
In this paper, we introduce a general numerical method to approximate the reproduction numbers of a large class of multi-group, age-structured, population models with a finite age span. To provide complete flexibility in the definition of the birth and transition processes, we propose an equivalent formulation for the age-integrated state within the extended space framework. Then, we discretize the birth and transition operators via pseudospectral collocation. We discuss applications to epidemic models with continuous and piecewise continuous rates, with different interpretations of the age variable (e.g., demographic age, infection age and disease age) and the transmission terms (e.g., horizontal and vertical transmission). The tests illustrate that the method can compute different reproduction numbers, including the basic and type reproduction numbers as special cases.
Citation: Simone De Reggi, Francesca Scarabel, Rossana Vermiglio. Approximating reproduction numbers: a general numerical method for age-structured models[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5360-5393. doi: 10.3934/mbe.2024236
[1] | Haiping Ren, Ziwen Zhang, Qin Gong . Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-Ⅱ censored test. AIMS Mathematics, 2025, 10(4): 9378-9414. doi: 10.3934/math.2025434 |
[2] | Alanazi Talal Abdulrahman, Khudhayr A. Rashedi, Tariq S. Alshammari, Eslam Hussam, Amirah Saeed Alharthi, Ramlah H Albayyat . A new extension of the Rayleigh distribution: Methodology, classical, and Bayes estimation, with application to industrial data. AIMS Mathematics, 2025, 10(2): 3710-3733. doi: 10.3934/math.2025172 |
[3] | Hatim Solayman Migdadi, Nesreen M. Al-Olaimat, Maryam Mohiuddin, Omar Meqdadi . Statistical inference for the Power Rayleigh distribution based on adaptive progressive Type-II censored data. AIMS Mathematics, 2023, 8(10): 22553-22576. doi: 10.3934/math.20231149 |
[4] | Ahmed M. Gemeay, Najwan Alsadat, Christophe Chesneau, Mohammed Elgarhy . Power unit inverse Lindley distribution with different measures of uncertainty, estimation and applications. AIMS Mathematics, 2024, 9(8): 20976-21024. doi: 10.3934/math.20241021 |
[5] | Mohamed A. H. Sabry, Ehab M. Almetwally, Osama Abdulaziz Alamri, M. Yusuf, Hisham M. Almongy, Ahmed Sedky Eldeeb . Inference of fuzzy reliability model for inverse Rayleigh distribution. AIMS Mathematics, 2021, 6(9): 9770-9785. doi: 10.3934/math.2021568 |
[6] | Dawlah Alsulami . A new extension of the Rayleigh distribution: Properties, different methods of estimation, and an application to medical data. AIMS Mathematics, 2025, 10(4): 7636-7663. doi: 10.3934/math.2025350 |
[7] | Amal S. Hassan, Najwan Alsadat, Oluwafemi Samson Balogun, Baria A. Helmy . Bayesian and non-Bayesian estimation of some entropy measures for a Weibull distribution. AIMS Mathematics, 2024, 9(11): 32646-32673. doi: 10.3934/math.20241563 |
[8] | Ahmed R. El-Saeed, Ahmed T. Ramadan, Najwan Alsadat, Hanan Alohali, Ahlam H. Tolba . Analysis of progressive Type-Ⅱ censoring schemes for generalized power unit half-logistic geometric distribution. AIMS Mathematics, 2023, 8(12): 30846-30874. doi: 10.3934/math.20231577 |
[9] | Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784 |
[10] | M. R. Irshad, S. Aswathy, R. Maya, Amer I. Al-Omari, Ghadah Alomani . A flexible model for bounded data with bathtub shaped hazard rate function and applications. AIMS Mathematics, 2024, 9(9): 24810-24831. doi: 10.3934/math.20241208 |
In this paper, we introduce a general numerical method to approximate the reproduction numbers of a large class of multi-group, age-structured, population models with a finite age span. To provide complete flexibility in the definition of the birth and transition processes, we propose an equivalent formulation for the age-integrated state within the extended space framework. Then, we discretize the birth and transition operators via pseudospectral collocation. We discuss applications to epidemic models with continuous and piecewise continuous rates, with different interpretations of the age variable (e.g., demographic age, infection age and disease age) and the transmission terms (e.g., horizontal and vertical transmission). The tests illustrate that the method can compute different reproduction numbers, including the basic and type reproduction numbers as special cases.
