Research article

An augmented GSNMF model for complete deconvolution of bulk RNA-seq data

  • Received: 09 November 2024 Revised: 10 January 2025 Accepted: 17 February 2025 Published: 14 March 2025
  • Performing complete deconvolution analysis for bulk RNA-seq data to obtain both cell type specific gene expression profiles (GEP) and relative cell abundances is a challenging task. One of the fundamental models used, the nonnegative matrix factorization (NMF), is mathematically ill-posed. Although several complete deconvolution methods have been developed, and their estimates compared to ground truth for some datasets appear promising, a comprehensive understanding of how to circumvent the ill-posedness and improve solution accuracy is lacking. In this paper, we first investigated the necessary requirements for a given dataset to satisfy the solvability conditions in NMF theory. Even with solvability conditions, the "unique" solutions of NMF are subject to a rescaling matrix. Therefore, we provide estimates of the converged local minima and the possible rescaling matrix, based on informative initial conditions. Using these strategies, we developed a new pipeline of pseudo-bulk tissue data augmented, geometric structure guided NMF model (GSNMF$ + $). In our approach, pseudo-bulk tissue data was generated, by statistical distribution simulated pseudo cellular compositions and single-cell RNA-seq (scRNA-seq) data, and then mixed with the original dataset. The constituent matrices of the hybrid dataset then satisfy the weak solvability conditions of NMF. Furthermore, an estimated rescaling matrix was used to adjust the minimizer of the NMF, which was expected to reduce mean square root errors of solutions. Our algorithms are tested on several realistic bulk-tissue datasets and showed significant improvements in scenarios with singular cellular compositions.

    Citation: Shaoyu Li, Su Xu, Xue Wang, Nilüfer Ertekin-Taner, Duan Chen. An augmented GSNMF model for complete deconvolution of bulk RNA-seq data[J]. Mathematical Biosciences and Engineering, 2025, 22(4): 988-1018. doi: 10.3934/mbe.2025036

    Related Papers:

  • Performing complete deconvolution analysis for bulk RNA-seq data to obtain both cell type specific gene expression profiles (GEP) and relative cell abundances is a challenging task. One of the fundamental models used, the nonnegative matrix factorization (NMF), is mathematically ill-posed. Although several complete deconvolution methods have been developed, and their estimates compared to ground truth for some datasets appear promising, a comprehensive understanding of how to circumvent the ill-posedness and improve solution accuracy is lacking. In this paper, we first investigated the necessary requirements for a given dataset to satisfy the solvability conditions in NMF theory. Even with solvability conditions, the "unique" solutions of NMF are subject to a rescaling matrix. Therefore, we provide estimates of the converged local minima and the possible rescaling matrix, based on informative initial conditions. Using these strategies, we developed a new pipeline of pseudo-bulk tissue data augmented, geometric structure guided NMF model (GSNMF$ + $). In our approach, pseudo-bulk tissue data was generated, by statistical distribution simulated pseudo cellular compositions and single-cell RNA-seq (scRNA-seq) data, and then mixed with the original dataset. The constituent matrices of the hybrid dataset then satisfy the weak solvability conditions of NMF. Furthermore, an estimated rescaling matrix was used to adjust the minimizer of the NMF, which was expected to reduce mean square root errors of solutions. Our algorithms are tested on several realistic bulk-tissue datasets and showed significant improvements in scenarios with singular cellular compositions.



    加载中


    [1] Z. Cang, Q. Nie, Inferring spatial and signaling relationships between cells from single cell transcriptomic data, Nat. Commun., 11 (2020), 1–13. https://doi.org/10.1016/S1350-4789(20)30374-3 doi: 10.1016/S1350-4789(20)30374-3
    [2] S. Jin, L. Zhang, Q. Nie, scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles, Genome Biol., 21 (2020), 1–19. https://doi.org/10.1186/s13059-020-1932-8 doi: 10.1186/s13059-020-1932-8
    [3] J. Zhang, Q. Nie, T. Zhou, Revealing dynamic mechanisms of cell fate decisions from single-cell transcriptomic data, Front. Genet., 10 (2019), 1280. https://doi.org/10.1039/C9PY90042J doi: 10.1039/C9PY90042J
    [4] H. Harrington, E. Drellich, A. Gainer-Dewar, Q. He, C. Heitsch, S. Poznanovic, Geometric Combinatorics and Computational Molecular Biology: Branching Polytopes for RNA Sequences, 2017.
