This research aimed to evaluate the diversity of yeasts recovered from fermented foods gathered from some areas of Northeastern Thailand. The fermented food items included Pla-som, Nham-pla, Kem-buknud, Isan-sausage, Pla-ra, Mhum-neu, Mhum-Khai-pla, Nham-neu, Nham-mu, Kung-joom, Som-pla-noi, and Poo-dong. Their probiotic characteristics were also investigated. A total of 103 yeast isolates of nine genera were identified using 28S rDNA sequencing. The yeast genera were Candida (20.3%), Diutina (2.9%), Filobasidium (1.0%), Kazachstania (33.0%), Pichia (3.9%), Saccharomyces (1.0%), Starmerella (28.2%), Torulaspora (2.9%), and Yarrowia (6.8%). Based on probiotic characteristic analysis of ten selected yeast strains, Kazachstania bulderi KKKS4-1 showed the strongest probiotic characteristics in terms of hemolytic activity, antimicrobial activity against pathogenic bacteria, tolerance to low pH and bile salt and hydrophobicity. Isolated yeasts with probiotic characteristics may be useful in fermented food and animal feed production to improve their nutritional values.
Citation: Sukrita Punyauppa-path, Pongpat Kiatprasert, Jutaporn Sawaengkaew, Polson Mahakhan, Parichat Phumkhachorn, Pongsak Rattanachaikunsopon, Pannida Khunnamwong, Nantana Srisuk. Diversity of fermentative yeasts with probiotic potential isolated from Thai fermented food products[J]. AIMS Microbiology, 2022, 8(4): 575-594. doi: 10.3934/microbiol.2022037
[1] | Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106 |
[2] | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174 |
[3] | Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670 |
[4] | Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan . Some new dynamic Steffensen-type inequalities on a general time scale measure space. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240 |
[5] | Tingting Guan, Guotao Wang, Haiyong Xu . Initial boundary value problems for space-time fractional conformable differential equation. AIMS Mathematics, 2021, 6(5): 5275-5291. doi: 10.3934/math.2021312 |
[6] | Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250 |
[7] | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777 |
[8] | Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575 |
[9] | Ahmed M. Ahmed, Ahmed I. Saied, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Haytham M. Rezk . Advanced Hardy-type inequalities with negative parameters involving monotone functions in delta calculus on time scales. AIMS Mathematics, 2024, 9(11): 31926-31946. doi: 10.3934/math.20241534 |
[10] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
This research aimed to evaluate the diversity of yeasts recovered from fermented foods gathered from some areas of Northeastern Thailand. The fermented food items included Pla-som, Nham-pla, Kem-buknud, Isan-sausage, Pla-ra, Mhum-neu, Mhum-Khai-pla, Nham-neu, Nham-mu, Kung-joom, Som-pla-noi, and Poo-dong. Their probiotic characteristics were also investigated. A total of 103 yeast isolates of nine genera were identified using 28S rDNA sequencing. The yeast genera were Candida (20.3%), Diutina (2.9%), Filobasidium (1.0%), Kazachstania (33.0%), Pichia (3.9%), Saccharomyces (1.0%), Starmerella (28.2%), Torulaspora (2.9%), and Yarrowia (6.8%). Based on probiotic characteristic analysis of ten selected yeast strains, Kazachstania bulderi KKKS4-1 showed the strongest probiotic characteristics in terms of hemolytic activity, antimicrobial activity against pathogenic bacteria, tolerance to low pH and bile salt and hydrophobicity. Isolated yeasts with probiotic characteristics may be useful in fermented food and animal feed production to improve their nutritional values.
Riemann-Liouville fractional integral given by
Iαa+ξ(℘)=1Γ(α)∫χa(χ−℘)α−1ξ(℘)dt. |
Many different concepts of fractional derivative maybe found in [9,10,11]. In [12] studied a conformable derivative:
℘αf(℘)=limϵ→0f(℘+ϵ℘1−α)−f(℘)ϵ. |
The time scale conformable derivatives was introduced by Benkhettou et al. [17].
Further, in recent years, numerous mathematicians claimed that non-integer order derivatives and integrals are well suited to describing the properties of many actual materials, such as polymers. Fractional derivatives are a wonderful tool for describing memory and learning. a variety of materials and procedures inherited properties is one of the most significant benefits of fractional ownership. For more concepts and definition on time scales see [13,14,15,16,17,18,19,33,34,35].
Continuous version of Steffensen's inequality [7] is written as: For 0≤g(℘)≤1 on ∈[a,b]. Then
∫bb−λf(℘)dt≤∫baf(℘)g(℘)dt≤∫a+λaf(℘)dt, | (1.1) |
where λ=∫bag(℘)dt.
Supposing f is nondecreasing gets the reverse of (1.1).
Also, the discrete inequality of Steffensen [6] is: For λ2≤∑nℓ=1g(ℓ)≤λ1. Then
n∑ℓ=n−λ2+1f(ℓ)≤n∑ℓ=1f(ℓ)g(ℓ)≤λ1∑ℓ=1f(ℓ). | (1.2) |
Recently, a large number of dynamic inequalities on time scales have been studied by a small number of writers who were inspired by a few applications (see [1,2,3,4,8,28,29,30,31,32,36,37,40,41,42,44,48,49,50,51,52,53]).