Classical probability distribution models play a pivotal role in statistics, providing essential theoretical tools for data modeling, parameter estimation, hypothesis testing, and statistical inference. They facilitate a comprehensive understanding and analysis of random variables and uncertain phenomena. However, when dealing with bounded random variables within the range (0, 1), such as proportions, probabilities, and percentages, classical probability distribution models encounter limitations in accurately describing and predicting data. To address this issue, we introduce the concept of unit distribution to generate novel models that enhance the flexibility of existing approaches for better adaptation to real-world data. The unit distribution is typically derived by redefining traditional analytical methods or transforming classical continuous distributions. By avoiding the introduction of new parameters while effectively translating the flexibility inherent to classical distributions into unit intervals, it offers improved efficiency compared to baseline methods. In recent years, research on unit distribution has made significant progress across various fields. For instance, Alvarez et al. [1] investigated the correlation properties and statistical characteristics of a novel distribution in the unit interval derived from transforming random variables with a semi-normal distribution. They employed maximum likelihood (ML) estimation to simulate correlation statistics and validate the superiority of this new distribution over other distributions defined within the unit interval. Mazucheli et al. [2] proposed a unit-Gompertz distribution model based on the unit interval, which can replace existing models such as unit-Birnbaum-Saunders, unit-Weibull, L-Logistic, Kumaraswamy, and Johnson SB distributions. The authors reparametrized the unit-Gompertz model to incorporate covariate effects across the response distribution. Okorie et al. [3] examined the regression model for the upper truncated Weibull distribution in the unit interval and extended it to include 0-1 inflation. They estimated parameters using ML estimation and demonstrated improved fitting performance of their proposed distribution using real data analysis. Shakhatreh et al. [4] explored Bayesian estimation (BE) for the logarithmic logical distribution in the unit interval by considering non-informative priors for parameter estimation and employing Monte Carlo simulations to evaluate Bayesian estimates' performance.
The compound Rayleigh distribution (CRD), being a significant probability distribution model in statistics, finds extensive applications in reliability testing, survival analysis, communication systems, and various other fields. It represents a novel type of distribution derived by fixing one parameter of the three-parameter Burr-XII distributions. Hence, studying the CRD holds immense significance. Currently, considerable progress has been made in statistical inference research on the CRD. For instance, Shao et al. [5] investigated the BE of CRD parameters using progressively type II censored data. Wang et al. [6] obtained ML estimates of CRD parameters based on complete samples and employed pivot parameter construction to derive inverse moment estimates for shape and scale parameters while utilizing Monte Carlo simulation for obtaining corresponding statistics. Badr [7] utilized the modified Kolmogorov-Smirnov test, Cramer-Von Mises test, and Anderson-Darling test to assess the goodness of fit of the CRD model under complete samples as well as type II censored samples. Barot and Patel [8] analyzed the BE of CRD based on progressively type II censored data.
The probability density function (PDF) and cumulative distribution function (CDF) of the CRD are respectively represented as follows:
f(t;β,θ)=2βtθ(1+t2θ)−(β+1),t>0,β,θ>0, | (1) |
F(t;β,θ)=1−(1+t2θ)−β,t>0,β,θ>0. | (2) |
Here, β is the shape parameter, and θ is the scale parameter.
