
Performing complete deconvolution analysis for bulk RNA-seq data to obtain both cell type specific gene expression profiles (GEP) and relative cell abundances is a challenging task. One of the fundamental models used, the nonnegative matrix factorization (NMF), is mathematically ill-posed. Although several complete deconvolution methods have been developed, and their estimates compared to ground truth for some datasets appear promising, a comprehensive understanding of how to circumvent the ill-posedness and improve solution accuracy is lacking. In this paper, we first investigated the necessary requirements for a given dataset to satisfy the solvability conditions in NMF theory. Even with solvability conditions, the "unique" solutions of NMF are subject to a rescaling matrix. Therefore, we provide estimates of the converged local minima and the possible rescaling matrix, based on informative initial conditions. Using these strategies, we developed a new pipeline of pseudo-bulk tissue data augmented, geometric structure guided NMF model (GSNMF+). In our approach, pseudo-bulk tissue data was generated, by statistical distribution simulated pseudo cellular compositions and single-cell RNA-seq (scRNA-seq) data, and then mixed with the original dataset. The constituent matrices of the hybrid dataset then satisfy the weak solvability conditions of NMF. Furthermore, an estimated rescaling matrix was used to adjust the minimizer of the NMF, which was expected to reduce mean square root errors of solutions. Our algorithms are tested on several realistic bulk-tissue datasets and showed significant improvements in scenarios with singular cellular compositions.
Citation: Shaoyu Li, Su Xu, Xue Wang, Nilüfer Ertekin-Taner, Duan Chen. An augmented GSNMF model for complete deconvolution of bulk RNA-seq data[J]. Mathematical Biosciences and Engineering, 2025, 22(4): 988-1018. doi: 10.3934/mbe.2025036
[1] | Mustafa M. Hasaballah, Oluwafemi Samson Balogun, M. E. Bakr . Frequentist and Bayesian approach for the generalized logistic lifetime model with applications to air-conditioning system failure times under joint progressive censoring data. AIMS Mathematics, 2024, 9(10): 29346-29369. doi: 10.3934/math.20241422 |
[2] | Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002 |
[3] | A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model. AIMS Mathematics, 2023, 8(3): 6136-6166. doi: 10.3934/math.2023310 |
[4] | Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Ahmed Elshahhat . Statistical analysis of stress–strength in a newly inverted Chen model from adaptive progressive type-Ⅱ censoring and modelling on light-emitting diodes and pump motors. AIMS Mathematics, 2024, 9(12): 34311-34355. doi: 10.3934/math.20241635 |
[5] | Yahia Abdel-Aty, Mohamed Kayid, Ghadah Alomani . Generalized Bayesian inference study based on type-Ⅱ censored data from the class of exponential models. AIMS Mathematics, 2024, 9(11): 31868-31881. doi: 10.3934/math.20241531 |
[6] | Ahmed M. Elaiw, Amani S. Alsulami, Aatef D. Hobiny . Global properties of delayed models for SARS-CoV-2 infection mediated by ACE2 receptor with humoral immunity. AIMS Mathematics, 2024, 9(1): 1046-1087. doi: 10.3934/math.2024052 |
[7] | Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784 |
[8] | Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Maryam Mohiuddin, Omar Meqdadi . Statistical inference for the Power Rayleigh distribution based on adaptive progressive Type-II censored data. AIMS Mathematics, 2023, 8(10): 22553-22576. doi: 10.3934/math.20231149 |
[9] | S. M. E. K. Chowdhury, J. T. Chowdhury, Shams Forruque Ahmed, Praveen Agarwal, Irfan Anjum Badruddin, Sarfaraz Kamangar . Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host. AIMS Mathematics, 2022, 7(2): 2618-2633. doi: 10.3934/math.2022147 |
[10] | Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat . Reliability analysis at usual operating settings for Weibull Constant-stress model with improved adaptive Type-Ⅱ progressively censored samples. AIMS Mathematics, 2024, 9(7): 16931-16965. doi: 10.3934/math.2024823 |
Performing complete deconvolution analysis for bulk RNA-seq data to obtain both cell type specific gene expression profiles (GEP) and relative cell abundances is a challenging task. One of the fundamental models used, the nonnegative matrix factorization (NMF), is mathematically ill-posed. Although several complete deconvolution methods have been developed, and their estimates compared to ground truth for some datasets appear promising, a comprehensive understanding of how to circumvent the ill-posedness and improve solution accuracy is lacking. In this paper, we first investigated the necessary requirements for a given dataset to satisfy the solvability conditions in NMF theory. Even with solvability conditions, the "unique" solutions of NMF are subject to a rescaling matrix. Therefore, we provide estimates of the converged local minima and the possible rescaling matrix, based on informative initial conditions. Using these strategies, we developed a new pipeline of pseudo-bulk tissue data augmented, geometric structure guided NMF model (GSNMF+). In our approach, pseudo-bulk tissue data was generated, by statistical distribution simulated pseudo cellular compositions and single-cell RNA-seq (scRNA-seq) data, and then mixed with the original dataset. The constituent matrices of the hybrid dataset then satisfy the weak solvability conditions of NMF. Furthermore, an estimated rescaling matrix was used to adjust the minimizer of the NMF, which was expected to reduce mean square root errors of solutions. Our algorithms are tested on several realistic bulk-tissue datasets and showed significant improvements in scenarios with singular cellular compositions.
The COVID-19 pandemic has exerted huge and unprecedented pressure on public health resources globally. Cross-sectional surveys to establish disease prevalence are likely to be financially unsustainable in the long term and rely heavily on continued cooperation from the public [1]. Wastewater monitoring to detect and quantify SARS-CoV-2 viral RNA shed by infected individuals in the population, and to indicate infection prevalence, was adopted relatively early in the course of the pandemic across a number of countries [2,3], expanding to 67 countries by mid-2022 [4]. Although the demographic coverage and utility of wastewater monitoring varies across adopters of this approach, the method is generally less intrusive, relatively unbiased in terms of its demographic and epidemiological coverage, and costs significantly less per capita than clinical testing programmes (e.g. fanxiexian_myfh148 per individual PCR test cf. fanxiexian_myfh300 per wastewater sample representing larger populations [5]). Wastewater surveillance is thus, arguably, an alternative, or at least complementary, approach to clinical testing programmes.
Wastewater-based epidemiology has been used in some areas of public health for decades [6], but is a relatively novel tool for emerging pathogens. Applications include tracking viral dynamics to monitoring chemical exposures and prescription drug consumption [7,8]. As wastewater sampling for the detection and monitoring of SARS-CoV-2 has been developed and applied at an unprecedented pace, uncertainty remains when interpreting the measured viral RNA signals and their spatiotemporal variation. Variation in the underlying sample, sampling method, and testing, due in part to lack of standardisation, as well as systematic variability in space and time in the measurement environment (e.g. sewersheds), can result in a large degree of noise in the observed signal [9]. Sampling frequency is typically dependent on cost constraints, resulting in sparse and irregularly sampled data. Furthermore, wastewater measurements are typically left-censored if they fall below certain analytical thresholds, such as the limit of detection (LOD), the lowest concentration at which viral RNA is detectable with a given probability (typically 95%); and the limit of quantification (LOQ), the lowest concentration at which viral RNA can be reliably measured with a predefined accuracy. Methods to handle measurements that fall below these limits (e.g. statistical methods, imputation, and scalar or zero replacement) are not standardised and depend on the interpretation of the data (for example, if low values do not impact interpretation they may be omitted from downstream analysis), and information available to the analysts [10,11].
There are several approaches to infer wastewater concentration from noisy, censored, incomplete time series measurements. One common and straightforward approach for denoising time series is to calculate a moving average (MA). However, MA are sensitive to outliers and missing values. There is ambiguity about the most appropriate window-size, and whether to calculate a weighted or ordinary average. Uncentred MAs also operate with a lag, where larger windows create larger lags, delaying reactivity of surveillance in time-dependent operations. Lastly, an MA estimate can never be smaller than the censoring threshold, which leads to biased estimates.
State-space methods model observed data as functions of latent, unobserved stochastic processes and can better account for missing data, observational noise, and censoring. Recently, others have proposed state-space methods to infer viral concentrations from wastewater time series. The underlying "true" viral concentration at time Xt is modelled as a first-order auto-regressive (AR1) process [12,13]. To account for measurement noise and outliers in the observations, measurements Yt are assumed to be equal to Xt plus an independent mean-zero Gaussian observation error. To account for outliers, from time to time Yt is assumed to be replaced by an independent Uniformly distributed random variable that is unrelated to Xt. Left-censoring is accounted for by capping Yt at the (known) limit of quantification. Using a Kalman Filter and numerical approximations, the state variable Xt is inferred from observation data Yt to produce a smoothed estimate of viral concentration, with outliers removed, that can extend below the known limit of quantification [12].
In this paper, we propose and test a simpler, more realistic, and more flexible state-space model. Our latent variable is modelled by a first order random walk (RW1) instead of an AR1 process, which reduces the number of model parameters. Instead of randomly replacing observations by a random number, our model generates outliers by assuming observation errors from a heavy-tailed t-distribution. This has the benefit that observations classified as "outliers" can still be informative about viral concentrations.
Our model is implemented in the Stan modelling language [14], which allows for fast Bayesian inference and straightforward extensions of the model.
Untreated influent samples were collected from sewage treatment plant sites across England at a frequency of four days a week by the Environmental Monitoring for Health Protection (EMHP) programme, led by the UKHSA. The sampling strategy provides coverage of approximately 40 million people across England. Samples were analysed for SARS-CoV-2 RNA by quantifying the number of copies of the nucleocapsid gene (N1) using RT-qPCR. Concentrations under the limit of detection were assigned a value of -4, to be handled during the data processing pipeline depending on the use case. Only sites sampled 30 times or more (around seven weeks' worth of data) were included; median sample count across sites was 145, ranging from 31 to 323.