In [5] Jakšetić et al. proved that, if ˆμ([c,d])=∫[a,b]g(℘)dˆμ(℘), where [c,d]⊆[a,b]. Then
∫[a,b]f(℘)g(℘)dˆμ(℘)≤∫[c,d]f(℘)g(℘)dˆμ(℘)+∫[a,c](f(℘)−f(d))g(℘)dˆμ(℘), |
and
∫[c,d]f(℘)dˆμ(℘)−∫[d,b](f(c)−f(℘))g(℘)dˆμ(℘)≤∫[a,b]f(℘)g(℘)dˆμ(℘). |
Anderson, in [3], studied the inequality:
∫bb−λϕ(℘)∇℘≤∫baϕ(℘)ψ(℘)∇℘≤∫a+λaϕ(℘)∇℘, | (1.3) |
In [47] the authors have proved, for
∫m+λ1mζ(℘)d℘=∫kmζ(℘)g(℘)d℘, |
and
∫nn−λ2ζ(℘)d℘=∫nkζ(℘)g(℘)d℘. |
If there exists a constant A such that r(℘)/ζ(℘)−At is monotonic on the intervals [m,k], [k,n], and
∫nmtq(℘)g(℘)d℘=∫m+λ1mtq(℘)d℘+∫nn−λ2tq(℘)d℘, |
then
∫nmr(℘)g(℘)d℘≤∫m+λ1mr(℘)d℘+∫nn−λ2r(℘)d℘. |
In particularly, Anderson [3] proved
∫nn−λr(℘)∇℘≤∫nmr(℘)g(℘)∇℘≤∫m+λmr(℘)∇℘. |
where m,n∈Tκ with m<n, r, g:[m,n]T→R are ∇-integrable functions such that r is of one sign and nonincreasing and 0≤g(℘)≤1 on [m,n]T and λ=∫nmg(℘)∇℘, n−λ,m+λ∈T.
We prove the next two needed results:
Theorem 1.1. Assume q>0 with 0≤g(℘)≤ζ(℘) ∀℘∈[m,n]T and λ is given from ∫nmg(℘)Δα℘=∫m+λmζ(℘)Δα℘, then
∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘. | (1.4) |
Also, provided with 0≤g(℘)≤ζ(℘) and ∫nn−λζ(℘)Δα℘=∫nmg(℘)Δα℘, we have
∫nn−λr(℘)ζ(℘)Δα℘≤∫nmr(℘)g(℘)Δα℘. | (1.5) |
We get the reverse inequalities of (1.4) and (1.5) when assuming r/ζ is nondecreasing.
Theorem 1.2. Assume ψ is integrable on time scales interval [m,n], with ζ(℘)−ψ(℘)≥g(℘)≥ψ(℘)≥0∀℘∈[m,n]T and ∫m+λmζ(℘)Δα℘=∫nmg(℘)Δα℘=∫nn−λζ(℘)Δα℘ and g, r and ζ are Δα-integrable functions, ζ(℘)≥g(℘)≥0, we have
∫nn−λr(℘)ζ(℘)Δα℘+∫nm|(r(℘)−r(n−λ))ψ(℘)|Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘−∫nm|(r(℘)−r(m+λ))ψ(℘)|Δα℘, | (1.6) |
and
∫nn−λr(℘)ζ(℘)Δα℘≤∫nn−λ[r(℘)ζ(℘)−(r(℘)−r(n−λ))][ζ(℘)−g(℘)]Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λm[r(℘)ζ(℘)−(r(℘)−r(m+λ))][ζ(℘)−g(℘)]Δα℘≤∫m+λmr(℘)ζ(℘)Δα℘. | (1.7) |
Proof. The proof techniques of Theorems 1.6 and 1.7 are like to that in [4] and is removed.
Several authors proved conformable Hardy's inequality [20,21], conformable Hermite-Hadamard's inequality [22,23,24], conformable inequality of Opial's [26,27] and conformable inequality of Steffensen's [25]. In [45] Anderson proved the followong results:
Theorem 1.3. [45] Suppose α∈(0,1] and r1, r2∈R such that 0≤r1≤r2. Suppose ∏:[r1,r2]→[0,∞) and Γ:[r1,r2]→[0,1] are α-fractional integrable functions on [r1,r2] with Π is decreasing, we get
∫r2r2−ℵΠ(ζ)dαζ≤∫r2r1Π(ζ)Γ(ζ)dαζ≤∫r1+ℵr1Π(ζ)dαζ, |
where ℵ=α(r2−r1)rα2−rα1∫r2r1Γ(ζ)dαζ∈[0,r2−r1].
In [46] the authors gave an extension for Theorem 1.8:
Theorem 1.4. Assume α∈(0,1] and r1, r2∈R such that 0≤r1≤r2. Suppose ∏,Γ,Σ:[r1,r2]→[0,∞) are integrable on [r1,r2] with the decreasing function Π and 0≤Γ≤Σ, we get
∫r2r2−ℵΣ(ζ)Π(ζ)dαζ≤∫r2r1Π(ζ)Γ(ζ)dαζ≤∫r1+ℵr1Σ(ζ)Π(ζ)dαζ, |
where ℵ=(r2−r1)∫r2r1Σ(ζ)dαζ∫r2r1Γ(ζ)dαζ∈[0,r2−r1].
In this paper, we prove and explore several novel speculations of the Steffensen inequality obtained in [47] through the conformable integral containing time scale concept. We furthermore recover certain known results as special cases of our results.
Lemma 2.1. Assume ζ>0 is rd-continuous function on [m,n]∩T, g, r be rd-continuous on [m,n]∩T such that r/ζ nonincreasing function and 0≤g(℘)≤1 ∀℘∈[m,n]∩T. Then
(Λ1)
∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)Δα℘, | (2.1) |
where λ is given by
∫nmζ(℘)g(℘)Δα℘=∫m+λmζ(℘)Δα℘. |
(Λ2)
∫nn−λr(℘)Δα℘≤∫nmr(℘)g(℘)Δα℘, | (2.2) |
such that
∫nn−λζ(℘)Δα℘=∫nmζ(℘)g(℘)Δα℘. |
(2.1) and (2.2) are reversed when r/ζ is nondecreasing.
Proof. Putting g(℘)↦ζ(℘)g(℘) and r(℘)↦r(℘)/ζ(℘) in (1.4), (1.5) to get (Λ1) and (Λ2) simultaneously.