In order to address the limitations of the conventional distribution model in describing bounded random variables within the interval (0, 1), this study proposes a novel probability distribution model known as the unit compound Rayleigh distribution (UCRD). The objective of this research is to analyze the mathematical and statistical properties of UCRD and explore its potential applications. This paper initially derives fundamental mathematical properties of UCRD, including PDF, CDF, survival function (SF), and hazard function (HF). Furthermore, it analyzes quantile function, moments, and order statistics of UCRD. Additionally, detailed expressions for five entropy measures under UCRD are derived. These entropy measures effectively quantify uncertainty in random variables and hold significant importance for data analysis and model selection. To accurately estimate parameters in the UCRD model, ML estimation and BE are employed due to their wide adaptability range, solid theoretical foundation, excellent properties, and practical value in statistics. Through Monte Carlo simulation experiments, this study evaluates the performance of different entropy measures based on ML estimation to verify their validity and reliability. Although some progress has been made regarding unit distribution models in existing literature, the research on CRD within a unit interval remains relatively scarce. The UCRD model proposed in this study possesses the advantages of flexibility, excellent fitting performance, easy implementation, and a solid theoretical foundation, thereby rendering it highly promising for extensive applications across various fields. In comparison with other models, UCRD exhibits superior capability in describing and predicting random variables within the interval (0, 1), thus not only enriching the theory of related models in probability theory and statistics but also providing a potent analytical tool for researchers and practitioners in relevant domains. Moreover, the UCRD model holds great potential for application in reliability analysis, survival analysis, and communication systems, among others. This study aims to introduce novel research ideas and methodologies to these fields to foster their further advancement.
The rest of this article is described below. In Section 2, we introduce the PDF, CDF, survival function, and HF of the UCRD. In Section 3, we derive the quantile function, moment-generating function, K-order incomplete moment, and other mathematical properties of UCRD. In Section 4, five entropy expressions of UCRD are derived. In Section 5, two methods of ML estimation and BE are used to obtain the parameter estimates of UCRD. In Section 6, the parameters of the UCRD model are estimated by Monte Carlo simulation combined with the estimation method used, and the estimated values, average bias (AB), corresponding mean square error (MSE), and mean relative estimate (MRE) of the parameters are obtained. Based on ML estimation, the average entropy estimate (AEE), average entropy bias (AEB), MSE, and MRE of each entropy are obtained to evaluate the performance of each entropy. In Section 7, two sets of real data are presented to test the validity of the UCRD model and various entropy measures. Section 8 provides relevant conclusions and future prospects.
Assuming T follows a CRD distribution with parameters β and θ, the new UCRD can be obtained by transforming T to T=X/(1−X) using Eqs (1) and (2), resulting in the following PDF and CDF, respectively:
g(x;β,θ)=2βxθ(1−x)3[1+1θ(x1−x)2]−(β+1),0<x<1,β,θ>0, | (3) |
G(x;β,θ)=1−[1+1θ(x1−x)2]−β,0<x<1,β,θ>0. | (4) |
When one parameter is held constant, the PDF plot of UCRD exhibits distinct variations as the value of another parameter undergoes transformation. Specifically, when the β value remains fixed, altering the θ value leads to an increasing trend within the range of (0, 0.5), followed by a decreasing trend within the range of (0.5, 1). Notably, this PDF plot demonstrates unimodality and overall symmetry throughout, as depicted in Figure 1.
The SF and HF are crucial analytical tools in the field of reliability analysis and survival analysis, utilized for examining the system's reliability, lifetime distribution, and event occurrence probability. Analyzing SF and HF enables us to assess system reliability and conduct risk assessment, among other applications. The expressions for SF and HF of UCRD are as follows:
S(x;β,θ)=1−G(x;β,θ)=[1+1θ(x1−x)2]−β, | (5) |
h(x;β,θ)=g(x;β,θ)S(x;β,θ)=2βxθ(1−x)3[1+1θ(x1−x)2]−1. | (6) |
As the β and θ values change, it is evident from Figure 2 that the HF curve of UCRD always shows a clear upward trend, thus demonstrating the remarkable flexibility of UCRD.
The cumulative HF and the reverse HF are two important concepts in the fields of reliability engineering and survival analysis. They provide assessments and predictions of the probability of system failure and failure times, which aid in optimizing system design, maintenance, and decision-making processes. Below, we present the CDF and the reverse HF for the UCRD, respectively:
H(x;β,θ)=−ln[S(x;β,θ)]=βln[1+1θ(x1−x)2], | (7) |
r(x;β,θ)=g(x;β,θ)G(x;β,θ)=2βx[1+1θ(x1−x)2]−(β+1)θ(1−x)3{1−[1+1θ(x1−x)2]−β}. | (8) |
In this section, we present various statistical properties of UCRD, including the quantile function, K-order moment, mean value, variance, etc. Through analyzing these statistics, we can gain a deeper understanding of the characteristics and properties of the dataset and evaluate the performance of the UCRD model. These statistical properties have significant applications in data analysis, modeling, and inference fields; they provide us with robust tools and guidance for interpreting and utilizing data more effectively.