Extraneous sources of flow, such as heavy rainfall, snow melt, or groundwater ingress into sewers, may dilute wastewater and impact estimates of SARS-CoV-2 RNA concentration. Studies have indicated that the effect of dilution in most cases are minor, but in periods of high dilution events, normalisation is critical [15]. The normalisation approach applied by the English wastewater surveillance programme mitigates this by adjusting measured SARS-CoV-2 concentrations to consider flow. The model is based on the assumption that flow Ft at time t is not directly observable. Instead, information about flow is obtained by observing the correlation of concentrations ρti of different markers i (orthophosphate and ammonia nitrogen). The model assumes:
logFt∼Normal(0,λ2) | (2.1) |
logxti∼Normal(μi,σ2i) | (2.2) |
∴logρti=logxti−logFt | (2.3) |
where \(\lambda^2\) is the flow variance, \(x_{ti}\) is the load of marker i at time t, \(\mu_i\) and \(\sigma^2_i\) are the mean and variance of the load of marker i (all in log space). \(\langle \log F_t \rangle\) is fixed at 0 to identify the model. Using multiple markers jointly to estimate flow variability can improve the accuracy of estimates [9,16].
In our model, the (unobserved) viral concentration signal Xt is modelled as a first-order random walk (RW1) process
Xt=Xt−1+σϵt | (2.4) |
where ϵt∼N(0,1) is an independent and identically distributed normal random variable for t=2,...,n. The measured concentrations Y∗t are modelled by adding independent measurement noise to Xt:
Y∗t=Xt+τϵ′t | (2.5) |
where the independent measurement error ϵ′t∼tν has a Student t-distribution with ν degrees of freedom. The actually observed, censored data, are modelled by truncating Y∗t at the known censoring threshold ℓt:
Yt=max(Y∗t,ℓt) | (2.6) |
As samples are taken only four times a week, the vector of measurements Y contains data observed at a subset T of all n available time points. We infer the viral concentration Xt from Y by Bayesian inference [17], i.e. by calculating the posterior distributions of the latent state X1,…,Xn and hyperparameters σ, τ and ν, conditional on Y. The posterior distribution is given by:
p(X1,…,Xn,σ,τ,ν|Y)∝[∏t∈Tp(Yt|Xt,τ,ν)]×p(X1,…,Xn|σ)×p(τ)p(σ)p(ν) | (2.7) |
The first line on the right hand side of Eq 2.7 is determined by the distribution of independent measurement errors, and left-censoring, of the Yt. The second term is determined by the RW1 time series model for the Xt. The distributions p(τ), p(σ), and p(ν) in the last line are prior hyperparameter distributions: we specify uninformative uniform prior distributions for τ>0 and σ>0, and a left-truncated Normal prior for ν, with prior expectation 3, prior variance 1, and truncated at 2. The parameters of the truncated Normal prior for ν were selected by simulation and based on subjective judgements about the likely magnitude of measurement errors. The (multiplicative) proportionality constant in Eq 2.7 is inferred by Markov-Chain Monte-Carlo (MCMC) using the Stan software [14].
The hyperparameters τ and ν of the measurement process can be interpreted as measurement error variance (larger τ's correspond to noisier measurements), and the tendency to generate outliers (smaller ν's generate greater deviations from measured viral concentrations). Posterior estimates of these parameters are thus interesting for diagnostic purposes, e.g. to identify anomalous sites.
The DLM was implemented in the open-source programming language Stan [14], which provides efficient sampling of probabilistic models via MCMC and other inference algorithms. Code specifying the model is provided in Supplementary Information Figure S17. MCMC convergence statistics for the fit examples shown in Figure 1 can also be found in the SI (Figure S4–S8, Tables S1–S4).
10-fold cross-validation was performed on the data across the 286 sites that had at least 30 samples. For each iteration:
● Raw SARS-CoV-2 N1 gc/L (with no normalisation for flow) was used with a log10 transformation.
● Data were randomly split (90%/10%) into training and test sets
● Pre-existing missing values (days when samples were expected but were not collected) were included in the training set but not in the test set.
● The censoring threshold was set to a single value log10(133.0 gc/L) for simplicity. In reality the limit of quantification will vary across samples.
● Fit DLM, KS and MA models to training data (details below)
● generate estimates (MA) and posterior samples (DLM, KS) of Ypred, t at times t that were left out during training
Ytest, t (the left-out observation data) are then compared to Ypred, t inferred with the three methods, via mean squared error (MSE) and interval coverage.
Ypred, t for the DLM were generated by using Stan to sample from the joint posterior distribution of X1,…,Xn and hyperparameters σ, ν, τ, inferred from the training data. We then inferred posterior predictive samples Ypred, t at times t left out during training by adding t-distributed measurement errors to posterior samples of Xt, and applying censoring if the sampled observation was below the censoring threshold.
Ypred, t for KS was generated by taking the fitted parameters τ, poutlier, μX-test, σX-test. To get a posterior distribution on Xt 4000 samples were generated from a normal distribution with
Xt∼Normal(μX-test,σX-test) | (2.8) |
To get Ot 4000 samples were generated from a binomial with
Ot∼Binomial(1,poutlier) | (2.9) |
To get uncensored observations Youtliers 4000 samples were taken from a uniform distribution
a=min(Ytrain)−2SDY | (2.10) |
b=max(Ytrain)+2SDY | (2.11) |
Youtliers, t∼Unif(a,b) | (2.12) |
To get Ypred, t Xt is passed to a Normal distribution with scale τ
Ypred, t∼Normal(Xt,τ) | (2.13) |
Simulating outliers in Ypred was done by
Ypred, t={Yout, t,if Ot=1.Ypred, t,otherwise. | (2.14) |
Finally, Ypred, t is censored at some limit l
Ypred, t=max(Ypred, t,l) | (2.15) |
We then further validated model performance by testing how well it is able to predict 10 samples (2.5 weeks) ahead. We refit the model on all samples for all sites minus the final 10 samples, and then predict the left-out samples.
Analyses were performed using R statistical software (Version 4.1.3) to establish whether the DLM is more likely to observe data variability - characterised by ν and τ outputs - at sites that show greater concentrations of SARS-CoV-2 RNA in wastewater. For this purpose we regressed the median gene copies per litre (gc/L) obtained over all time (log10 transformed) against mean ν or τ, controlling for the standard deviation of ν and τ, respectively. We obtained the residuals from these linear regression models to identify sites where the ν and τ outputs from the model vary in excess of what is accountable to median gc/L and the posterior standard deviation of ν or τ. Residuals for both models were then mapped to the Lower Layer Super Output Area (LSOA) for a given site using the Simple Features (sf) package in R [18] (Figure 4).
To test the output of the DLM, we first simulated data by generating a random walk with variance parameter σ2 to model the underlying state, which was then sampled with measurement error parameters τ and ν. Exact values are provided in the code. Any values below a predefined limit l are set to the value of l. These synthetic data were then fit with the DLM. Supplementary Figure S1 shows that the underlying state X-true is tracked rather well by the X-smoothed estimate and lies within the inferred credible intervals, demonstrating that the model can reliably recover the underlying state from noisy observations in a synthetic dataset.
We fit the DLM to data from 286 sewage treatment works across England, restricted to sites with greater than 30 samples present. Each site is sampled four times a week. Figure 1 shows a range of fitted sites selected, based upon their estimated parameters τ and ν, to illustrate model behaviour at the extreme ends of the spectrum, i.e. low ν and low τ (Figures 1b and 1d) or high ν and high τ (Figures 1a and 1c). Sites with high parameter values typically show low levels of SARS-CoV-2 (N1 gene gc/L, the target used to approximate viral concentration in the sample) recovery and more frequent censoring. More censoring leads to more estimation uncertainty (wider credible intervals) as less information is available to constrain viral concentration estimates. Conversely, sites with low parameter values generally correspond to high levels of SARS-CoV-2 recovery and less censoring, therefore providing more information and tighter credible intervals. Supplementary Figure S2 shows a strong positive correlation between ν and τ, and Figures 4b and 4b show a strong negative correlation between ν and τ in relation to the site's median viral RNA concentration (log10(N1 gc/L)), respectively. We note that our model seems to produce realistic estimates of viral concentration during long periods of censoring, and on days where observations are missing entirely.
Model performance was assessed by comparing the MSE produced by the DLM, KS and a seven-day centered MA over 10 folds of cross-validation (see Methods). The MA represents a simple way to remove noise from data, and is used here as a benchmark for comparison. All three models generated comparable MSE per site (Figure 2). However, the DLM and KS can estimate viral concentrations below the censoring threshold and, therefore, provide additional information on value for applications, such as case prevalence estimation (see Applications section). In addition both the DLM and KS provide useful parameters for quantifying uncertainty and outliers within the data (DLM: σ/τ/ν, KS: σ/τ/poutlier). This is particularly useful to identify sites generating unexpected data. So, while an MA scores equally well in terms of the MSE, the smoothing methods still confer additional advantages. A boxplot of the pairwise MSE differences, shown in Supplementary Figure S6, shows that the differences are not consistently better or worse for the DLM when compared to the KS or MA models.
As MSE assesses the accuracy of a single point estimate of the predictive distribution, it cannot inform on the reliability of the whole model distribution. In Figure 2, the coverage frequency of prediction intervals was used to characterise the reliability of the predictive distribution. Coverage frequency assesses how well the fitted model represents the variability of the data by analysing to what extent the observations could pass as a random sample from the predictive distribution. If observations and samples from the predictive distribution are statistically indistinguishable, we should expect a 90 chance that the observation is included in a 90% prediction interval derived from the predictive distribution. See Methods for information on calculating coverage. Figure 2b shows mean coverage frequencies across all sites. For nominal interval widths between 0.8 and 0.95, the KS coverage frequencies lie above the dashed line indicating that the model intervals are slightly wider than the true interval and are thus slightly under-confident. For the DLM, the coverage is too wide below nominal values of 90% and appears more reliable between 0.90 and 0.95 than KS. Both models appear over-confident at nominal values above 95%. For additional information on the distributions coverage values see Figures S4 and S5.