Lemma 2.2. Under the same hypotheses of Lemma 2.1. with ψ be integrable functions on [m,n]∩T and 0≤ψ(℘)≤g(℘)≤1−ψ(℘) for all ℘∈[m,n]T. Then
∫nn−λr(℘)Δα℘+∫nm|(r(℘)ζ(℘)−r(n−λ)ζ(n−λ))ζ(℘)ψ(℘)|Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λmr(℘)Δα℘−∫nm|(r(℘)ζ(℘)−r(m+λ)ζ(m+λ))ζ(℘)ψ(℘)|Δα℘, |
where λ is obtained from
∫m+λmh(℘)Δα℘=∫nmζ(℘)g(℘)Δα℘=∫nn−λζ(℘)Δα℘. |
Proof. Putting g(℘)↦ζ(℘)g(℘), r(℘)↦r(℘)/h(℘) and ψ(℘)↦ζ(℘)ψ(℘) in (1.6).
Lemma 2.3. Under the same conditions of Lemma 2.1. Then
∫nn−λr(℘)Δα℘≤∫nn−λ(r(℘)−[r(℘)ζ(℘)−r(n−λ)ζ(n−λ)]ζ(℘)[1−g(℘)])Δα℘≤∫nmr(℘)g(℘)Δα℘≤∫m+λm(r(℘)−[r(℘)ζ(℘)−r(a+λ)ζ(m+λ)]ζ(℘)[1−g(℘)])Δα℘≤∫m+λmr(℘)Δα℘, |
where λ is obtained from
∫m+λmζ(℘)Δα℘=∫nmg(℘)Δα℘=∫nn−λζ(℘)Δα℘. |
Proof. Taking g(℘)↦ζ(℘)g(℘) and r(℘)↦r(℘)/ζ(℘) in (1.7).
Theorem 2.1. Under the same conditions of Lemma 2.3 such that k∈(m,n) and λ1, λ2 are given from
(Λ3)
∫m+λ1mζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫nn−λ2ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘, | (2.3) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘. | (2.4) |
(2.4) is reversed if rσ/ζ∈AHk2[m,n] and (2.3).
(Λ4)
∫kk−λ1ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫k+λ2kζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘, | (2.5) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)Δα℘. | (2.6) |
If rσ/ζ∈AHk2[m,n] and (2.5) satisfied, then we reverse (2.6).
(Λ5) If λ1, λ2 be the same as in (Λ3) and rσ/ζ∈AHk1[m,n] so that
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1m(ϕ(℘)ζ(℘)−[ϕ(℘)−m−λ1]ζ(℘)[1−g(℘)])Δα℘+∫nn−λ2(ϕ(℘)ζ(℘)−[ϕ(℘)−n+λ2]ζ(℘)[1−g(℘)])Δα℘, | (2.7) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1m(rσ(℘)−|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)[1−g(℘)])Δα℘+∫nn−λ2(rσ(℘)−|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)[1−g(℘)])Δα℘. | (2.8) |
If rσ/ζ∈AHk2[m,n] and (2.7) satisfied, the inequality in (2.8) is reversed.
(Λ6) If λ1, λ2 be defined as in (Λ4) and rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫kk−λ1(ϕ(℘)ζ(℘)−[ϕ(℘)−k+λ1]ζ(℘)[1−g(℘)])Δα℘=∫m+λ1m(ϕ(℘)ζ(℘)−[ϕ(℘)−k+λ2]ζ(℘)[1−g(℘)])Δα℘, | (2.9) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫kk−λ1(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)]ζ(℘)[1−g(℘)])Δα℘+∫k+λ2k(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)]ζ(℘)[1−g(℘)])Δα℘. | (2.10) |
If rσ/ζ∈AHk2[m,n] and (2.9) satisfied, we reverse (2.10).
Proof. (Λ3) Consider rσ/ζ∈AHk1[m,n], and R1(ℓ)=rσ(ℓ)−Aϕ(ℓ)ζ(ℓ), since A is given in Definition 2.1. Since R1/ζ:[m,k]∩T→R, using Lemma 2.1(Λ1), we deduce
0≤∫m+λ1mR1(℘)Δα℘−∫kmR1(℘)g(℘)Δα℘=∫m+λ1mrσ(℘)Δα℘−∫kmrσ(℘)g(℘)Δα℘−A(∫m+λ1mϕ(℘)ζ(℘)Δα℘−∫kmϕ(℘)ζ(℘)g(℘)Δα℘). | (2.11) |
As R1/ζ:[k,n]∩T→R is nondecreasing, using Lemma 2.1(Λ2), we obtain
0≥∫nkR1(℘)g(℘)Δα℘−∫nn−λ2R1(℘)Δα℘=∫nkrσ(℘)g(℘)Δα℘−∫nn−λ2rσ(℘)Δα℘−A(∫nkϕ(℘)ζ(℘)g(℘)Δα℘−∫nn−λ2ϕ(℘)ζ(℘)Δα℘). | (2.12) |
(2.11) and (2.12) imply that
∫m+λ1mrσ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘−∫nmrσ(℘)g(℘)Δα℘≥A(∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘−∫nmϕ(℘)ζ(℘)g(℘)Δα℘) |
Hence, if (2.3) is hold, then (2.4) holds. For rσ/ζ∈AHk2[m,n], we get the some steps.
(Λ4) Let rσ/ζ∈AHk1[m,n], also R1(x)=rσ(x)−Aϕ(x)ζ(x), where A as in Definition 2.1. R1/ζ:[m,k]∩T→R is nonincreasing, so from Lemma 2.1(Λ1) we obtain
0≤∫kmrσ(℘)g(℘)Δα℘−∫kk−λ1rσ(℘)Δα℘−A(∫kmϕ(℘)h(℘)g(℘)Δα℘−∫kc−λ1ϕ(℘)ζ(℘)Δα℘). | (2.13) |
Using Lemma 2.1(Λ1) we have
0≥∫k+λ2krσ(℘)Δα℘−∫nkrσ(℘)g(℘)Δα℘−A(∫k+λ2kϕ(℘)ζ(℘)Δα℘−∫nkϕ(℘)ζ(℘)g(℘)Δα℘). | (2.14) |
Thus, from (2.13), (2.14), we get
∫nmrσ(℘)g(℘)Δα℘−∫k+λ2k−λ1rσ(℘)Δα℘≥A(∫nmϕ(℘)ζ(℘)g(℘)Δα℘−∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘) |
Therefore, if ∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘ is satisfied, then (2.8) holds. Follow the same steps for rσ/ζ∈AHk2[m,n].