In the field of statistics and probability theory, the quantile function is extensively utilized to assess the distribution pattern, central tendency, and dispersion of data. It serves as a crucial tool in characterizing positional information within a probability distribution, enabling us to determine the values taken by a random variable at a given probability. The quantile function plays an integral role in data analysis by facilitating our understanding of dataset distribution patterns, identifying outliers, and executing statistical inference and prediction operations. By analyzing the quantile function, we can extract vital insights regarding data location and distribution. The derivation process for obtaining the quantile function pertaining to UCRD involves employing Eq (4) as outlined below:
R(w)=[G(x;β,θ)]−1=1−{1+[θ(1−w)−1β−θ]12}−1,0<w<1, | (9) |
where w represents the probability value, which is within the range of (0, 1). The first quantile, median, and third quantile represent the quantiles corresponding to w=14,12,34, respectively.
Skewness and kurtosis play a crucial role in data analysis, providing valuable insights into the shape of the data distribution. They are utilized to assess the degree of asymmetry, peakedness, and deviation from theoretical distributions. Moreover, they serve as indicators for testing the normality assumption of the data distribution and selecting appropriate statistical models to gain a comprehensive understanding of its distributional characteristics. Let CSk represent skewness and CKu represent kurtosis in the UCRD.
CSk=R(1/4)+R(3/4)−2R(1/2)R(3/4)−R(1/4), CKu=R(7/8)−R(5/8)+R(3/8)−R(1/8)R(6/8)−R(2/8). |
Assuming the random variable X is distributed with UCRD, the k-th moment of X can be expressed as:
μk=E[Xk]=∫10xkg(x;β,θ)dx =∫10xk2βxθ(1−x)3[1+1θ(x1−x)2]−(β+1)dx. | (10) |
Let z=x1−x, then x=z1+z=1−11+z. Hence xk=(1−11+z)k=k∑i=0(−1)i(ki)(1+z)−i.
Thus
μk=E[Xk]=∫10xkg(x;β,θ)dx =∫∞0(1−11+z)k2βzθ(1+z2θ)−(β+1)dz =∫∞0k∑i=0(−1)i(ki)(1+z)−i2βzθ(1+z2θ)−(β+1)dz =2βθk∑i=0(−1)i(ki)∫∞0z(1+z)−i(1+z2θ)−(β+1)dz =2βθk∑i=0(−1)i(ki)λi(z;β,θ). | (11) |
Here, λi(z;β,θ)=∫∞0z(1+z)−i(1+z2θ)−(β+1)dz. As can be seen from Eq (11), the mean and variance of X are:
μ1=2βθ1∑i=0(−1)i(1i)λi(z;β,θ), | (12) |
σ2=2βθ2∑i=0(−1)i(2i)λi(z;β,θ)−[2βθ1∑j=0(−1)j(1j)λj(z;β,θ)]2. | (13) |
Therefore, the coefficient of variation (CV) for Z is CV=σμ1. The expression for the moment-generating function of X is as indicated below:
MX(t)=E[etx]=∫10etxg(x;β,θ)dx =∫10etx2βxθ(1−x)3[1+1θ(x1−x)2]−(β+1)dx =∫10∞∑m=0(tx)mm!2βxθ(1−x)3[1+1θ(x1−x)2]−(β+1)dx =∞∑m=0tmm!∫10xm2βxθ(1−x)3[1+1θ(x1−x)2]−(β+1)dx =2βθm∑i=0∞∑m=0(−1)i(mi)tmm!λi(z;β,θ). | (14) |
Table 1 presents the measured values of different statistical properties of the UCRD for various parameter values, and Figure 3 provides a 3D image of the statistical properties of the UCRD.