Cross-validation was also performed for forward prediction by removing the last 10 samples and predicting them with either the DLM or KS. Figures S9 and S10 show that both the DLM and KS perform equally well at forecasting up to 10 days of samples.
The DLM performed equally as well as the KS in cross-validation, but with greater parsimony: we removed the Bernoulli outlier functionality, and autoregressive and offset parameters (η and δ), to specify a simpler model. By providing full Bayesian posterior information, the DLM offers more information on the distributions of all the parameters in the model, thereby facilitating greater quantification of model uncertainty. Furthermore, the Stan framework offers flexibility for modification of the underlying state model (e.g. AR(2) random walk) or the addition of autoregressive parameters, if desired. The MCMC inference algorithm provided in Stan also allowed the model to be estimated more than 10x faster than the Kalman Smoother: the mean runtime of the DLM for each fold in 10-fold cross-validation of 10 sites was 14 seconds compared to 155 seconds with the KS, although with known parameters the prediction speed by the KS is much improved. Results of the test are provided in Supplementary Table S5, however in both cases the run times are small enough that we believe the difference is of little practical significance. The speed difference that is of more practical relevance (although difficult to quantify) is that our model was written in a general purpose modelling framework and so is easier to maintain, modify and adapt than the handcrafted R code of the Kalman Smoother. On the other hand, only the Kalman Smoother is able to quantify the probability of a given sample being an outlier and, therefore, this model will be more desirable for specific use cases. The DLM can only inform on whether a given sample lies outside of a predefined interval of the estimated underlying state, as shown in Figure 1.
Work by multiple groups has shown that SARS-CoV-2 gc/l concentrations in wastewater measurements can track case prevalence ('positivity rate', the percentage of people who have tested positive for COVID-19 on a polymerase chain reaction (PCR) test at a point in time) [19,20,21]. In England, the latter has been measured by the Office for National Statistics' Coronavirus (COVID-19) Infection Survey (CIS), a randomised household survey that provides an estimate of disease prevalence at sub-regional, regional and national levels [22]. Therefore, smoothed estimates of log10(N1gc/L) from a DLM or KS can be compared with flow-normalised raw estimates to establish which correlates more strongly with log10(CISprevalence over time. Figure 3 compares correlations of CIS with (i) flow-normalised log10(N1 gc/L), (ii) flow-normalised log10(N1 gc/L) with a 7-day centered MA, and (iii) flow normalised log10(N1 gc/L) smoothed estimate of X for all nine English regions between 1st September 2020 and 1st March 2022. This time range includes a period in which wastewater RNA concentration rates decoupled from clinical measures of disease prevalence, of which the cause is unknown [23]. It is worth noting that this relationship is likely not deterministic, i.e. they are not equivalent and are subject to their own spatiotemporal variation and uncertainty that would manifest in significant changes in the ratio of the measures. Such observations have not been limited to England, and the cause is likely to have multiple factors, both epidemiological (i.e., changes in viral shedding distribution as circulating virus variants emerge and evolve) and metrological (e.g., degree of clinical testing coverage can be demographically biased; laboratory sensitivity can vary significantly with virus concentration method employed for wastewater analysis) [24,25,26].
Smoothed wastewater concentration rates using a DLM or KS correlate more strongly with CIS positivity rate than raw or averaged rates (Figure 3). The enhanced correlation performance of the DLM and KS is likely due to both models' ability to generate data from below the censoring limit. This assertion is supported by the comparison between the smoothed estimates improvement in correlations verses the averaged log10(N1 gc/L), which according to the MSE cross-validation should perform equally well. The key difference being that the DLM and KS infer values below the censored limit, thus we attribute at least part of the increase in correlation to this aspect of the models. Figure S9 provides a time series comparison of log10(CISprevalence, log10(N1 gc/L), and smoothed estimates. Smoothed estimates show a specific advantage over raw log10(N1 gc/L) during times of low case prevalence. Using a simple sensitivity analysis to exclude the period in which wastewater concentration rates diverged from case rates to train the models, we find the same results (Figures S10–S11). DLM-smoothed rates therefore better complement CIS data, providing additional useful information for public health decision makers.
The DLM provides two useful parameters for a given site: the extent to which outliers are observed (ν), with smaller values indicating greater frequency and size of outlier values, and the amount of measurement noise at a given site (τ), with larger values indicating noisier measurements. Figure 4a shows the geographical distribution of ν values for fitted sites mapped to each Lower Layer Super Output Area (LSOA) in England. There is some evidence of localised behaviour, with areas of large ν in the North and East, and low values found in the West and London regions. However, interpretation of this map is challenging as ν is strongly related to median(log10(N1 gc/L)) and the quality of fit, quantified here as the posterior standard deviation of ν (SDν (Figure 4b). To account for these relationships and draw more insight from the ν parameter we performed a multivariable linear regression analysis where median(log10(N1 gc/L)) was regressed onto the mean of the posterior of ν, controlling for the standard deviation of the posterior of ν (see Methods). Figure 4c plots the absolute values of the regression model residuals (see Figure S12 for distribution of residuals); sites with the highest absolute residuals (i.e., the most variance not explained by either median(log10(N1 gc/L)) or quality of fit) are clustered in the North West. We repeat this analysis for τ in Figure S3; again sites with the largest absolute residuals are concentrated in the North West, with additional large residuals seen in the South and East of England. Observed non-linearity is potentially attributable to high levels of censorship at low levels of median(log10(N1 gc/L)). Future analyses should explore this suggestion, potentially with a censored regression model.
Further examples of sites with high and low parameter values are provided in Figures S13–S16.
We show that use of a Bayesian Dynamic Linear Model is a viable method for smoothing left-censored wastewater SARS-CoV-2 measurement data. Handling outliers through a t-distribution, rather than through an independent Bernoulli distribution, as applied in a previously published Kalman Smoother [12], is likely to more directly relate to the underlying state to be recovered. While the DLM and KS perform equivalently with mean squared error under cross-validation, the proposed DLM is more parsimonious (fewer model parameters), has a faster computational time, and is implemented in a more flexible modelling framework, allowing for easier modifications. Additionally, the DLM produces two site-specific parameters, ν and τ, which are able to highlight sites with variable performance. This can be useful when assessing sampling strategies applied at scale (e.g. national or regional surveillance). Sites identified as providing inconsistent, noisy, or low information data may be removed from multi-site monitoring campaigns, for example.
The smoothed data, using our method, more closely correlate with regional infection survey data (CIS) than untransformed raw measurements. Wastewater data, smoothed in this fashion, are therefore more robust, capable of better complementing traditional surveillance, and providing additional confidence and utility for public health decision making.
Nevertheless, our approach has some limitations. The limit of censorship was set to a single value during cross-validation log10(133.0 gc/L), for simplicity. In reality this limit can vary across samples. From September 2021 SARS-CoV-2 RNA measurements from English wastewater diverged from reported clinical data where it had been previously tracking it. The reason why has still not been established but is potentially attributable to differential shedding rates between variants. Our sensitivity analyses reported in the Supplementary material found this does not impact the performance of our model.
The United Kingdom Government (Department of Health and Social Care) funded the sampling, testing, and data analysis of wastewater in England. Obépine funded the work of Marie Courbariaux and provided the R code of the modified Kalman Smoother and support to use it.
The authors declare no conflicting interests in this paper.