Using Lemma 2.3 and repeat the steps of Theorem 2.1(Λ3) and Theorem 2.1(Λ4) in the proof of (Λ5) and (Λ6) respectively.
Corollary 2.1. The inequalities (2.4), (2.6), (2.8) and (2.10) of Theorem 2.1 letting T=R takes
(i)∫nmfσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)dα℘+∫nn−λ2rσ(℘)dα℘. | (2.15) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)dα℘. | (2.16) |
(iii)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1m(rσ(℘)−[rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)]ζ(℘)[1−g(℘)])dα℘+∫nn−λ2(rσ(℘)−[rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)]ζ(℘)[1−g(℘)])dα℘. | (2.17) |
(iv)∫nmrσ(℘)g(℘)dα℘≥∫kk−λ1(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)]ζ(℘)[1−g(℘)])dα℘+∫k+λ2k(rσ(℘)−[rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)]ζ(℘)[1−g(℘)])dα℘. | (2.18) |
Corollary 2.2. We get [47,Theorems 8,10,21 and 22], if we put α=1 and ϕ(℘)=℘ in Corollary 2.1 [(i),(ii),(iii),(iv)] simultaneously.
Corollary 2.3. In Corollary 2.1 taking T=Z, the results (2.15)–(2.18) will be equivalent to
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)+n−1∑℘=n−λ2r(℘+1)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)℘α−1. |
(iii)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=m(r(℘+1)−[r(℘+1)ζ(℘)−r(a+λ1+1)ζ(m+λ1)]ζ(℘)[1−g(℘)])℘α−1+n−1∑℘=n−λ2(r(℘+1)−[r(℘+1)ζ(℘)−r(n−λ2+1)ζ(n−λ2)]ζ(℘)[1−g(℘)])℘α−1. |
(iv)n−1∑℘=mr(℘+1)g(℘))℘α−1≥k−1∑℘=k−λ1(r(℘+1)−[r(℘+1)ζ(℘)−r(k−λ1+1)ζ(k−λ1)]ζ(℘)[1−g(℘)]))℘α−1+k+λ2−1∑℘=k(r(℘+1)−[r(℘+1)ζ(℘)−r(k+λ2+1)ζ(k+λ2)]ζ(℘)[1−g(℘)]))℘α−1. |
Theorem 2.2. Under the assumptions in Lemma 2.1 with 0≤g(℘)≤ζ(℘) and λ1, λ2 be defined as
(Λ7)
∫m+λ1mζ(℘)Δα℘=∫kmg(℘)Δα℘, |
∫nn−λ2ζ(℘)Δα℘=∫nkg(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘, | (2.19) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)ζ(℘)Δα℘+∫nn−λ2rσ(℘)ζ(℘)Δα℘. | (2.20) |
(Λ8)
∫kk−λ1ζ(℘)Δα℘=∫kmg(℘)Δα℘, |
∫k+λ2kζ(℘)Δα℘=∫nkg(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)ζ(℘)Δα℘, | (2.21) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)ζ(℘)Δα℘. | (2.22) |
If rσ/ζ∈AHk2[m,n] and (2.19), (2.21) satisfied, we get the reverse of (2.20) and (2.22).
Proof. By using Theorem 2.1 [(Λ3),(Λ4)] and by putting g↦g/h and f↦fh, we get the proof of (Λ7) and (Λ8).
Corollary 2.4. In Theorem 2.2 [(Λ7),(Λ8)], assuming T=R, the following results obtains:
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)ζ(℘)dα℘+∫nn−λ2rσ(℘)ζ(℘)dα℘. | (2.23) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)ζ(℘)dα℘. | (2.24) |
Corollary 2.5. In Corollary 2.4 [(i),(ii)], when we put α=1 and ϕ(℘)=℘ then [47,Theorems 16 and 17] gotten.
Corollary 2.6. In (2.23) and (2.24) letting T=Z, gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)h(℘)+n−1∑℘=n−λ2r(℘+1)h(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)ζ(℘)℘α−1. |
Theorem 2.3. Using the same conditions in Lemma 2.3. Letting w:[m,n]∩T→R be integrable with 0≤g(℘)≤w(℘) ∀℘∈[m,n]∩T and
(Λ9)∫m+λ1mw(℘)ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫nn−λ2w(℘)ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)w(℘)ζ(℘)Δα℘+∫nn−λ2ϕ(℘)w(℘)ζ(℘)Δα℘, | (2.25) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)w(℘)Δα℘+∫nn−λ2rσ(℘)w(℘)Δα℘. | (2.26) |
(Λ10)∫kk−λ1w(℘)ζ(℘)Δα℘=∫kmζ(℘)g(℘)Δα℘, |
∫k+λ2kw(℘)ζ(℘)Δα℘=∫nkζ(℘)g(℘)Δα℘. |
If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫k+λ2k−λ1ϕ(℘)w(℘)ζ(℘)Δα℘, | (2.27) |
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)w(℘)Δα℘. | (2.28) |
The inequalities in (2.26) and (2.28) are reversible if rσ/ζ∈AHc2[a,b] and (2.25), (2.27) hold.
Proof. In Theorem 2.1 [(Λ3),(Λ4)], ζ changes wq, g changes g/w and r changes rw.
Corollary 2.7. In (2.26) and (2.28). Letting T=R, we have
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)w(℘)dα℘+∫nn−λ2rσ(℘)w(℘)dα℘. | (2.29) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)w(℘)dα℘. | (2.30) |
Corollary 2.8. In Corollary 2.7 [(i),(ii)], letting α=1 and ϕ(℘)=℘ we get [47,Theorems 18 and 19].