β | θ | μ1 | σ2 | CV | CSk | Cku |
0.2 | 0.5 | 0.7359 | 0.0583 | 0.3281 | −0.1962 | 0.9496 |
0.5 | 0.5566 | 0.0515 | 0.4079 | 0.0447 | 1.1493 | |
0.9 | 0.4445 | 0.0369 | 0.4322 | 0.0482 | 1.2148 | |
1.3 | 0.3831 | 0.0282 | 0.4380 | 0.0401 | 1.2202 | |
0.2 | 1 | 0.7811 | 0.0465 | 0.2759 | −0.2559 | 1.0234 |
0.5 | 0.6232 | 0.0464 | 0.3457 | −0.0139 | 1.1506 | |
0.9 | 0.5180 | 0.0373 | 0.3728 | 0.0004 | 1.2073 | |
1.3 | 0.4571 | 0.0307 | 0.3836 | −0.0018 | 1.2138 | |
0.2 | 1.5 | 0.8056 | 0.0400 | 0.2481 | −0.2848 | 1.0685 |
0.5 | 0.6608 | 0.0427 | 0.3126 | −0.0460 | 1.1603 | |
0.9 | 0.5608 | 0.0364 | 0.3404 | −0.0274 | 1.2103 | |
1.3 | 0.5013 | 0.0313 | 0.3531 | −0.0270 | 1.2158 | |
0.2 | 2 | 0.8220 | 0.0356 | 0.2296 | −0.3028 | 1.1005 |
0.5 | 0.6864 | 0.0397 | 0.2904 | −0.0674 | 1.1705 | |
0.9 | 0.5908 | 0.0354 | 0.3184 | −0.0468 | 1.2155 | |
1.3 | 0.5327 | 0.0313 | 0.3322 | −0.0449 | 1.2200 |
The computation of moments for a random variable in the field of statistics and probability theory considers only a subset of possible values, rather than encompassing all potential values. This is particularly relevant when dealing with random variables that have an extensive or infinite range. However, practical applications often face limitations in data collection or computational complexity, making it impractical to calculate or estimate moments of all orders. Consequently, incomplete moments are sometimes considered for random variables to simplify the problem and reduce computational complexity. The k-th incomplete moment of the random variable X can be defined using the following formula:
mk(x)=∫x0skg(s;β,θ)ds. |
Therefore, the k-th incomplete moment of X is:
mk(x)=∫x0sk2βs(1−s)3θ[1+1θ(s1−s)2]−(β+1)ds =2βθk∑i=0(−1)i(ki)ηi(z;β,θ). | (15) |
Here, ηi(z;β,θ)=∫x1−x0z(1+z)−i(1+z2θ)−(β+1)dz.
The Lorenz curve is a graphical tool commonly used in economics and statistics to describe the degree of inequality in the distribution of income or wealth. Proposed by the American economist Lorenz in 1905, it is widely used in the fields of economics, sociology, and policy analysis to study and compare the income or wealth distribution of different groups, countries, or regions, and to assess the severity of inequality. The Lorenz curve can provide quantitative information and intuitive graphical presentations to help researchers and policymakers better understand and deal with inequality. The Lorenz curve for X with UCRD is given below:
L(x)=1μ1∫x0sf(s)ds=m1(x)μ1 =2βθ1∑i=0(−1)i(1i)ηi(z;β,θ)2βθ1∑i=0(−1)i(1i)λi(z;β,θ) =ηi(z;β,θ)λi(z;β,θ). | (16) |
The Bonferroni curve is also a relative index reflecting income inequality, and it is a slight modification of the Lorenz curve. Its definition is the ratio of the Lorenz curve to the CDF, that is:
B(x)=L(x)G(x;β,θ) =ηi(z;β,θ)λi(z;β,θ)1−[1+1θ(x1−x)2]−β =∫x1−x0z(1+z)−i(1+z2θ)−(β+1)dz∫∞0z(1+z)−i(1+z2θ)−(β+1)dz{1−[1+z2θ]−β}. | (17) |
Let (X1,X2,⋯,Xn) be a random sample drawn from the population X and denote (x1,x2,⋯,xn) as the observed values of the sample. When the sample is arranged in ascending order from smallest to largest, we obtain (X(1),X(2),⋯,X(n)), and (x(1),x(2),⋯,x(n)) are the observed values of (X(1),X(2),⋯,X(n)). These are referred to as the order statistics of the sample (X1,X2,⋯,Xn), where X(k) is the k-th order statistic of the random sample. Consequently, the PDF for the k-th order statistic X(k) of the UCRD is given by:
g(k)(x;β,θ)=n!(k−1)!(n−k)!g(x)[G(x)]k−1[1−G(x)]n−k =n!(k−1)!(n−k)!2βxθ(1−x)3[1+1θ(x1−x)2]−(β+1)×{1−[1+1θ(x1−x)2]−β}k−1[1+1θ(x1−x)2]−β(n−k) =n!(k−1)!(n−k)!2βxθ(1−x)3[1+1θ(x1−x)2]β(k−n−1)−1{1−[1+1θ(x1−x)2]−β}k−1. | (18) |
The CDF for the k-th order statistic X(k) of the UCRD is given by:
G(k)(x;β,θ)=n∑m=kGm(x)[1−G(x)]n−m =n∑m=k{1−[1+1θ(x1−x)2]−β}m[1+1θ(x1−x)2]−β(n−m). | (19) |
However, X(n)=max{x1,x2,⋯,xn}, thus the PDF of X(n) is:
g(n)(x;β,θ)=2nβxθ(1−x)3[1+1θ(x1−x)2]−β−1{1−[1+1θ(x1−x)2]−β}n−1. | (20) |
Due to X(1)=min{x1,x2,⋯,xn}, the PDF of X(1) is:
g(1)(x;β,θ)=2nβxθ(1−x)3[1+1θ(x1−x)2]−βn−1. | (21) |