    [5] Ö. İş, X. Wang, J. S. Reddy, Y. Min, E. Yilmaz, P. Bhattarai, et al., Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction, Nat. Commun., 15 (2024), 4758. https://doi.org/10.1038/s41467-024-48926-6 doi: 10.1038/s41467-024-48926-6
    [6] X. Wang, M. Allen, S. Li, Z. S. Quicksall, T. A. Patel, T. P. Carnwath, et al., Deciphering cellular transcriptional alterations in Alzheimer's disease brains, Mol. Neurodegener., 15 (2020), 38. https://doi.org/10.1186/s13024-020-00392-6 doi: 10.1186/s13024-020-00392-6
    [7] Y. Min, X. Wang, Ö. İş, T. A. Patel, J. Gao, J. S. Reddy, et al., Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy, Nat. Commun., 14 (2023), 6801. https://doi.org/10.1038/s41467-023-42626-3 doi: 10.1038/s41467-023-42626-3
    [8] X. Wang, M. Allen, Ö. İş, J. S. Reddy, F. Q. Tutor-New, M. C. Casey, et al., Alzheimer's disease and progressive supranuclear palsy share similar transcriptomic changes in distinct brain regions, J. Clin. Invest., 132 (2022). https://doi.org/10.1172/JCI149904 doi: 10.1172/JCI149904
    [9] J. S. Reddy, M. Allen, C. C. Ho, S. R. Oatman, Ö. İş, Z. S. Quicksall, et al., Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid pathology in Alzheimer's disease, Acta Neuropathol. Commun., 9 (2021). https://doi.org/10.1186/s40478-021-01199-2 doi: 10.1186/s40478-021-01199-2
    [10] M. Allen, X. Wang, J. D. Burgess, J. Watzlawik, D. J. Serie, C. S. Younkin, et al., Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases, Alzheimer's Dementia, 14 (2018), 352–366. https://doi.org/10.1016/j.jalz.2017.09.012 doi: 10.1016/j.jalz.2017.09.012
    [11] Y. Zhang, S. A. Sloan, L. E. Clarke, C. Caneda, C. A. Plaza, P. D. Blumenthal, et al., Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse, Neuron, 89 (2016), 37–53. https://doi.org/10.1016/j.neuron.2015.11.013 doi: 10.1016/j.neuron.2015.11.013
    [12] S. Darmanis, S. A. Sloan, Y. Zhang, M. Enge, C. Caneda, L. M. Shuer, et al., A survey of human brain transcriptome diversity at the single cell level, PNAS, 112 (2015), 7285–7290. https://doi.org/10.1073/pnas.150712511 doi: 10.1073/pnas.150712511
    [13] B. B. Lake, S. Chen, B. C. Sos, J. Fan, G. E. Kaeser, Y. C. Yung, et al., Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain, Nat. Biotechnol., 36 (2018), 70–80. https://doi.org/10.1038/nbt.4038 doi: 10.1038/nbt.4038
    [14] H. M. Davey, D. B. Kell, Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses, Microbiol. Rev., 60 (1996), 641–696. https://doi.org/10.1128/mr.60.4.641-696.1996 doi: 10.1128/mr.60.4.641-696.1996
    [15] A. R. Whitney, M. Diehn, S. J. Popper, A. A. Alizadeh, J. C. Boldrick, D. A. Relman, et al., Individuality and variation in gene expression patterns in human blood, PNAS, 100 (2003), 1896–1901. https://doi.org/10.1073/pnas.252784499 doi: 10.1073/pnas.252784499
    [16] D. de Ridder, C. Van Der Linden, T. Schonewille, W. Dik, M. Reinders, J. Van Dongen, et al., Purity for clarity: the need for purification of tumor cells in DNA microarray studies, Leukemia, 19 (2005), 618–627. https://doi.org/10.1038/sj.leu.2403685 doi: 10.1038/sj.leu.2403685
    [17] A. T. McKenzie, S. Moyon, M. Wang, I. Katsyv, W. M. Song, X. Zhou, et al., Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease, Mol. Neurodegener., 12 (2017), 82. https://doi.org/10.1186/s13024-017-0219-3 doi: 10.1186/s13024-017-0219-3
    [18] S. Mostafavi, C. Gaiteri, S. E. Sullivan, C. C. White, S. Tasaki, J. Xu, et al., A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease, Nat. Neurosci., 21 (2018), 811–819. https://doi.org/10.1038/s41593-018-0154-9 doi: 10.1038/s41593-018-0154-9