Corollary 2.9. In (2.29) and (2.30), crossing T=Z, gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)w(℘)+n−1∑℘=n−λ2r(℘+1)w(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)w(℘)℘α−1. |
Theorem 2.4. Using the same conditions in Lemma 2.1, and Theorem 2.1 [(Λ3),(Λ4)] with ψ:[m,n]∩T→R be a integrable: 0≤ψ(℘)≤g(℘)≤1−ψ(℘).
(Λ11) If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫m+λ1mϕ(℘)ζ(℘)Δα℘−∫km|ϕ(℘)−m−λ1|ζ(℘)ψ(℘)Δα℘+∫nn−λ2ϕ(℘)ζ(℘)Δα℘+∫nk|ϕ(℘)−n+λ2|ζ(℘)ψ(℘)Δα℘, | (2.31) |
then
∫nmrσ(℘)g(℘)Δα℘≤∫m+λ1mrσ(℘)Δα℘−∫km|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)ψ(℘)Δα℘+∫nn−λ2rσ(℘)Δα℘+∫nk|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)ψ(℘)Δα℘. | (2.32) |
(Λ12) If rσ/ζ∈AHk1[m,n] and
∫nmϕ(℘)ζ(℘)g(℘)Δα℘=∫kk−λ1ϕ(℘)ζ(℘)Δα℘−∫km|ϕ(℘)−k+λ1|ζ(℘)ψ(℘)Δα℘+∫nk|ϕ(℘)−k−λ1|ζ(℘)ψ(℘)Δα℘, | (2.33) |
then
∫nmrσ(℘)g(℘)Δα℘≥∫k+λ2k−λ1rσ(℘)Δα℘+∫km|rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)|ζ(℘)ψ(℘)Δα℘−∫nk|rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)|ζ(℘)ψ(℘)Δα℘. | (2.34) |
If rσ/ζ∈AHk2[m,n] and (2.31) and (2.33) satisfied, we get the reverse of (2.32) and (2.34).
Proof. The same steps of Theorem 2.1 [(Λ3),(Λ4)] with Lemma 2.1, R1/ζ:[m,k]∩T→R nonincreasing, R1/ζ:[k,n]∩T→R nondecreasing.
Corollary 2.10. In Theorem 2.4 [(Λ11),(Λ12)], letting T=R we get:
(i)∫nmrσ(℘)g(℘)dα℘≤∫m+λ1mrσ(℘)dα℘−∫km|rσ(℘)ζ(℘)−rσ(m+λ1)ζ(m+λ1)|ζ(℘)ψ(℘)dα℘+∫nn−λ2rσ(℘)dα℘+∫nk|rσ(℘)ζ(℘)−rσ(n−λ2)ζ(n−λ2)|ζ(℘)ψ(℘)dα℘. | (2.35) |
(ii)∫nmrσ(℘)g(℘)dα℘≥∫k+λ2k−λ1rσ(℘)dα℘+∫km|rσ(℘)ζ(℘)−rσ(k−λ1)ζ(k−λ1)|ζ(℘)ψ(℘)dα℘−∫nk|rσ(℘)ζ(℘)−rσ(k+λ2)ζ(k+λ2)|ζ(℘)ψ(℘)dα℘. | (2.36) |
Corollary 2.11. In (2.35) and (2.36), we put α=1, with ϕ(℘)=℘ we get [47,Theorems 23 and 24].
Corollary 2.12. Our results (2.35) and (2.36), by using T=Z gets
(i)n−1∑℘=mr(℘+1)g(℘)℘α−1≤m+λ1−1∑℘=mr(℘+1)℘α−1−k−1∑℘=m|r(℘+1)ζ(℘)−r(m+λ1+1)ζ(m+λ1)|ζ(℘)ψ(℘)ˆ∇℘+n−1∑℘=n−λ2r(℘+1)℘α−1+n−1∑℘=k|r(℘+1)ζ(℘)−r(n−λ2+1)ζ(n−λ2)|ζ(℘)ψ(℘)℘α−1. |
(ii)n−1∑℘=mr(℘+1)g(℘)℘α−1≥k+λ2−1∑℘=k−λ1r(℘+1)℘α−1+k−1∑℘=m|r(℘+1)ζ(℘)−r(k−λ1+1)ζ(k−λ1)|ζ(℘)ψ(℘)℘α−1−n−1∑℘=k|r(℘+1)ζ(℘)−r(k+λ2+1)ζ(k+λ2)|h(℘)ψ(℘)℘α−1. |
In this work, we explore new generalizations of the integral Steffensen inequality given in [38,39,43] by the utilization of the α-conformable derivatives and integrals, A few of these results are generalised to time scales. We also obtained the discrete and continuous case of our main results, in order to gain some fresh inequalities as specific cases.
The authors extend their appreciation to the Research Supporting Project number (RSP-2022/167), King Saud University, Riyadh, Saudi Arabia.
The authors declare no conflict of interest.