Entropy measure, as a fundamental concept in information theory, is utilized to quantify the uncertainty or informational content of random variables. It serves as a metric that characterizes the probability distribution of a random variable and is employed to depict the level of uncertainty associated with said distribution. A higher entropy measure indicates greater uncertainty and thus more information contained within the random variable. Conversely, a lower entropy measure signifies reduced uncertainty and consequently less information present. This notion finds extensive applications in diverse fields such as information theory, data analysis, pattern recognition, signal processing, and machine learning. Currently, numerous researchers have made notable advancements in exploring entropy measures. For instance, Kashyap et al. [9] proposed an innovative entropy measure specifically tailored for Pythagorean fuzzy sets by axiomatically defining it and introducing key properties related to it. Sayyari and Barsam [10] investigated novel practical inequalities for extended entropy and relative entropy across various parameters. Abd El-Raouf and AbaOud [11] analyzed different entropy indices of unit generalized Rayleigh distributions while employing Monte Carlo simulation techniques to estimate their performance under this particular model.
Shannon entropy, also known as information entropy, is extensively utilized in various fields including communication, data compression, channel capacity, and cryptography to quantify the average amount of information, data compression rate, and security of cryptographic systems. Moreover, Shannon entropy plays a crucial role in statistics, machine learning, and data analysis where it finds applications in tasks such as feature selection, cluster analysis, and pattern recognition. Wang et al. [12] comprehensively investigated the impact of temperature and quantum confidence on the Shannon entropy of hydrogen impurity states in gallium arsenide quantum wells. Nascimento et al. [13] employed Shannon entropy to explore electrons confined in a double quantum dot system by mapping changes in spatial entropy parameters as an indicator of decoupling/coupling extent between twin quantum dots. Piga et al. [14] proposed a fast semi-analytic estimator for sparse sampling distributions using a hierarchical Bayesian approach to estimate Shannon entropy. Formentin et al. [15] discussed the concept of entropy along with degree-based indices for characterizing the chemical structure of iron chloride while utilizing these indices to calculate Shannon's entropy. Below, we present the expression for Shannon entropy under the UCRD:
HS=−∫10g(x;β,θ)ln[g(x;β,θ)]dx =−ln(2βθ)−E[ln(x(1−x)3)]+(β+1)E[ln(1+1θ(x1−x)2)]. | (22) |
Rényi entropy, proposed by Rényi in 1960 as a generalization of Shannon entropy, measures the uncertainty and diversity of random variables [16]. When the parameter α=1, Rényi entropy transforms into the form of Shannon entropy. Recent progress has been made on Rényi entropy. Zhong [17] investigated the replication technique and homogenization mapping for calculating the heat of Rényi entropy in individual intervals on cylinder calibration. Baharith [18] discussed the basic statistical properties of the Chweeble inverse Gompertz distribution, including the reliability function, moments, Rényi entropy, and order statistics. Below is the expression for Rényi entropy under UCRD:
HR=11−αln[∫10gα(x;β,θ)dx],α≠1,α>0 =11−αln{∫10{2βxθ(1−x)3[1+1θ(x1−x)2]−(β+1)}αdx} =11−αln{∫10(2βθ)α[x(1−x)3]α[1+1θ(x1−x)2]−α(β+1)dx}. | (23) |