    [19] P. L. De Jager, Y. Ma, C. McCabe, J. Xu, B. N. Vardarajan, D. Felsky, et al., A multi-omic atlas of the human frontal cortex for aging and Alzheimer's disease research, Sci. Data, 5 (2018), 180142. https://doi.org/10.1038/sdata.2018.142 doi: 10.1038/sdata.2018.142
    [20] M. Allen, M. M. Carrasquillo, C. Funk, B. D. Heavner, F. Zou, C. S. Younkin, et al., Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases, Sci. Data, 3 (2016), 160089. https://doi.org/10.1038/sdata.2016.89 doi: 10.1038/sdata.2016.89
    [21] A. Kuhn, D. Thu, H. J. Waldvogel, R. L. Faull, R. Luthi-Carter, Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain, Nat. Methods, 8 (2011), 945–947. https://doi.org/10.1038/nmeth.1710 doi: 10.1038/nmeth.1710
    [22] M. Chikina, E. Zaslavsky, S. C. Sealfon, CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations, Bioinformatics, 31 (2015), 1584–1591. https://doi.org/10.1093/bioinformatics/btv015 doi: 10.1093/bioinformatics/btv015
    [23] X. Wang, J. Park, K. Susztak, N. R. Zhang, M. Li, Bulk tissue cell type deconvolution with multi-subject single-cell expression reference, Nat. Commun., 10 (2019), 1–9. https://doi.org/10.1038/s41467-018-08023-x doi: 10.1038/s41467-018-08023-x
    [24] A. M. Newman, C. B. Steen, C. L. Liu, A. J. Gentles, A. A. Chaudhuri, F. Scherer, et al., Determining cell type abundance and expression from bulk tissues with digital cytometry, Nat. Biotechnol., 37 (2019), 773–782. https://doi.org/10.1038/s41587-019-0114-2 doi: 10.1038/s41587-019-0114-2
    [25] K. Zaitsev, M. Bambouskova, A. Swain, M. N. Artyomov, Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures, Nat. Commun., 10 (2019), 1–16. https://doi.org/10.1038/s41467-019-09990-5 doi: 10.1038/s41467-019-09990-5
    [26] T. Chu, Z. Wang, D. Pe'er, C. G. Danko, Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology, Nat. Cancer, 3 (2022), 505–517. https://doi.org/10.1038/s43018-022-00356-3 doi: 10.1038/s43018-022-00356-3
    [27] E. Becht, N. A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, et al., Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression, Genome Biol., 17 (2016), 1–20. https://doi.org/10.1186/s13059-016-1070-5 doi: 10.1186/s13059-016-1070-5
    [28] D. Aran, Z. Hu, A. J. Butte, xcell: digitally portraying the tissue cellular heterogeneity landscape, Genome Biol., 18 (2017), 1–14. https://doi.org/10.1186/s13059-017-1349-1 doi: 10.1186/s13059-017-1349-1
    [29] J. Ahn, Y. Yuan, G. Parmigiani, M. B. Suraokar, L. Diao, I. I. Wistuba, et al., Demix: deconvolution for mixed cancer transcriptomes using raw measured data, Bioinformatics, 29 (2013), 1865–1871. https://doi.org/10.1093/bioinformatics/btt301 doi: 10.1093/bioinformatics/btt301
    [30] X. L. Peng, R. A. Moffitt, R. J. Torphy, K. E. Volmar, J. J. Yeh, De novo compartment deconvolution and weight estimation of tumor samples using decoder, Nat. Commun., 10 (2019), 4729. https://doi.org/10.1038/s41467-019-12517-7 doi: 10.1038/s41467-019-12517-7
    [31] K. Kang, Q. Meng, I. Shats, D. M. Umbach, M. Li, Y. Li, et al., CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data, PLoS Comput. Biol., 15 (2019), e1007510. https://doi.org/10.1371/journal.pcbi.1007510 doi: 10.1371/journal.pcbi.1007510
    [32] G. Monaco, B. Lee, W. Xu, S. Mustafah, Y. Y. Hwang, C. Carré, et al., RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types, Cell Rep., 26 (2019), 1627–1640.