[1] |
Chilton SN, Burton JP, Reid G (2015) Inclusion of fermented foods in food guides around the world. Nutrients 7: 390-404. https://doi.org/10.3390/nu7010390 ![]() |
[2] |
Yongsmith B, Malaphan W (2016) Traditional fermented foods in Thailand. Tradit Food pp: 31-59. https://doi.org/10.1007/978-1-4899-7648-2_3 ![]() |
[3] |
Sanpamongkolchai W (2016) Ethnic fermented foods and beverages of Thailand. Ethnic Fermented Foods Alcoholic Beverages Asia pp: 151-163. https://doi.org/10.1007/978-81-322-2800-4_7 ![]() |
[4] |
Narzary Y, Das S, Goyal AK, et al. (2021) Fermented fish products in South and Southeast Asian cuisine: Indigenous technology processes, nutrient composition, and cultural significance. J Eth Foods 8: 1-19. https://doi.org/10.1186/s42779-021-00109-0 ![]() |
[5] |
Aidoo KE, Nout MJR, Sarkar PK (2006) Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res 6: 30-39. https://doi.org/10.1111/j.1567-1364.2005.00015.x ![]() |
[6] |
Kuda T, Tanibe R, Mori M, et al. (2009) Microbial and chemical properties of aji-no-susu, a traditional fermented fish with rice product in the Noto Peninsula, Japan. Fish Sci 75: 1499-1506. https://doi.org/10.1007/s12562-009-0175-0 ![]() |
[7] | Nanasombat S, Phunpruch S, Jaichalad T (2012) Screening and identification of lactic acid bacteria from raw seafoods and Thai fermented seafood products for their potential use as starter cultures. Songklanakarin J Sci Technol 34: 255-262. https://doaj.org/article/e9ab37420e184ced8ae0b2c769ebc0ff |
[8] | Johansen PG, Owusu-Kwarteng J, Parkouda CP, et al. (2019) Occurrence and importance of yeasts in indigenous fermented food and beverages produced in sub-Saharan Africa. Food Microbiol 10: 1-22. https://doi.org/10.3389/fmicb.2019.01789 |
[9] |
Heller KJ (2001) Probiotic bacteria in fermented foods: Product characteristics and starter organisms. Am J Clin Nutr 73: 374S-379S. https://doi.org/10.1093/ajcn/73.2.374s ![]() |
[10] |
Parvez S, Malik KA, Ah Kang S, et al. (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100: 1171-1185. https://doi.org/10.1111/j.1365-2672.2006.02963.x ![]() |
[11] |
Masood MI, Qadir MI, Shirazi JH, et al. (2011) Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 37: 91-98. https://doi.org/10.3109/1040841X.2010.536522 ![]() |
[12] | Tamang JP, Thapa N, Tamang B, et al. (2015) Microorganisms in fermented foods and beverages. Health Benefits Fermented Foods and Beverages pp: 1-110. https://doi.org/10.1201/b18279 |
[13] |
Suzuki M, Nakase T, Daengsubha W, et al. (1987) Identification of yeasts isolated from fermented foods and related materials in Thailand. J Gen Appl Microbiol 33: 205-219. https://doi.org/10.2323/jgam.33.205 ![]() |
[14] |
Elegado FB, Colegio SMT, Lim VMT, et al. (2016) Ethnic fermented foods of the Philippines with reference to lactic acid bacteria and yeasts. Ethnic fermented foods alcoholic beverages Asia pp: 323-340. https://doi.org/10.1007/978-1-322-2800-4_13 ![]() |
[15] |
Kuncharoen N, Techo S, Savarajara A, et al. (2020) Dentification and lipolytic activity of yeasts isolated from foods and wastes. Mycol Int J Fugal Biol 11: 279-286. https://doi.org/10.1080/21501203.2020.1745922 ![]() |
[16] |
Psani M, Kotzekidou P (2006) Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J Microbiol Biotechnol 22: 1329-1336. https://doi.org/10.1007/s11274-006-9180-y ![]() |
[17] |
Chen WB, Han YF, Jong SC, et al. (2000) Isolation, purification, and characterization of a killer protein from Schwanniomyces occidentalis. Appl Environ Microbiol 66: 5348-5352. https://doi.org/10.1128/AEM.66.12.5348-5352.2000 ![]() |
[18] |
Kumura H, Tanoue Y, Tsukahara M, et al. (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87: 4050-4056. https://doi.org/10.1128/AEM.66.12.5348-5352.2000 ![]() |
[19] |
Htwe K, Yee KS, Tin M, et al. (2008) Effect of Saccharomyces boulardii in the treatment of acute watery diarrhea in Myanmar children: A randomized controlled study. Am J Trop Med Hyg 78: 214-216. Available from: https://pubmed.ncbi.nlm.nih.gov/18256417/ ![]() |
[20] |
Kurugol Z, Koturoğlu G (2005) Effects of Saccharomyces boulardii in children with acute diarrhoea. Acta Paediatr 94: 44-47. https://doi.org/10.1111/j.1651-2227.2005.tb01786.x ![]() |
[21] |
Ogunremi OR, Sanni AI, Agrawal R (2015) Probiotic potentials of yeasts isolated from some cereal-based N igerian traditional fermented food products. J Appl Microbiol 119: 797-808. https://doi.org/10.1111/jam.12875 ![]() |
[22] | Gil-Rodríguez AM, Carrascosa AV, Requena T (2015) Yeasts in foods and beverages: In vitro characterisation of probiotic traits. Food Sci Technol 64: 1156-1162. https://doi.org/10.1016/j.lwt.2015.07.042 |
[23] |
Boonanuntanasarn S, Ditthab K, Jangprai A, et al. (2019) Effects of microencapsulated Saccharomyces cerevisiae on growth, hematological indices, blood chemical, and immune parameters and intestinal morphology in striped catfish, Pangasianodon hypophthalmus. Probiotics Antimicro Prot 11: 427-437. https://doi.org/10.1007/s12602-018-9404-0 ![]() |
[24] |
Gatesoupe FJ (2007) Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquac 267: 20-30. https://doi.org/10.1016/j.aquaculture.2007.01.005 ![]() |
[25] |
Limtong S, Yongmanitchai W, Tun MM, et al. (2007) Kazachstania siamensis sp. nov., an ascomycetous yeast species from forest soil in Thailand. Int J Syst Evol Microbiol 57: 419-422. https://doi.org/10.1099/ijs.0.64539-0 ![]() |