Havrda-Charvat entropy, also known as Tsallis entropy in the context of non-extensive thermodynamics, is a generalized concept that expands on Shannon entropy. It was introduced by Havrda and Charvat in 1967 and has found applications in various fields such as pattern recognition, image processing, and data clustering. Compared to Shannon entropy, Havrda-Charvat entropy offers a more flexible and comprehensive set of measures that effectively describe complex systems with non-standard probability distributions. Shi et al. [19] proposed a novel complexity measurement method called weighted Havrda-Charvat entropy based on permutation patterns and the Havrda-Charvat entropy itself to differentiate uncertainty among time series possessing identical pattern orders. Brochet et al. [20] conducted a quantitative comparison of loss functions by implementing parametric Tsallis-Havrda-Charvat entropy alongside conventional Shannon entropy for training deep learning networks in medical imaging tasks constrained by limited data volumes. Wang and Shang [21] utilized the Havrda-Charvat entropy plane to analyze complexity features within time series data while Brochet et al. [22] designed a classifier using convolutional neural networks with a novel loss function based on Havrda-Charvat entropy for analyzing various types of data. Below, we present the expression for Havrda-Charvat entropy under the UCRD:
HH=121−α−1[∫10gα(x;β,θ)dx−1],α≠1,α>0 =121−α−1{∫10(2βθ)α[x(1−x)3]α[1dx−1}. | (24) |
The Arimoto entropy is a measure in information theory that quantifies the correlation or mutual information between random variables. It was introduced by the Japanese scientist Arimoto in 1972 and is based on relative entropy, which measures the discrepancy between probability distributions. The Arimoto entropy has wide applications in fields such as information theory, pattern recognition, machine learning, and communications. It can be utilized for tasks including feature selection, cluster analysis, information encoding, and channel capacity to comprehend and quantify relationships and information transfer between random variables. Li et al. [23] proposed a novel objective non-reference metric for evaluating image fusion by leveraging the properties of Arimoto entropy in their calculations. Additionally, Li et al. [24] introduced a new method for non-rigid registration of medical images that employs the Arimoto entropy of gradient distribution as an information-theoretic metric. Almarashi [25] and Abd El-Raouf and AbaOud [26] conducted research on the statistical properties of Rényi entropy, Shannon entropy, Havrda-Charvat entropy, and Arimoto entropy under different distributional settings. Below, we present the expression for Arimoto entropy under the UCRD:
HA=α1−α{[∫10gα(x;β,θ)dx]1α−1},α≠1,α>0 =α1−α{{∫10(2βθ)α[x(1−x)3]α[1+1θ(x1−x)2]−α(β+1)dx}1α−1}. | (25) |
Almanjahie et al. [27] studied the fundamental properties of Mathai-Haubold entropy through order statistics and evaluated the performance of magnitude-based Mathai-Haubold entropy via simulation. Additionally, Asgharzadeh et al. [28] analyzed various properties of a generalization of the Lindley distribution and derived estimates of the Rényi entropy and Mathai-Haubold entropy for this distribution. Below, we present the expression for Mathai-Haubold entropy under the UCRD:
HM=1α−1[∫10g(2−α)(x;β,θ)dx−1],α≠1,α<2 =1α−1{∫10(2βθ)2−α[x(1−x)3]2−α[1+1θ(x1−x)2]−(2−α)(β+1)dx−1}. | (26) |
Let (x1,x2,⋯,xn) be an observation of a random sample (X1,X2,⋯,Xn) drawn from the UCRD. The corresponding likelihood function is:
L(x;β,θ)=n∏i=1g(x;β,θ) =n∏i=12βxiθ(1−xi)3[1+1θ(xi1−xi)2]−(β+1) =(2βθ)nn∏i=1xi(1−xi)3[1+1θ(xi1−xi)2]−(β+1). | (27) |
The log-likelihood function is:
l(x;β,θ)=nln(2βθ)+n∑i=1ln[xi(1−xi)3]−(β+1)n∑i=1ln[1+1θ(xi1−xi)2]. | (28) |
By taking the partial derivatives of the log-likelihood function with respect to the parameters β and θ, we obtain the likelihood Eqs (29) and (30):
∂l(x;β,θ)∂β=nβ−n∑i=1ln[1+1θ(xi1−xi)2], | (29) |
∂l(x;β,θ)∂θ=−nθ+(β+1)n∑i=1(xi1−xi)2θ2+θ(xi1−xi)2. | (30) |
By solving the likelihood Eqs (29) and (30), we can obtain the ML estimates for β and θ. However, these equations cannot be directly solved analytically, so we consider using numerical methods such as the Newton-Raphson iteration or dichotomy method to obtain the ML estimates for β and θ. Due to the invariance of ML estimation, the parameter estimates ˆβ, ˆθ obtained through numerical methods can be substituted back into Eqs (22)−(26) to obtain the ML estimates for the corresponding entropies ˆHS,ˆHR,ˆHH,ˆHA,ˆHM.