    [33] Y. Im, Y. Kim, A comprehensive overview of rna deconvolution methods and their application, Mol. Cells, 46 (2023), 99–105. https://doi.org/10.14348/molcells.2023.2178 doi: 10.14348/molcells.2023.2178
    [34] H. Nguyen, H. Nguyen, D. Tran, S. Draghici, T. Nguyen, Fourteen years of cellular deconvolution: methodology, applications, technical evaluation and outstanding challenges, Nucleic Acids Res., 52 (2024), 4761–4783. https://doi.org/10.1093/nar/gkae267 doi: 10.1093/nar/gkae267
    [35] P. Paatero, U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), 111–126. https://doi.org/10.1002/env.3170050203 doi: 10.1002/env.3170050203
    [36] W. K. Ma, J. M. Bioucas-Dias, T. H. Chan, N. Gillis, P. Gader, A. J. Plaza, et al., A signal processing perspective on hyperspectral unmixing: Insights from remote sensing, IEEE Signal Process Mag., 31 (2013), 67–81. https://doi.org/10.1109/MSP.2013.2279731 doi: 10.1109/MSP.2013.2279731
    [37] X. Fu, W. K. Ma, T. H. Chan, J. M. Bioucas-Dias, Self-dictionary sparse regression for hyperspectral unmixing: Greedy pursuit and pure pixel search are related, IEEE J. Sel. Top. Signal Process., 9 (2015), 1128–1141. https://doi.org/10.1109/JSTSP.2015.2410763 doi: 10.1109/JSTSP.2015.2410763
    [38] S. Zhang, W. Wang, J. Ford, F. Makedon, Learning from incomplete ratings using non-negative matrix factorization, in Proceedings of the 2006 SIAM International Conference on Data Mining, SIAM, (2006), 549–553. https://doi.org/10.1137/1.9781611972764.58
    [39] M. D. Craig, Minimum-volume transforms for remotely sensed data, IEEE Trans. Geosci. Remote Sens., 32 (1994), 542–552. https://doi.org/10.1109/36.297973 doi: 10.1109/36.297973
    [40] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), 788–791. https://doi.org/10.1038/44565 doi: 10.1038/44565
    [41] D. Tsoucas, R. Dong, H. Chen, Q. Zhu, G. Guo, G. C. Yuan, Accurate estimation of cell-type composition from gene expression data, Nat. Commun., 10 (2019), 1–9. https://doi.org/10.1038/s41467-019-10802-z doi: 10.1038/s41467-019-10802-z
    [42] F. Avila Cobos, J. Vandesompele, P. Mestdagh, K. De Preter, Computational deconvolution of transcriptomics data from mixed cell populations, Bioinformatics, 34 (2018), 1969–1979. https://doi.org/10.1093/bioinformatics/bty019 doi: 10.1093/bioinformatics/bty019
    [43] S. Mohammadi, N. Zuckerman, A. Goldsmith, A. Grama, A critical survey of deconvolution methods for separating cell types in complex tissues, Proc. IEEE, 105 (2016), 340–366. https://doi.org/10.1109/JPROC.2016.2607121 doi: 10.1109/JPROC.2016.2607121
    [44] A. M. Newman, C. L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, et al., Robust enumeration of cell subsets from tissue expression profiles, Nat. Methods, 12 (2015), 453–457. https://doi.org/10.1038/nmeth.3337 doi: 10.1038/nmeth.3337
    [45] W. Qiao, G. Quon, E. Csaszar, M. Yu, Q. Morris, P. W. Zandstra, PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions, PLoS Comput. Biol., 8 (2012), e1002838. https://doi.org/10.1371/journal.pcbi.1002838 doi: 10.1371/journal.pcbi.1002838
    [46] Y. Zhong, Y. W. Wan, K. Pang, L. M. Chow, Z. Liu, Digital sorting of complex tissues for cell type-specific gene expression profiles, BMC Bioinf., 14 (2013), 89. https://doi.org/10.1186/1471-2105-14-89 doi: 10.1186/1471-2105-14-89
    [47] T. Gong, J. D. Szustakowski, DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data, Bioinformatics, 29 (2013), 1083–1085. https://doi.org/10.1093/bioinformatics/btt090 doi: 10.1093/bioinformatics/btt090
    [48] A. Cui, G. Quon, A. M. Rosenberg, R. S. Yeung, Q. Morris, B. S. Consortium, Gene expression deconvolution for uncovering molecular signatures in response to therapy in juvenile idiopathic arthritis, PloS One, 11 (2016), e0156055. https://doi.org/10.1371/journal.pone.0156055 doi: 10.1371/journal.pone.0156055
    [49] A. R. Abbas, K. Wolslegel, D. Seshasayee, Z. Modrusan, H. F. Clark, Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus, PloS One, 4 (2009), e6098. https://doi.org/10.1371/journal.pone.0006098 doi: 10.1371/journal.pone.0006098
    [50] R. Gaujoux, C. Seoighe, Semi-supervised nonnegative matrix factorization for gene expression deconvolution: a case study, Infect. Genet. Evol., 12 (2012), 913–921. https://doi.org/10.1016/j.meegid.2011.08.014 doi: 10.1016/j.meegid.2011.08.014
    [51] S. S. Shen-Orr, R. Gaujoux, Computational deconvolution: extracting cell type-specific information from heterogeneous samples, Curr. Opin. Immunol., 25 (2013), 571–578. https://doi.org/10.1016/j.coi.2013.09.015 doi: 10.1016/j.coi.2013.09.015
    [52] N. Gillis, Nonnegative Matrix Factorization: Complexity, Algorithms and Applications, Ph.D theis, Université catholique de Louvain. Louvain-La-Neuve: CORE, 2011.