[26] |
Yarrow D (1998) Methods for the isolation, maintenance and identification of yeasts. Yeasts pp: 77-100. https://doi.org/10.1016/B978-044481312-1/50014-9 ![]() |
[27] |
Lachance MA, Bowles JM, Starmer WT, et al. (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Can J Microbiol 45: 172-177. https://doi.org/10.1139/w98-225 ![]() |
[28] |
Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73: 331-371. https://doi.org/10.1023/A:1001761008817 ![]() |
[29] |
Bertini L, Amicucci A, Agostini D, et al. (1999) A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiol Lett 173: 239-245. https://doi.org/10.1111/j.1574-6968.1999.tb13508.x ![]() |
[30] |
Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389 ![]() |
[31] |
Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874. https://doi.org/10.1093/molbev/msw054 ![]() |
[32] |
Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x ![]() |
[33] |
Ragavan ML, Das N (2017) Isolation and characterization of potential probiotic yeasts from different sources. Asian J Pharm Clin Res 10: 451-455. https://doi.org/10.22159/ajpcr.2017.v10i4.17067 ![]() |
[34] | Aloğlu HŞ, Ozer ED, Oner Z, et al. (2015) Investigation of a probiotic yeast as a cholesterol lowering agent on rats fed on a high cholesterol enriched diet. Kafkas Univ Vet Fak Derg 21: 685-689. https://doi.org/10.9775/kvfd.2015.13143 |
[35] |
Ayanniran AI, Abiodun S, Lachance MA (2020) Biochemical and molecular characterization of yeasts isolated from Nigerian traditional fermented food products. Afr J Microbiol Res 14: 481-486. https://doi.org/10.5897/AJMR2019.9185 ![]() |
[36] | Kurtzman CP, Fell JW, Boekhout T, et al. (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. Yeasts 87–110. https://doi.org/10.1016/B978-0-444-52149-1.00007-0 |
[37] |
Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci 76: 138-146. https://doi.org/10.1016/j.meatsci.2006.10.022 ![]() |
[38] |
Hwanhlem N, Buradaleng S, Wattanachant S, et al. (2011) Isolation and screening of lactic acid bacteria from Thai traditional fermented fish (Plasom) and production of Plasom from selected strains. Food Control 22: 401-407. https://doi.org/10.1016/j.foodcont.2010.09.010 ![]() |
[39] | Kopermsub P, Yunchalard S (2008) Safety control indices for plaa-som, a Thai fermented fish product. Afr J Microbiol Res 2: 18-25. https://doi.org/10.5897/AJMR.9000636 |
[40] |
Ostergaard A, Embarek PKB, Wedell-Neergaard C, et al. (1998) Characterization of anti-listerial lactic acid bacteria isolated from Thai fermented fish products. Food Microbiol 15: 223-233. https://doi.org/10.1006/fmic.1997.0153 ![]() |
[41] |
Paludan-Müller C, Madsen M, Sophanodora P, et al. (2002) Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations. Int J Food Microbiol 73: 61-70. https://doi.org/10.1016/S0168-1605(01)00688-2 ![]() |
[42] |
Ridawati, Jenie BSL, Djuwita I, et al. (2010) Genetic diversity of osmophilic yeasts isolated from Indonesian foods with high concentration of sugar. Microbiol Indones 4: 113-118. https://doi.org/10.5454/mi.4.3.%25p ![]() |
[43] |
Suezawa Y, Kimura I, Inoue M, et al. (2006) Identification and typing of miso and soy sauce fermentation yeasts, Candida etchellsii and C. versatilis, based on sequence analyses of the D1D2 domain of the 26S ribosomal RNA gene, and the region of internal transcribed spacer 1, 5.8S ribosomal RNA gene and internal transcribed spacer 2. Biosci Biotechnol Biochem 70: 348-354. https://doi.org/10.1271/bbb.70.348 ![]() |
[44] |
Suzuki S, Fukuoka M, Tada S, et al. (2010) Production of polygalacturonase by recombinant Aspergillus oryzae in solid-state fermentation using potato pulp. Food Sci Technol Res 16: 517-521. https://doi.org/10.3136/fstr.16.517 ![]() |
[45] |
Carbonetto B, Nidelet T, Guezenec S, et al. (2020) Interactions between Kazachstania humilis yeast species and lactic acid bacteria in sourdough. Microorganisms 8: 1-20. https://doi.org/10.3390/microorganisms8020240 ![]() |
[46] |
Jood I, Hoff JW, Setati ME (2017) Evaluating fermentation characteristics of Kazachstania spp. and their potential influence on wine quality. World J Microbiol Biotechnol 33: 1-11. https://doi.org/10.1007/s11274-017-2299-1 ![]() |
[47] |
Yang L, Li X, Lu Y, et al. (2021) Ester synthesis mechanism and activity by Bacillus licheniformis, Candida etchellsii, and Zygosaccharomyces rouxii isolated from Chinese horse bean chili paste. J Sci Food Agric 101: 5645-5651. https://doi.org/10.1002/jsfa.11217 ![]() |
[48] |
Vesterlund S, Vankerckhoven V, Saxelin M, et al. (2007) Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic. Int J Food Microbiol 116: 325-331. https://doi.org/10.1016/j.ijfoodmicro.2007.02.002 ![]() |
[49] |
Meneghin MC, Reis VR, Ceccato-Antonini SR (2010) Inhibition of bacteria contaminating alcoholic fermentations by killer yeasts. Braz Arch Biol Technol 53: 1043-1050. https://doi.org/10.1590/S1516-89132010000500006 ![]() |
[50] |
Bajaj BK, Raina S, Singh S (2013) Killer toxin from a novel killer yeast Pichia kudriavzevii RY55 with idiosyncratic antibacterial activity. J Basic Microbiol 53: 645-656. https://doi.org/10.1002/jobm.201200187 ![]() |
[51] | Perez MF, Contreras L, Garnica NM, et al. (2016) Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PloS One 11: 1-21. https://doi.org/10.1371/journal.pone.0165590 |
[52] |
Fakruddin MD, Hossain M, Ahmed MM (2017) Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement Altern Med 17: 1-11. https://doi.org/10.1186/s12906-017-1591-9 ![]() |