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ˆr | |
σ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
τ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
ν | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |
[1] |
Z. Cang, Q. Nie, Inferring spatial and signaling relationships between cells from single cell transcriptomic data, Nat. Commun., 11 (2020), 1–13. https://doi.org/10.1016/S1350-4789(20)30374-3 doi: 10.1016/S1350-4789(20)30374-3
![]() |
[2] |
S. Jin, L. Zhang, Q. Nie, scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles, Genome Biol., 21 (2020), 1–19. https://doi.org/10.1186/s13059-020-1932-8 doi: 10.1186/s13059-020-1932-8
![]() |
[3] |
J. Zhang, Q. Nie, T. Zhou, Revealing dynamic mechanisms of cell fate decisions from single-cell transcriptomic data, Front. Genet., 10 (2019), 1280. https://doi.org/10.1039/C9PY90042J doi: 10.1039/C9PY90042J
![]() |
[4] | H. Harrington, E. Drellich, A. Gainer-Dewar, Q. He, C. Heitsch, S. Poznanovic, Geometric Combinatorics and Computational Molecular Biology: Branching Polytopes for RNA Sequences, 2017. |
[5] |
Ö. İş, X. Wang, J. S. Reddy, Y. Min, E. Yilmaz, P. Bhattarai, et al., Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction, Nat. Commun., 15 (2024), 4758. https://doi.org/10.1038/s41467-024-48926-6 doi: 10.1038/s41467-024-48926-6
![]() |
[6] |
X. Wang, M. Allen, S. Li, Z. S. Quicksall, T. A. Patel, T. P. Carnwath, et al., Deciphering cellular transcriptional alterations in Alzheimer's disease brains, Mol. Neurodegener., 15 (2020), 38. https://doi.org/10.1186/s13024-020-00392-6 doi: 10.1186/s13024-020-00392-6
![]() |
[7] |
Y. Min, X. Wang, Ö. İş, T. A. Patel, J. Gao, J. S. Reddy, et al., Cross species systems biology discovers glial DDR2, STOM, and KANK2 as therapeutic targets in progressive supranuclear palsy, Nat. Commun., 14 (2023), 6801. https://doi.org/10.1038/s41467-023-42626-3 doi: 10.1038/s41467-023-42626-3
![]() |
[8] |
X. Wang, M. Allen, Ö. İş, J. S. Reddy, F. Q. Tutor-New, M. C. Casey, et al., Alzheimer's disease and progressive supranuclear palsy share similar transcriptomic changes in distinct brain regions, J. Clin. Invest., 132 (2022). https://doi.org/10.1172/JCI149904 doi: 10.1172/JCI149904
![]() |
[9] |
J. S. Reddy, M. Allen, C. C. Ho, S. R. Oatman, Ö. İş, Z. S. Quicksall, et al., Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid pathology in Alzheimer's disease, Acta Neuropathol. Commun., 9 (2021). https://doi.org/10.1186/s40478-021-01199-2 doi: 10.1186/s40478-021-01199-2
![]() |
[10] |
M. Allen, X. Wang, J. D. Burgess, J. Watzlawik, D. J. Serie, C. S. Younkin, et al., Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases, Alzheimer's Dementia, 14 (2018), 352–366. https://doi.org/10.1016/j.jalz.2017.09.012 doi: 10.1016/j.jalz.2017.09.012
![]() |
[11] |
Y. Zhang, S. A. Sloan, L. E. Clarke, C. Caneda, C. A. Plaza, P. D. Blumenthal, et al., Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse, Neuron, 89 (2016), 37–53. https://doi.org/10.1016/j.neuron.2015.11.013 doi: 10.1016/j.neuron.2015.11.013
![]() |
[12] |
S. Darmanis, S. A. Sloan, Y. Zhang, M. Enge, C. Caneda, L. M. Shuer, et al., A survey of human brain transcriptome diversity at the single cell level, PNAS, 112 (2015), 7285–7290. https://doi.org/10.1073/pnas.150712511 doi: 10.1073/pnas.150712511
![]() |
[13] |
B. B. Lake, S. Chen, B. C. Sos, J. Fan, G. E. Kaeser, Y. C. Yung, et al., Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain, Nat. Biotechnol., 36 (2018), 70–80. https://doi.org/10.1038/nbt.4038 doi: 10.1038/nbt.4038
![]() |
[14] |
H. M. Davey, D. B. Kell, Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses, Microbiol. Rev., 60 (1996), 641–696. https://doi.org/10.1128/mr.60.4.641-696.1996 doi: 10.1128/mr.60.4.641-696.1996
![]() |
[15] |
A. R. Whitney, M. Diehn, S. J. Popper, A. A. Alizadeh, J. C. Boldrick, D. A. Relman, et al., Individuality and variation in gene expression patterns in human blood, PNAS, 100 (2003), 1896–1901. https://doi.org/10.1073/pnas.252784499 doi: 10.1073/pnas.252784499
![]() |
[16] |
D. de Ridder, C. Van Der Linden, T. Schonewille, W. Dik, M. Reinders, J. Van Dongen, et al., Purity for clarity: the need for purification of tumor cells in DNA microarray studies, Leukemia, 19 (2005), 618–627. https://doi.org/10.1038/sj.leu.2403685 doi: 10.1038/sj.leu.2403685
![]() |
[17] |
A. T. McKenzie, S. Moyon, M. Wang, I. Katsyv, W. M. Song, X. Zhou, et al., Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease, Mol. Neurodegener., 12 (2017), 82. https://doi.org/10.1186/s13024-017-0219-3 doi: 10.1186/s13024-017-0219-3
![]() |
[18] |
S. Mostafavi, C. Gaiteri, S. E. Sullivan, C. C. White, S. Tasaki, J. Xu, et al., A molecular network of the aging human brain provides insights into the pathology and cognitive decline of Alzheimer's disease, Nat. Neurosci., 21 (2018), 811–819. https://doi.org/10.1038/s41593-018-0154-9 doi: 10.1038/s41593-018-0154-9
![]() |
[19] |
P. L. De Jager, Y. Ma, C. McCabe, J. Xu, B. N. Vardarajan, D. Felsky, et al., A multi-omic atlas of the human frontal cortex for aging and Alzheimer's disease research, Sci. Data, 5 (2018), 180142. https://doi.org/10.1038/sdata.2018.142 doi: 10.1038/sdata.2018.142
![]() |
[20] |
M. Allen, M. M. Carrasquillo, C. Funk, B. D. Heavner, F. Zou, C. S. Younkin, et al., Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases, Sci. Data, 3 (2016), 160089. https://doi.org/10.1038/sdata.2016.89 doi: 10.1038/sdata.2016.89
![]() |
[21] |
A. Kuhn, D. Thu, H. J. Waldvogel, R. L. Faull, R. Luthi-Carter, Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain, Nat. Methods, 8 (2011), 945–947. https://doi.org/10.1038/nmeth.1710 doi: 10.1038/nmeth.1710
![]() |
[22] |
M. Chikina, E. Zaslavsky, S. C. Sealfon, CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations, Bioinformatics, 31 (2015), 1584–1591. https://doi.org/10.1093/bioinformatics/btv015 doi: 10.1093/bioinformatics/btv015
![]() |
[23] |
X. Wang, J. Park, K. Susztak, N. R. Zhang, M. Li, Bulk tissue cell type deconvolution with multi-subject single-cell expression reference, Nat. Commun., 10 (2019), 1–9. https://doi.org/10.1038/s41467-018-08023-x doi: 10.1038/s41467-018-08023-x
![]() |
[24] |
A. M. Newman, C. B. Steen, C. L. Liu, A. J. Gentles, A. A. Chaudhuri, F. Scherer, et al., Determining cell type abundance and expression from bulk tissues with digital cytometry, Nat. Biotechnol., 37 (2019), 773–782. https://doi.org/10.1038/s41587-019-0114-2 doi: 10.1038/s41587-019-0114-2
![]() |
[25] |
K. Zaitsev, M. Bambouskova, A. Swain, M. N. Artyomov, Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures, Nat. Commun., 10 (2019), 1–16. https://doi.org/10.1038/s41467-019-09990-5 doi: 10.1038/s41467-019-09990-5
![]() |
[26] |
T. Chu, Z. Wang, D. Pe'er, C. G. Danko, Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology, Nat. Cancer, 3 (2022), 505–517. https://doi.org/10.1038/s43018-022-00356-3 doi: 10.1038/s43018-022-00356-3
![]() |
[27] |
E. Becht, N. A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, et al., Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression, Genome Biol., 17 (2016), 1–20. https://doi.org/10.1186/s13059-016-1070-5 doi: 10.1186/s13059-016-1070-5
![]() |
[28] |
D. Aran, Z. Hu, A. J. Butte, xcell: digitally portraying the tissue cellular heterogeneity landscape, Genome Biol., 18 (2017), 1–14. https://doi.org/10.1186/s13059-017-1349-1 doi: 10.1186/s13059-017-1349-1
![]() |
[29] |
J. Ahn, Y. Yuan, G. Parmigiani, M. B. Suraokar, L. Diao, I. I. Wistuba, et al., Demix: deconvolution for mixed cancer transcriptomes using raw measured data, Bioinformatics, 29 (2013), 1865–1871. https://doi.org/10.1093/bioinformatics/btt301 doi: 10.1093/bioinformatics/btt301
![]() |
[30] |
X. L. Peng, R. A. Moffitt, R. J. Torphy, K. E. Volmar, J. J. Yeh, De novo compartment deconvolution and weight estimation of tumor samples using decoder, Nat. Commun., 10 (2019), 4729. https://doi.org/10.1038/s41467-019-12517-7 doi: 10.1038/s41467-019-12517-7
![]() |
[31] |
K. Kang, Q. Meng, I. Shats, D. M. Umbach, M. Li, Y. Li, et al., CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data, PLoS Comput. Biol., 15 (2019), e1007510. https://doi.org/10.1371/journal.pcbi.1007510 doi: 10.1371/journal.pcbi.1007510
![]() |
[32] | G. Monaco, B. Lee, W. Xu, S. Mustafah, Y. Y. Hwang, C. Carré, et al., RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types, Cell Rep., 26 (2019), 1627–1640. |
[33] |
Y. Im, Y. Kim, A comprehensive overview of rna deconvolution methods and their application, Mol. Cells, 46 (2023), 99–105. https://doi.org/10.14348/molcells.2023.2178 doi: 10.14348/molcells.2023.2178
![]() |
[34] |
H. Nguyen, H. Nguyen, D. Tran, S. Draghici, T. Nguyen, Fourteen years of cellular deconvolution: methodology, applications, technical evaluation and outstanding challenges, Nucleic Acids Res., 52 (2024), 4761–4783. https://doi.org/10.1093/nar/gkae267 doi: 10.1093/nar/gkae267
![]() |
[35] |
P. Paatero, U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5 (1994), 111–126. https://doi.org/10.1002/env.3170050203 doi: 10.1002/env.3170050203
![]() |
[36] |
W. K. Ma, J. M. Bioucas-Dias, T. H. Chan, N. Gillis, P. Gader, A. J. Plaza, et al., A signal processing perspective on hyperspectral unmixing: Insights from remote sensing, IEEE Signal Process Mag., 31 (2013), 67–81. https://doi.org/10.1109/MSP.2013.2279731 doi: 10.1109/MSP.2013.2279731
![]() |
[37] |
X. Fu, W. K. Ma, T. H. Chan, J. M. Bioucas-Dias, Self-dictionary sparse regression for hyperspectral unmixing: Greedy pursuit and pure pixel search are related, IEEE J. Sel. Top. Signal Process., 9 (2015), 1128–1141. https://doi.org/10.1109/JSTSP.2015.2410763 doi: 10.1109/JSTSP.2015.2410763
![]() |
[38] | S. Zhang, W. Wang, J. Ford, F. Makedon, Learning from incomplete ratings using non-negative matrix factorization, in Proceedings of the 2006 SIAM International Conference on Data Mining, SIAM, (2006), 549–553. https://doi.org/10.1137/1.9781611972764.58 |
[39] |
M. D. Craig, Minimum-volume transforms for remotely sensed data, IEEE Trans. Geosci. Remote Sens., 32 (1994), 542–552. https://doi.org/10.1109/36.297973 doi: 10.1109/36.297973
![]() |
[40] |
D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401 (1999), 788–791. https://doi.org/10.1038/44565 doi: 10.1038/44565
![]() |
[41] |
D. Tsoucas, R. Dong, H. Chen, Q. Zhu, G. Guo, G. C. Yuan, Accurate estimation of cell-type composition from gene expression data, Nat. Commun., 10 (2019), 1–9. https://doi.org/10.1038/s41467-019-10802-z doi: 10.1038/s41467-019-10802-z
![]() |
[42] |
F. Avila Cobos, J. Vandesompele, P. Mestdagh, K. De Preter, Computational deconvolution of transcriptomics data from mixed cell populations, Bioinformatics, 34 (2018), 1969–1979. https://doi.org/10.1093/bioinformatics/bty019 doi: 10.1093/bioinformatics/bty019
![]() |
[43] |
S. Mohammadi, N. Zuckerman, A. Goldsmith, A. Grama, A critical survey of deconvolution methods for separating cell types in complex tissues, Proc. IEEE, 105 (2016), 340–366. https://doi.org/10.1109/JPROC.2016.2607121 doi: 10.1109/JPROC.2016.2607121
![]() |
[44] |
A. M. Newman, C. L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, et al., Robust enumeration of cell subsets from tissue expression profiles, Nat. Methods, 12 (2015), 453–457. https://doi.org/10.1038/nmeth.3337 doi: 10.1038/nmeth.3337
![]() |
[45] |
W. Qiao, G. Quon, E. Csaszar, M. Yu, Q. Morris, P. W. Zandstra, PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions, PLoS Comput. Biol., 8 (2012), e1002838. https://doi.org/10.1371/journal.pcbi.1002838 doi: 10.1371/journal.pcbi.1002838
![]() |
[46] |
Y. Zhong, Y. W. Wan, K. Pang, L. M. Chow, Z. Liu, Digital sorting of complex tissues for cell type-specific gene expression profiles, BMC Bioinf., 14 (2013), 89. https://doi.org/10.1186/1471-2105-14-89 doi: 10.1186/1471-2105-14-89
![]() |
[47] |
T. Gong, J. D. Szustakowski, DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data, Bioinformatics, 29 (2013), 1083–1085. https://doi.org/10.1093/bioinformatics/btt090 doi: 10.1093/bioinformatics/btt090
![]() |
[48] |
A. Cui, G. Quon, A. M. Rosenberg, R. S. Yeung, Q. Morris, B. S. Consortium, Gene expression deconvolution for uncovering molecular signatures in response to therapy in juvenile idiopathic arthritis, PloS One, 11 (2016), e0156055. https://doi.org/10.1371/journal.pone.0156055 doi: 10.1371/journal.pone.0156055
![]() |
[49] |
A. R. Abbas, K. Wolslegel, D. Seshasayee, Z. Modrusan, H. F. Clark, Deconvolution of blood microarray data identifies cellular activation patterns in systemic lupus erythematosus, PloS One, 4 (2009), e6098. https://doi.org/10.1371/journal.pone.0006098 doi: 10.1371/journal.pone.0006098
![]() |
[50] |
R. Gaujoux, C. Seoighe, Semi-supervised nonnegative matrix factorization for gene expression deconvolution: a case study, Infect. Genet. Evol., 12 (2012), 913–921. https://doi.org/10.1016/j.meegid.2011.08.014 doi: 10.1016/j.meegid.2011.08.014
![]() |
[51] |
S. S. Shen-Orr, R. Gaujoux, Computational deconvolution: extracting cell type-specific information from heterogeneous samples, Curr. Opin. Immunol., 25 (2013), 571–578. https://doi.org/10.1016/j.coi.2013.09.015 doi: 10.1016/j.coi.2013.09.015
![]() |
[52] | N. Gillis, Nonnegative Matrix Factorization: Complexity, Algorithms and Applications, Ph.D theis, Université catholique de Louvain. Louvain-La-Neuve: CORE, 2011. |
[53] | A. Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation, John Wiley & Sons, 2009. |
[54] | D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems, 13 (2000). |
[55] |
Y. X. Wang, Y. J. Zhang, Nonnegative matrix factorization: A comprehensive review, IEEE Trans. Knowl. Data Eng., 25 (2012), 1336–1353. https://doi.org/10.1109/TKDE.2012.51 doi: 10.1109/TKDE.2012.51
![]() |
[56] |
X. Fu, K. Huang, N. D. Sidiropoulos, W. K. Ma, Nonnegative matrix factorization for signal and data analytics: Identifiability, algorithms, and applications, IEEE Signal Process. Mag., 36 (2019), 59–80. https://doi.org/10.1109/MSP.2018.2877582 doi: 10.1109/MSP.2018.2877582
![]() |
[57] |
K. Huang, N. D. Sidiropoulos, A. Swami, Non-negative matrix factorization revisited: Uniqueness and algorithm for symmetric decomposition, IEEE Trans. Signal Process., 62 (2013), 211–224. https://doi.org/10.1109/TSP.2013.2285514 doi: 10.1109/TSP.2013.2285514
![]() |
[58] | D. Donoho, V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts?, in Advances in Neural Information Processing Systems 16 (NIPS 2003), (2004), 1141–1148. |
[59] |
H. Laurberg, M. G. Christensen, M. D. Plumbley, L. K. Hansen, S. H. Jensen, Theorems on positive data: On the uniqueness of NMF, Comput. Intell. Neurosci., 2008 (2008). https://doi.org/10.1155/2008/764206 doi: 10.1155/2008/764206
![]() |
[60] |
D. Chen, S. Li, X. Wang, Geometric structure guided model and algorithms for complete deconvolution of gene expression data, Found. Data Sci., 4 (2022), 441. https://doi.org/10.3934/fods.2022013 doi: 10.3934/fods.2022013
![]() |
[61] | M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in Advances in Neural Information Processing Systems 14 (NIPS 2001), (2002), 585–591. |
[62] | D. Cai, X. Wang, X. He, Probabilistic dyadic data analysis with local and global consistency, in Proceedings of the 26th Annual International Conference on Machine Learning, (2009), 105–112. https://doi.org/10.1145/1553374.1553388 |
[63] | X. He, P. Niyogi, Locality preserving projections, in Advances in Neural Information Processing Systems 16 (NIPS 2003), (2004), 153–160. |
[64] |
U. Von Luxburg, A tutorial on spectral clustering, Stat. Comput., 17 (2007), 395–416. https://doi.org/10.1007/s11222-007-9033-z doi: 10.1007/s11222-007-9033-z
![]() |
[65] | J. Qin, H. Lee, J. T. Chi, Y. Lou, J. Chanussot, A. L. Bertozzi, Fast blind hyperspectral unmixing based on graph laplacian, in 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE, (2019), 1–5. https://doi.org/10.1109/WHISPERS.2019.8921375 |
[66] | J. Eckstein, W. Yao, Augmented Lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results, RUTCOR Res. Rep., 32 (2012), 44. |
[67] |
S. S. Shen-Orr, R. Tibshirani, P. Khatri, D. L. Bodian, F. Staedtler, N. M. Perry, et al., Cell type–specific gene expression differences in complex tissues, Nat. Methods, 7 (2010), 287–289. https://doi.org/10.1038/nmeth.1439 doi: 10.1038/nmeth.1439
![]() |
[68] |
H. Mathys, J. Davila-Velderrain, Z. Peng, F. Gao, S. Mohammadi, J. Z. Young, et al., Single-cell transcriptomic analysis of Alzheimer's disease, Nature, 570 (2019), 332–337. https://doi.org/10.1038/s41586-019-1195-2 doi: 10.1038/s41586-019-1195-2
![]() |
[69] |
W. V. Li, J. J. Li, A statistical simulator scdesign for rational scrna-seq experimental design, Bioinformatics, 35 (2019), i41–i50. https://doi.org/10.1093/bioinformatics/btz321 doi: 10.1093/bioinformatics/btz321
![]() |
1. | Natalia R. Jones, Richard Elson, Matthew J. Wade, Shannon McIntyre-Nolan, Andrew Woods, James Lewis, Diane Hatziioanou, Roberto Vivancos, Paul R. Hunter, Iain R. Lake, Localised wastewater SARS-CoV-2 levels linked to COVID-19 cases: A long-term multisite study in England, 2025, 962, 00489697, 178455, 10.1016/j.scitotenv.2025.178455 | |
2. | KM O’Reilly, MJ Wade, K. Farkas, F. Amman, A. Lison, JD Munday, J. Bingham, ZE Mthombothi, Z. Fang, CS Brown, RR Kao, L. Danon, Analysis insights to support the use of wastewater and environmental surveillance data for infectious diseases and pandemic preparedness, 2025, 51, 17554365, 100825, 10.1016/j.epidem.2025.100825 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ˆr | |
σ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
τ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
ν | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ˆr | |
σ | 0.394 | 0.155 | 0.150 | 0.677 | 0.023 | 0.016 | 42.0 | 154.0 | 1.08 |
τ | 1.251 | 0.241 | 0.851 | 1.731 | 0.011 | 0.008 | 523.0 | 906.0 | 1.00 |
ν | 5.260 | 1.397 | 2.667 | 7.737 | 0.022 | 0.015 | 3687.0 | 2701.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.189 | 0.027 | 0.140 | 0.240 | 0.002 | 0.001 | 206.0 | 447.0 | 1.01 | |
0.422 | 0.039 | 0.356 | 0.502 | 0.001 | 0.001 | 2849.0 | 3718.0 | 1.00 | |
2.254 | 0.276 | 2.000 | 2.737 | 0.005 | 0.003 | 3155.0 | 2741.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.242 | 0.097 | 0.057 | 0.409 | 0.014 | 0.010 | 44.0 | 22.0 | 1.13 | |
1.355 | 0.159 | 1.064 | 1.650 | 0.005 | 0.003 | 1046.0 | 2012.0 | 1.00 | |
5.911 | 1.43v0 | 3.477 | 8.745 | 0.025 | 0.017 | 3157.0 | 2205.0 | 1.00 |
Mean | SD | HDI 3% | HDI 97% | MCSE Mean | MCSE SD | ESS Bulk | ESS tail | ||
0.153 | 0.024 | 0.110 | 0.198 | 0.002 | 0.001 | 193.0 | 358.0 | 1.01 | |
0.288 | 0.026 | 0.237 | 0.333 | 0.001 | 0.000 | 1569.0 | 3334.0 | 1.00 | |
2.283 | 0.273 | 2.000 | 2.758 | 0.005 | 0.003 | 2761.0 | 2587.0 | 1.00 |
Site Code | N Train | Mean DLM run time | Mean KS run time |
UKENAN_AW_TP000004 | 199 | 14.8 | 169.9 |
UKENAN_AW_TP000012 | 203 | 10.7 | 135.8 |
UKENAN_AW_TP000015 | 203 | 16.1 | 174.1 |
UKENAN_AW_TP000016 | 206 | 13.5 | 166.6 |
UKENAN_AW_TP000023 | 202 | 16.4 | 155.3 |
UKENAN_AW_TP000026 | 192 | 11.2 | 131.4 |
UKENAN_AW_TP000028 | 203 | 18.7 | 184 |
UKENAN_AW_TP000029 | 202 | 15.1 | 160.2 |
UKENAN_AW_TP000037 | 205 | 14.8 | 126.6 |
UKENAN_AW_TP000041 | 201 | 12.4 | 149.4 |
mean | 201.6 | 14.37 | 155.33 |
ww_site_code | date_min | date_max | site_reporting_name |
UKENNE_YW_TP000095 | 06/07/2020 | 30/03/2022 | Hull |
UKENTH_TWU_TP000054 | 08/07/2020 | 30/03/2022 | London (Deepham) |
UKENSW_SWS_TP000058 | 08/07/2020 | 27/03/2022 | Plymouth |
UKENTH_TWU_TP000010 | 08/07/2020 | 25/03/2022 | Aylesbury |
UKENTH_TWU_TP000013 | 08/07/2020 | 30/03/2022 | Basingstoke |
UKENTH_TWU_TP000014 | 08/07/2020 | 30/03/2022 | London (Beckton) |
UKENTH_TWU_TP000015 | 08/07/2020 | 30/03/2022 | London (Beddington) |
UKENSW_SWS_TP000031 | 08/07/2020 | 30/03/2022 | St Ives and Penzance |
UKENNW_UU_TP000076 | 08/07/2020 | 30/03/2022 | Lancaster |
UKENTH_TWU_TP000084 | 08/07/2020 | 30/03/2022 | London (Hogsmill Valley) |
UKENMI_ST_TP000222 | 08/07/2020 | 30/03/2022 | Leicester |
UKENNW_UU_TP000012 | 08/07/2020 | 30/03/2022 | Barrow-in-Furness |
UKENTH_TWU_TP000125 | 08/07/2020 | 30/03/2022 | London (Riverside) |
UKENSO_SW_TP000030 | 08/07/2020 | 30/03/2022 | Maidstone and Aylesford |
UKENSO_SW_TP000025 | 08/07/2020 | 30/03/2022 | Chatham |
UKENNW_UU_TP000110 | 08/07/2020 | 24/03/2022 | Liverpool (Sandon) |
UKENMI_ST_TP000156 | 08/07/2020 | 30/03/2022 | Birmingham (Minworth) |
UKENNW_UU_TP000095 | 08/07/2020 | 30/03/2022 | Wirral |
UKENSO_SW_TP000011 | 08/07/2020 | 30/03/2022 | New Forest |
UKENSO_SW_TP000001 | 08/07/2020 | 30/03/2022 | Southampton |
UKENNE_NU_TP000055 | 15/07/2020 | 30/03/2022 | Washington |
UKENMI_ST_TP000020 | 15/07/2020 | 30/03/2022 | Barston |
UKENMI_ST_TP000074 | 15/07/2020 | 30/03/2022 | Derby |
UKENNW_UU_TP000078 | 15/07/2020 | 30/03/2022 | Leigh |
UKENAN_AW_TP000200 | 15/07/2020 | 30/03/2022 | Norwich |
UKENAN_AW_TP000210 | 15/07/2020 | 30/03/2022 | Peterborough |
UKENMI_ST_TP000163 | 15/07/2020 | 30/03/2022 | Nottingham |
UKENSW_WXW_TP000004 | 15/07/2020 | 30/03/2022 | Bristol |
UKENNE_NU_TP000030 | 15/07/2020 | 30/03/2022 | Horden |
UKENNE_YW_TP000082 | 15/07/2020 | 30/03/2022 | Bradford |
UKENAN_AW_TP000161 | 15/07/2020 | 30/03/2022 | Lincoln |
UKENMI_ST_TP000068 | 15/07/2020 | 25/03/2022 | Coventry |
UKENSW_WXW_TP000092 | 15/07/2020 | 30/03/2022 | Trowbridge |
UKENTH_TWU_TP000113 | 15/07/2020 | 30/03/2022 | London (Mogden) |
UKENTH_TWU_TP000103 | 15/07/2020 | 30/03/2022 | Luton |
UKENNW_UU_TP000019 | 15/07/2020 | 30/03/2022 | Bolton |
UKENAN_AW_TP000063 | 15/07/2020 | 30/03/2022 | Colchester |
UKENNE_YW_TP000098 | 15/07/2020 | 30/03/2022 | Leeds |
UKENNE_YW_TP000107 | 15/07/2020 | 30/03/2022 | Dewsbury |
UKENNW_UU_TP000011 | 01/10/2020 | 30/03/2022 | Barnoldswick |
UKENNE_YW_TP000119 | 08/02/2021 | 30/03/2022 | Doncaster (Sandall) |
UKENNE_NU_TP000012 | 10/02/2021 | 30/03/2022 | Middlesbrough |
UKENNE_NU_TP000031 | 10/02/2021 | 30/03/2022 | Newcastle |
UKENNE_NU_TP000003 | 10/02/2021 | 30/03/2022 | Newton Aycliffe |
UKENNE_NU_TP000051 | 10/02/2021 | 30/03/2022 | Darlington |
UKENNE_YW_TP000057 | 15/02/2021 | 30/03/2022 | Sheffield (Blackburn Meadows) |
UKENNE_NU_TP000019 | 17/02/2021 | 18/02/2022 | Consett |
UKENNE_YW_TP000094 | 17/02/2021 | 30/03/2022 | Huddersfield |
UKENTH_TWU_TP000139 | 17/02/2021 | 30/03/2022 | Swindon |
UKENNW_UU_TP000097 | 17/02/2021 | 30/03/2022 | Northwich |
UKENTH_TWU_TP000133 | 17/02/2021 | 28/03/2022 | Slough |
UKENTH_TWU_TP000126 | 17/02/2021 | 30/03/2022 | Harlow |
UKENTH_TWU_TP000122 | 17/02/2021 | 25/03/2022 | Reading |
UKENNE_NU_TP000020 | 17/02/2021 | 30/03/2022 | Cramlington |
UKENNE_NU_TP000054 | 17/02/2021 | 21/02/2022 | Bishop Auckland |
UKENTH_TWU_TP000102 | 17/02/2021 | 30/03/2022 | London (Long Reach) |
UKENNE_NU_TP000009 | 17/02/2021 | 30/03/2022 | Billingham |
UKENMI_ST_TP000050 | 19/02/2021 | 30/03/2022 | Checkley |
UKENNE_YW_TP000029 | 19/02/2021 | 30/03/2022 | York |
UKENNE_YW_TP000063 | 20/02/2021 | 30/03/2022 | Wakefield |
UKENNW_UU_TP000026 | 20/02/2021 | 30/03/2022 | Bury |
UKENNW_UU_TP000070 | 20/02/2021 | 30/03/2022 | Kendal |
UKENMI_ST_TP000099 | 21/02/2021 | 30/03/2022 | Gloucester |
UKENMI_ST_TP000100 | 21/02/2021 | 29/03/2022 | Walsall |
UKENMI_ST_TP000130 | 21/02/2021 | 30/03/2022 | Leek |
UKENMI_ST_TP000137 | 21/02/2021 | 30/03/2022 | Loughborough |
UKENMI_ST_TP000184 | 21/02/2021 | 25/03/2022 | Telford |
UKENNW_UU_TP000100 | 21/02/2021 | 30/03/2022 | Penrith |
UKENNW_UU_TP000050 | 21/02/2021 | 30/03/2022 | Fleetwood |
UKENMI_ST_TP000152 | 21/02/2021 | 30/03/2022 | Melton Mowbray |
UKENMI_ST_TP000242 | 21/02/2021 | 30/03/2022 | Worksop |
UKENMI_ST_TP000207 | 21/02/2021 | 30/03/2022 | Stoke-on-Trent |
UKENMI_ST_TP000180 | 21/02/2021 | 30/03/2022 | Stourbridge and Halesowen |
UKENMI_ST_TP000164 | 21/02/2021 | 30/03/2022 | Nuneaton |
UKENNW_UU_TP000116 | 21/02/2021 | 30/03/2022 | Stockport |
UKENMI_ST_TP000036 | 22/02/2021 | 23/03/2022 | Brancote |
UKENNW_UU_TP000139 | 22/02/2021 | 30/03/2022 | Workington |
UKENMI_ST_TP000241 | 22/02/2021 | 30/03/2022 | Worcester |
UKENTH_TWU_TP000033 | 23/02/2021 | 30/03/2022 | Camberley |
UKENSW_SWS_TP000050 | 24/02/2021 | 30/03/2022 | Newquay |
UKENSW_SWS_TP000064 | 24/02/2021 | 30/03/2022 | Sidmouth |
UKENSO_SW_TP000096 | 24/02/2021 | 30/03/2022 | Hailsham |
UKENMI_ST_TP000062 | 24/02/2021 | 30/03/2022 | Birmingham (Coleshill) |
UKENTH_TWU_TP000050 | 24/02/2021 | 30/03/2022 | Crawley |
UKENSO_SW_TP000091 | 24/02/2021 | 30/03/2022 | Bexhill |
UKENTH_TWU_TP000159 | 24/02/2021 | 30/03/2022 | Oxford |
UKENSO_SW_TP000084 | 24/02/2021 | 30/03/2022 | Scaynes Hill |
UKENSO_SW_TP000083 | 24/02/2021 | 30/03/2022 | Worthing |
UKENSO_SW_TP000090 | 24/02/2021 | 30/03/2022 | Littlehampton and Bognor |
UKENSO_SW_TP000020 | 24/02/2021 | 30/03/2022 | Tonbridge |
UKENSO_SW_TP000082 | 24/02/2021 | 30/03/2022 | Lewes |
UKENSO_SW_TP000081 | 24/02/2021 | 30/03/2022 | Burgess Hill |
UKENSO_SW_TP000021 | 24/02/2021 | 30/03/2022 | Tunbridge Wells |
UKENNW_UU_TP000124 | 25/02/2021 | 28/03/2022 | Warrington |
UKENSW_WXW_TP000023 | 26/02/2021 | 30/03/2022 | Chippenham |
UKENSO_SW_TP000016 | 26/02/2021 | 30/03/2022 | Isle of Wight |
UKENNW_UU_TP000047 | 26/02/2021 | 30/03/2022 | Ellesmere Port |
UKENSW_SWS_TP000010 | 26/02/2021 | 30/03/2022 | Camborne |
UKENMI_ST_TP000120 | 26/02/2021 | 30/03/2022 | Kidderminster |
UKENSW_WXW_TP000005 | 26/02/2021 | 30/03/2022 | Bath |
UKENSW_WXW_TP000100 | 26/02/2021 | 30/03/2022 | Weston-super-Mare |
UKENSW_WXW_TP000044 | 28/02/2021 | 30/03/2022 | Clevedon and Nailsea |
UKENMI_ST_TP000167 | 01/03/2021 | 30/03/2022 | Oswestry |
UKENTH_TWU_TP000154 | 02/03/2021 | 30/03/2022 | Witney |
UKENMI_ST_TP000091 | 03/03/2021 | 30/03/2022 | Evesham |
UKENTH_TWU_TP000012 | 03/03/2021 | 25/03/2022 | Banbury |
UKENMI_ST_TP000178 | 03/03/2021 | 28/03/2022 | Retford |
UKENMI_ST_TP000139 | 03/03/2021 | 30/03/2022 | Ludlow |
UKENMI_ST_TP000147 | 03/03/2021 | 30/03/2022 | Market Drayton |
UKENMI_ST_TP000186 | 03/03/2021 | 28/03/2022 | Scunthorpe |
UKENMI_ST_TP000017 | 03/03/2021 | 30/03/2022 | Malvern |
UKENMI_ST_TP000256 | 03/03/2021 | 30/03/2022 | Cheltenham |
UKENTH_TWU_TP000021 | 05/03/2021 | 30/03/2022 | Radlett |
UKENTH_TWU_TP000116 | 05/03/2021 | 30/03/2022 | Newbury |
UKENAN_AW_TP000004 | 08/03/2021 | 30/03/2022 | Anwick |
UKENAN_AW_TP000254 | 08/03/2021 | 30/03/2022 | Sudbury |
UKENAN_AW_TP000293 | 08/03/2021 | 30/03/2022 | Wisbech |
UKENAN_AW_TP000116 | 08/03/2021 | 30/03/2022 | Grimsby |
UKENAN_AW_TP000261 | 08/03/2021 | 30/03/2022 | Thetford |
UKENAN_AW_TP000286 | 08/03/2021 | 30/03/2022 | Daventry |
UKENAN_AW_TP000051 | 08/03/2021 | 30/03/2022 | Chalton |
UKENAN_AW_TP000041 | 08/03/2021 | 30/03/2022 | Buckingham |
UKENAN_AW_TP000028 | 08/03/2021 | 30/03/2022 | Brackley |
UKENAN_AW_TP000107 | 08/03/2021 | 30/03/2022 | Northampton |
UKENAN_AW_TP000055 | 08/03/2021 | 30/03/2022 | Chelmsford |
UKENAN_AW_TP000067 | 08/03/2021 | 30/03/2022 | Corby |
UKENAN_AW_TP000069 | 08/03/2021 | 30/03/2022 | Milton Keynes |
UKENAN_AW_TP000037 | 08/03/2021 | 30/03/2022 | Wellingborough |
UKENAN_AW_TP000023 | 08/03/2021 | 30/03/2022 | Boston |
UKENAN_AW_TP000026 | 08/03/2021 | 30/03/2022 | Bourne |
UKENAN_AW_TP000078 | 08/03/2021 | 30/03/2022 | Diss |
UKENAN_AW_TP000082 | 08/03/2021 | 30/03/2022 | Downham Market |
UKENAN_AW_TP000096 | 08/03/2021 | 30/03/2022 | Felixstowe |
UKENAN_AW_TP000106 | 08/03/2021 | 30/03/2022 | Grantham |
UKENAN_AW_TP000016 | 08/03/2021 | 30/03/2022 | Bedford |
UKENAN_AW_TP000015 | 08/03/2021 | 30/03/2022 | Beccles |
UKENAN_AW_TP000012 | 08/03/2021 | 30/03/2022 | Barton-upon-Humber |
UKENAN_AW_TP000077 | 08/03/2021 | 30/03/2022 | Breckland |
UKENAN_AW_TP000029 | 08/03/2021 | 27/03/2022 | Braintree |
UKENTH_TWU_TP000123 | 10/03/2021 | 30/03/2022 | Reigate |
UKENAN_AW_TP000237 | 10/03/2021 | 30/03/2022 | Soham |
UKENSW_WXW_TP000086 | 10/03/2021 | 30/03/2022 | Taunton |
UKENAN_AW_TP000194 | 10/03/2021 | 30/03/2022 | Newmarket |
UKENAN_AW_TP000047 | 10/03/2021 | 30/03/2022 | Bury St. Edmunds |
UKENSW_WXW_TP000096 | 10/03/2021 | 30/03/2022 | Wellington |
UKENSW_WXW_TP000057 | 10/03/2021 | 30/03/2022 | Minehead |
UKENSW_WXW_TP000077 | 10/03/2021 | 30/03/2022 | Shepton Mallet |
UKENAN_AW_TP000224 | 10/03/2021 | 30/03/2022 | Saffron Walden |
UKENAN_AW_TP000222 | 10/03/2021 | 30/03/2022 | Royston |
UKENTH_TWU_TP000019 | 12/03/2021 | 30/03/2022 | Bicester |
UKENAN_AW_TP000060 | 15/03/2021 | 30/03/2022 | Shefford |
UKENAN_AW_TP000154 | 15/03/2021 | 30/03/2022 | Kings Lynn |
UKENNE_YW_TP000076 | 15/03/2021 | 30/03/2022 | Driffield |
UKENNE_YW_TP000112 | 15/03/2021 | 30/03/2022 | Chesterfield |
UKENNE_YW_TP000026 | 15/03/2021 | 30/03/2022 | Malton |
UKENSW_SWS_TP000045 | 22/02/2021 | 30/03/2022 | Liskeard |
UKENSW_SWS_TP000051 | 22/02/2021 | 30/03/2022 | Newton Abbot |
UKENMI_ST_TP000233 | 22/02/2021 | 30/03/2022 | Wigston |
UKENSW_SWS_TP000056 | 22/02/2021 | 30/03/2022 | Plymouth (Camels Head) |
UKENSW_SWS_TP000055 | 22/02/2021 | 30/03/2022 | Par |
UKENSW_SWS_TP000059 | 22/02/2021 | 30/03/2022 | Plympton |
UKENNW_UU_TP000129 | 22/02/2021 | 30/03/2022 | Whaley Bridge |
UKENSW_SWS_TP000074 | 22/02/2021 | 30/03/2022 | Tiverton |
UKENMI_ST_TP000003 | 22/02/2021 | 28/03/2022 | Alfreton |
UKENSW_SWS_TP000075 | 22/02/2021 | 30/03/2022 | Torquay |
UKENMI_ST_TP000018 | 22/02/2021 | 30/03/2022 | Wolverhampton |
UKENAN_AW_TP000148 | 08/03/2021 | 30/03/2022 | Jaywick |
UKENAN_AW_TP000160 | 08/03/2021 | 30/03/2022 | Letchworth |
UKENAN_AW_TP000169 | 08/03/2021 | 30/03/2022 | Louth |
UKENAN_AW_TP000170 | 08/03/2021 | 30/03/2022 | Lowestoft |
UKENAN_AW_TP000172 | 08/03/2021 | 30/03/2022 | Mablethorpe |
UKENAN_AW_TP000176 | 08/03/2021 | 30/03/2022 | March |
UKENAN_AW_TP000177 | 08/03/2021 | 30/03/2022 | Market Harborough |
UKENAN_AW_TP000308 | 08/03/2021 | 30/03/2022 | Tilbury |
UKENAN_AW_TP000307 | 08/03/2021 | 30/03/2022 | Southend-on-Sea |
UKENAN_AW_TP000201 | 08/03/2021 | 30/03/2022 | Oakham |
UKENAN_AW_TP000303 | 08/03/2021 | 30/03/2022 | Basildon |
UKENAN_AW_TP000296 | 08/03/2021 | 30/03/2022 | Witham |
UKENAN_AW_TP000242 | 08/03/2021 | 30/03/2022 | Spalding |
UKENAN_AW_TP000248 | 08/03/2021 | 30/03/2022 | Stamford |
UKENAN_AW_TP000253 | 08/03/2021 | 30/03/2022 | Stowmarket |
UKENNE_YW_TP000061 | 15/03/2021 | 30/03/2022 | Bridlington |
UKENNE_YW_TP000131 | 15/03/2021 | 30/03/2022 | Pontefract |
UKENNE_YW_TP000102 | 17/03/2021 | 30/03/2022 | Barnsley |
UKENNE_YW_TP000096 | 17/03/2021 | 30/03/2022 | Keighley |
UKENNE_YW_TP000133 | 17/03/2021 | 30/03/2022 | Doncaster (Thorne) |
UKENMI_ST_TP000208 | 19/03/2021 | 30/03/2022 | Stroud |
UKENNW_UU_TP000133 | 21/03/2021 | 30/03/2022 | Wigan |
UKENNW_UU_TP000103 | 21/03/2021 | 30/03/2022 | Rochdale |
UKENNW_UU_TP000067 | 21/03/2021 | 30/03/2022 | Hyde |
UKENNW_UU_TP000037 | 21/03/2021 | 25/03/2022 | Congleton |
UKENSW_WXW_TP000074 | 24/03/2021 | 30/03/2022 | Salisbury |
UKENSW_WXW_TP000018 | 24/03/2021 | 30/03/2022 | Chard |
UKENSO_SW_TP000107 | 24/03/2021 | 30/03/2022 | Chichester |
UKENSO_SW_TP000002 | 24/03/2021 | 30/03/2022 | Lymington and New Milton |
UKENSO_SW_TP000004 | 24/03/2021 | 30/03/2022 | Portsmouth and Havant |
UKENSO_SW_TP000006 | 24/03/2021 | 30/03/2022 | Andover |
UKENSO_SW_TP000033 | 24/03/2021 | 30/03/2022 | Canterbury |
UKENSO_SW_TP000032 | 24/03/2021 | 30/03/2022 | Sittingbourne |
UKENSO_SW_TP000008 | 24/03/2021 | 30/03/2022 | Fareham and Gosport |
UKENSO_SW_TP000026 | 24/03/2021 | 30/03/2022 | Ashford |
UKENSO_SW_TP000013 | 24/03/2021 | 30/03/2022 | Eastleigh |
UKENNW_UU_TP000027 | 24/03/2021 | 30/03/2022 | Carlisle |
UKENSW_WXW_TP000085 | 24/03/2021 | 30/03/2022 | Blandford Forum |
UKENNW_UU_TP000062 | 26/03/2021 | 27/03/2022 | Maghull |
UKENNW_UU_TP000018 | 26/03/2021 | 30/03/2022 | Blackburn |
UKENTH_TWU_TP000039 | 26/03/2021 | 14/03/2022 | Chesham |
UKENSW_WXW_TP000111 | 26/03/2021 | 30/03/2022 | Yeovil |
UKENTH_TWU_TP000047 | 26/03/2021 | 30/03/2022 | Cirencester |
UKENTH_TWU_TP000055 | 26/03/2021 | 30/03/2022 | Didcot |
UKENTH_TWU_TP000073 | 26/03/2021 | 28/03/2022 | Guildford |
UKENNW_UU_TP000024 | 26/03/2021 | 30/03/2022 | Burnley |
UKENMI_ST_TP000141 | 29/03/2021 | 30/03/2022 | Lydney |
UKENTH_TWU_TP000004 | 31/03/2021 | 28/03/2022 | Alton |
UKENTH_TWU_TP000106 | 31/03/2021 | 30/03/2022 | St Albans |
UKENTH_TWU_TP000023 | 31/03/2021 | 21/03/2022 | Bordon |
UKENSW_WXW_TP000012 | 07/04/2021 | 30/03/2022 | Bridport |
UKENMI_ST_TP000060 | 07/04/2021 | 30/03/2022 | Telford South |
UKENSW_WXW_TP000038 | 07/04/2021 | 30/03/2022 | Bournemouth (Central) |
UKENSO_SW_TP000027 | 07/04/2021 | 30/03/2022 | Hythe |
UKENSW_WXW_TP000084 | 07/04/2021 | 30/03/2022 | Swanage |
UKENSO_SW_TP000028 | 07/04/2021 | 30/03/2022 | Dover and Folkestone |
UKENMI_ST_TP000143 | 09/04/2021 | 30/03/2022 | Mansfield |
UKENSO_SW_TP000022 | 05/05/2021 | 30/03/2022 | "Ramsgate, Sandwich and Deal" |
UKENNE_NU_TP000046 | 21/05/2021 | 30/03/2022 | Hartlepool |
UKENSW_SWS_TP000067 | 26/05/2021 | 30/03/2022 | Menagwins |
UKENSW_SWS_TP000033 | 26/05/2021 | 30/03/2022 | Helston |
UKENSW_SWS_TP000005 | 26/05/2021 | 30/03/2022 | Bodmin Sc.Well |
UKENTH_TWU_TP000155 | 04/06/2021 | 25/03/2022 | Woking |
UKENAN_AW_TP000071 | 09/06/2021 | 30/03/2022 | Cromer |
UKENAN_AW_TP000280 | 09/06/2021 | 30/03/2022 | Wells-next-the-Sea |
UKENAN_AW_TP000247 | 09/06/2021 | 30/03/2022 | Stalham |
UKENAN_AW_TP000219 | 09/06/2021 | 30/03/2022 | Reepham |
UKENAN_AW_TP000128 | 09/06/2021 | 30/03/2022 | Hunstanton |
UKENAN_AW_TP000191 | 11/06/2021 | 30/03/2022 | Needham Market |
UKENNE_NU_TP000028 | 21/06/2021 | 30/03/2022 | Sunderland |
UKENNW_UU_TP000113 | 30/07/2021 | 30/03/2022 | Skelmersdale |
UKENNW_UU_TP000104 | 04/08/2021 | 27/03/2022 | Rossendale |
UKENNW_UU_TP000032 | 13/08/2021 | 30/03/2022 | Chorley |
UKENNW_UU_TP000034 | 16/08/2021 | 30/03/2022 | Clitheroe |
UKENNE_YW_TP000039 | 18/08/2021 | 30/03/2022 | Scarborough |
UKENNW_UU_TP000068 | 20/08/2021 | 30/03/2022 | Hyndburn |
UKENSW_SWS_TP000016 | 13/10/2021 | 30/03/2022 | Bideford |
UKENSW_SWS_TP000073 | 13/10/2021 | 30/03/2022 | Tavistock |
UKENNE_NU_TP000004 | 05/11/2021 | 30/03/2022 | Durham (Barkers Haugh) |
UKENNE_NU_TP000048 | 05/11/2021 | 30/03/2022 | Houghton-le-Spring |
UKENNE_NU_TP000007 | 17/11/2021 | 30/03/2022 | Durham (Belmont) |
UKENNE_NU_TP000039 | 28/11/2021 | 30/03/2022 | MARSKE REDCAR |
UKENNW_UU_TP000017 | 20/12/2021 | 30/03/2022 | Birkenhead |
UKENNW_UU_TP000023 | 20/12/2021 | 30/03/2022 | Bromborough |
UKENNW_UU_TP000066 | 22/12/2021 | 30/03/2022 | Huyton and Prescot |
UKENAN_AW_TP000056 | 05/01/2022 | 30/03/2022 | Clacton-on-Sea and Holland-on-Sea |
UKENAN_AW_TP000306 | 05/01/2022 | 30/03/2022 | Basildon (Vange) |
UKENAN_AW_TP000289 | 05/01/2022 | 30/03/2022 | Wickford |
UKENAN_AW_TP000221 | 05/01/2022 | 30/03/2022 | Rochford |
UKENAN_AW_TP000305 | 05/01/2022 | 30/03/2022 | Canvey Island |
UKENAN_AW_TP000052 | 05/01/2022 | 30/03/2022 | Ipswich (Chantry) |
UKENAN_AW_TP000084 | 09/01/2022 | 30/03/2022 | Dunstable |
UKENNE_YW_TP000126 | 10/01/2022 | 30/03/2022 | Hemsworth and South Elmsall |
UKENNE_YW_TP000054 | 10/01/2022 | 30/03/2022 | Rotherham |
UKENNE_YW_TP000075 | 10/01/2022 | 30/03/2022 | Bingley |
UKENNE_YW_TP000137 | 12/01/2022 | 30/03/2022 | Castleford |
UKENNE_YW_TP000073 | 14/01/2022 | 30/03/2022 | Mexborough and Conisbrough |
UKENAN_AW_TP000115 | 08/03/2021 | 30/03/2022 | Great Yarmouth |
UKENAN_AW_TP000127 | 08/03/2021 | 30/03/2022 | Haverhill |
UKENAN_AW_TP000139 | 08/03/2021 | 30/03/2022 | Huntingdon |
UKENAN_AW_TP000143 | 08/03/2021 | 30/03/2022 | Ingoldmells |
UKENAN_AW_TP000144 | 08/03/2021 | 30/03/2022 | Ipswich |
UKENNW_UU_TP000102 | 21/02/2021 | 30/03/2022 | Preston |
UKENMI_ST_TP000056 | 21/02/2021 | 30/03/2022 | Burton on Trent |
UKENMI_ST_TP000225 | 22/02/2021 | 30/03/2022 | Warwick |
UKENSW_SWS_TP000002 | 22/02/2021 | 30/03/2022 | Barnstaple |
UKENMI_ST_TP000199 | 22/02/2021 | 28/03/2022 | Spernal |
UKENSW_SWS_TP000022 | 22/02/2021 | 30/03/2022 | Ernesettle and Saltash |
UKENSW_SWS_TP000024 | 22/02/2021 | 30/03/2022 | Exmouth |
UKENMI_ST_TP000182 | 22/02/2021 | 28/03/2022 | Rugby |
UKENNE_YW_TP000141 | 15/03/2021 | 30/03/2022 | Sheffield (Woodhouse Mill) |
UKENNE_YW_TP000008 | 15/03/2021 | 30/03/2022 | Colburn |
UKENNE_YW_TP000015 | 15/03/2021 | 30/03/2022 | Harrogate North |
UKENNE_YW_TP000030 | 15/03/2021 | 30/03/2022 | Northallerton |
UKENNE_YW_TP000056 | 15/03/2021 | 30/03/2022 | Beverley |
UKENAN_AW_TP000050 | 15/07/2020 | 30/03/2022 | Cambridge |
UKENTH_TWU_TP000100 | 15/07/2020 | 30/03/2022 | Wycombe |
UKENSW_WXW_TP000101 | 15/07/2020 | 30/03/2022 | Weymouth |
UKENTH_TWU_TP000052 | 15/07/2020 | 30/03/2022 | London (Crossness) |