    [53] A. Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation, John Wiley & Sons, 2009.
    [54] D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems, 13 (2000).
    [55] Y. X. Wang, Y. J. Zhang, Nonnegative matrix factorization: A comprehensive review, IEEE Trans. Knowl. Data Eng., 25 (2012), 1336–1353. https://doi.org/10.1109/TKDE.2012.51 doi: 10.1109/TKDE.2012.51
    [56] X. Fu, K. Huang, N. D. Sidiropoulos, W. K. Ma, Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications, IEEE Signal Process. Mag., 36 (2019), 59–80. https://doi.org/10.1109/MSP.2018.2877582 doi: 10.1109/MSP.2018.2877582
    [57] K. Huang, N. D. Sidiropoulos, A. Swami, Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition, IEEE Trans. Signal Process., 62 (2013), 211–224. https://doi.org/10.1109/TSP.2013.2285514 doi: 10.1109/TSP.2013.2285514
    [58] D. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, in Advances in Neural Information Processing Systems 16 (NIPS 2003), (2004), 1141–1148.
    [59] H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, S. H. Jensen, Theorems on positive data: On the uniqueness of NMF, Comput. Intell. Neurosci., 2008 (2008). https://doi.org/10.1155/2008/764206 doi: 10.1155/2008/764206
    [60] D. Chen, S. Li, X. Wang, Geometric structure guided model and algorithms for complete deconvolution of gene expression data, Found. Data Sci., 4 (2022), 441. https://doi.org/10.3934/fods.2022013 doi: 10.3934/fods.2022013
    [61] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in Advances in Neural Information Processing Systems 14 (NIPS 2001), (2002), 585–591.
    [62] D. Cai, X. Wang, X. He, Probabilistic dyadic data analysis with local and global consistency, in Proceedings of the 26th Annual International Conference on Machine Learning, (2009), 105–112. https://doi.org/10.1145/1553374.1553388
    [63] X. He, P. Niyogi, Locality preserving projections, in Advances in Neural Information Processing Systems 16 (NIPS 2003), (2004), 153–160.
    [64] U. Von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), 395–416. https://doi.org/10.1007/s11222-007-9033-z doi: 10.1007/s11222-007-9033-z
    [65] J. Qin, H. Lee, J. T. Chi, Y. Lou, J. Chanussot, A. L. Bertozzi, Fast blind hyperspectral unmixing based on graph laplacian, in 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE, (2019), 1–5. https://doi.org/10.1109/WHISPERS.2019.8921375
    [66] J. Eckstein, W. Yao, Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results, RUTCOR Res. Rep., 32 (2012), 44.
    [67] S. S. Shen-Orr, R. Tibshirani, P. Khatri, D. L. Bodian, F. Staedtler, N. M. Perry, et al., Cell type–specific gene expression differences in complex tissues, Nat. Methods, 7 (2010), 287–289. https://doi.org/10.1038/nmeth.1439 doi: 10.1038/nmeth.1439
    [68] H. Mathys, J. Davila-Velderrain, Z. Peng, F. Gao, S. Mohammadi, J. Z. Young, et al., Single-cell transcriptomic analysis of Alzheimer's disease, Nature, 570 (2019), 332–337. https://doi.org/10.1038/s41586-019-1195-2 doi: 10.1038/s41586-019-1195-2
    [69] W. V. Li, J. J. Li, A statistical simulator scdesign for rational scrna-seq experimental design, Bioinformatics, 35 (2019), i41–i50. https://doi.org/10.1093/bioinformatics/btz321 doi: 10.1093/bioinformatics/btz321
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1304) PDF downloads(48) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog