonnalagadda, Monotonicity results for CFC nabla fractional differences with negative lower bound, Analysis, 41 (2021), 221–229. https://doi.org/10.1515/anly-2021-0011 doi: 10.1515/anly-2021-0011
|
| [18] |
P. O. Mohammed, H. M. Srivastava, D. Baleanu, E. Al-Sarairah, S. K. Sahoo, N. Chorfi, Monotonicity and positivity analyses for two discrete fractional-order operator types with exponential and Mittag-Leffler kernels, J. King Saud Univ. Sci., 35 (2023), 102794. https://doi.org/10.1016/j.jksus.2023.102794 doi: 10.1016/j.jksus.2023.102794
|
| [19] |
T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solitons Fract., 116 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
|
| [20] |
P. O. Mohammed, D. Baleanu, T. Abdeljawad, S. K. Sahoo, K. M. Abualnaja, Positivity analysis for mixed order sequential fractional difference operators, AIMS Math., 8 (2023), 2673–2685. https://doi.org/10.3934/math.2023140 doi: 10.3934/math.2023140
|
| [21] |
C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Methods Appl. Sci., 44 (2021), 7099–7120. https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247
|
| [22] |
P. O. Mohammed, M. Y. Almusawa, On analysing discrete sequential operators of fractional order and their monotonicity results, AIMS Math., 8 (2023), 12872–12888. https://doi.org/10.3934/math.2023649 doi: 10.3934/math.2023649
|
| [23] |
R. Dahal, C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Differ. Equations Appl., 23 (2017), 1190–1203. https://doi.org/10.1080/10236198.2017.1307351 doi: 10.1080/10236198.2017.1307351
|
| [24] |
C. S. Goodrich, B. Lyons, M. T. Velcsov, Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound, Commun. Pure Appl. Anal., 20 (2021), 339–358. https://doi.org/10.3934/cpaa.2020269 doi: 10.3934/cpaa.2020269
|