[53] |
Alfian AR, Watchaputi K, Sooklim C, et al. (2022) Production of new antimicrobial palm oil-derived sophorolipids by the yeast Starmerella riodocensis sp. nov. against Candida albicans hyphal and biofilm formation. Microb Cell Factories 21: 1-18. https://doi.org/10.1186/s12934-022-01852-y ![]() |
[54] |
Abu-Mejdad NMJA, Al-Badran AI, Al-Saadoon AH (2020) Purification and characterization of two killer toxins originated from Torulaspora delbrueckii (Lindner) and Wickerhamomyces anomalus (E.C.Hansen) Kurtzman, Robnett, and Basehoar-Powers. Bull Natl Res Cent 44: 1-8. https://doi.org/10.1186/s42269-020-00308-w ![]() |
[55] |
Schaffrath R, Meinhardt F, Klassen R (2018) Yeast killer toxins: Fundamentals and applications. Physiol Genet 15: 87-118. https://doi.org/10.1007/978-3-319-71740-1_3 ![]() |
[56] |
Mannazzu I, Domizio P, Carboni G, et al. (2019) Yeast killer toxins: From ecological significance to application. Crit Rev Biotechnol 39: 603-617. https://doi.org/10.1080/07388551.2019.1601679 ![]() |
[57] | Yehia HM, El-Khadragy MF, Al-Masoud AH, et al. (2022) Killer yeast isolated from some foods and its biological activity. Food Sci Technol 42: 1-7. https://doi.org/10.1590/fst.119721 |
[58] |
Dunne C, O'Mahony L, Murphy L, et al. (2001) In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am J Clin Nutr 73: 386S-392S. https://doi.org/10.1093/ajcn/73.2.386s ![]() |
[59] |
Lim SM, Dong-Soon I (2009) Screening and Characterization of Pro biotic Lactic Acid Bacteria Isolated from Korean Fermented Foods. J Microbiol Biotechnol 19: 178-186. https://doi.org/10.4014/jmb.0804.269 ![]() |
[60] |
Cremers CM, Knoefler D, Vitvitsky V, et al. (2014) Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proc Natl Acad Sci USA 111: E1610-E1619. https://doi.org/10.1073/pnas.1401941111 ![]() |
[61] | Kourelis A, Kotzamanidis C, Litopoulou-Tzanetaki E, et al. (2010) Preliminary probiotic selection of dairy and human yeast strains. J Biol Res 13: 93-104. Available from: https://www.cabdirect.org/cabdirect/abstract/20103147311. |
[62] |
Amorim JC, Piccoli RH, Duarte WF (2018) Probiotic potential of yeasts isolated from pineapple and their use in the elaboration of potentially functional fermented beverages. Int Food Res J 107: 518-527. https://doi.org/10.1016/j.foodres.2018.02.054Get ![]() |
[63] |
Hsiung RT, Fang WT, LePage BA, et al. (2021) In vitro properties of potential probiotic indigenous yeasts originating from fermented food and beverages in Taiwan. Probiotics Antimicrob Proteins 13: 113-124. https://doi.org/10.1007/s12602-020-09661-8 ![]() |
[64] |
Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and biles. FEMS Microbiol Rev 29: 625-651. https://doi.org/10.1016/j.femsre.2004.09.003 ![]() |
[65] |
Pan WH, Li PL, Liu Z (2006) The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians' faeces. Anaerobe 12: 148-152. https://doi.org/10.1016/j.anaerobe.2006.03.001 ![]() |
[66] | Sourabh A, Kanwar SS, Sharma OP (2011) Screening of indigenous yeast isolates obtained from traditional fermented foods of Western Himalayas for probiotic attributes. J Yeast Fungal Res 2: 117-126. Available from: https://www.researchgate.net/publication/265923319_Screening_of_indigenous_yeast_isolates_obtained_from_traditional_fermented_foods_of_Western_Himalayas_for_probiotic_attributes. |
[67] |
Syal P, Vohra A (2013) Probiotic potential of yeasts isolated from traditional Indian fermented foods. Int J Microbiol Res 5: 390-398. https://doi.org/10.9735/0975-5276.5.2.390-398 ![]() |
[68] |
de Lima MDSF, de Souza KMS, Albuquerque WWC, et al. (2017) Saccharomyces cerevisiae from Brazilian kefir-fermented milk: An in vitro evaluation of probiotic properties. Microb Pathog 110: 670-677. https://doi.org/10.1016/j.micpath.2017.05.010 ![]() |
1. | Ahmed A. El-Deeb, Clemente Cesarano, On Some Generalizations of Reverse Dynamic Hardy Type Inequalities on Time Scales, 2022, 11, 2075-1680, 336, 10.3390/axioms11070336 | |
2. | Ahmed A. El-Deeb, Dumitru Baleanu, Jan Awrejcewicz, (Δ∇)∇-Pachpatte Dynamic Inequalities Associated with Leibniz Integral Rule on Time Scales with Applications, 2022, 14, 2073-8994, 1867, 10.3390/sym14091867 | |
3. | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim, On some dynamic inequalities of Hilbert's-type on time scales, 2023, 8, 2473-6988, 3378, 10.3934/math.2023174 | |
4. | Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu, Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales, 2022, 7, 2473-6988, 14099, 10.3934/math.2022777 | |
5. | Ahmed A. El-Deeb, Dumitru Baleanu, Clemente Cesarano, Ahmed Abdeldaim, On Some Important Dynamic Inequalities of Hardy–Hilbert-Type on Timescales, 2022, 14, 2073-8994, 1421, 10.3390/sym14071421 | |
6. | Hassan M. El-Owaidy, Ahmed A. El-Deeb, Samer D. Makharesh, Dumitru Baleanu, Clemente Cesarano, On Some Important Class of Dynamic Hilbert’s-Type Inequalities on Time Scales, 2022, 14, 2073-8994, 1395, 10.3390/sym14071395 | |
7. | Ahmed A. El-Deeb, Alaa A. El-Bary, Jan Awrejcewicz, On Some Dynamic (ΔΔ)∇- Gronwall–Bellman–Pachpatte-Type Inequalities on Time Scales and Its Applications, 2022, 14, 2073-8994, 1902, 10.3390/sym14091902 | |
8. | Asfand Fahad, Saad Ihsaan Butt, Josip Pečarić, Marjan Praljak, Generalized Taylor’s Formula and Steffensen’s Inequality, 2023, 11, 2227-7390, 3570, 10.3390/math11163570 |