In this section, we use BE to estimate the parameters of the URED model under the squared error loss function. BE, as a traditional estimation method, is based on Bayes theorem to estimate the probability of unknown parameters in the case of given observation data. It has a better property than ML estimation, using prior knowledge and sample size to get more accurate parameter estimation. Assuming that β and θ are independent random variables and follow Γ(σ1,ω1) and Γ(σ2,ω2), respectively, the density functions of β and θ are:
π(β|σ1,ω1)=ωσ11Γ(σ1)βσ1−1e−ω1β,σ1>0,ω1>0, | (31) |
π(θ|σ2,ω2)=ωσ22Γ(σ2)θσ2−1e−ω2θ,σ2>0,ω2>0. | (32) |
Then, the joint prior distribution of β and θ is:
π(β,θ)=ωσ11ωσ22Γ(σ1)Γ(σ2)βσ1−1θσ2−1e−ω1β−ω2θ. | (33) |
According to Bayes' theorem, the joint posterior density of β and θ is:
π(β,θ|x)=L(β,θ|x)π(β,θ)∫∞0∫∞0L(β,θ|x)π(β,θ)dβdθ ∝βn+σ1−1θ−n+σ2−1e−ω1β−ω2θn∏i=1xi(1−xi)3[1+1θ(xi1−xi)2]−(β+1). | (34) |
In order to quantify the cost loss resulting from errors in the estimation process, it is customary to introduce a loss function aimed at minimizing the expected loss. In this study, we explore the utilization of both square error loss functions (SELF) for parameter estimation in UCRD models. The SELF is formally defined as [29]:
L(ϕ,ˆϕ)=(ϕ−ˆϕ)2. |
Where ˆϕ represents the ML estimate for the parameter ϕ.
Thus, the Bayesian estimator under the SELF is:
ˆϕ(β,θ)=E[ϕ|x]=∫∞0∫∞0ϕ(β,θ)π(β,θ|x)dβdθ. | (35) |
The non-explicit form of Eq (35) makes direct calculation more intricate, leading us to consider employing the Lindley approximation algorithm for parameter estimation. The definition of Lindley's approximation is obtained from [30]:
I(x)=E[ϕ(β,θ)|x]=∫∞0∫∞0ϕ(β,θ)eh(β,θ)+l(β,θ|x)dβdθ∫∞0∫∞0eh(β,θ)+l(β,θ|x)dβdθ. | (36) |
Where ϕ(β,θ) represents the parameter vector, h(β,θ)=lnπ(β,θ), if the sample size is sufficiently large, Eq (36) can be further simplified to the following expression:
I(x)=ϕ(ˆβ,ˆθ)+12[(ˆϕββ+2ˆϕβˆhβ)ˆλ11+(ˆϕθβ+2ˆϕθˆhβ)ˆλ21+(ˆϕβθ+2ˆϕβˆhθ)ˆλ12 +(ˆϕθθ+2ˆϕθˆhθ)ˆλ22]+12[(ˆϕβˆλ11+ˆϕθˆλ12)(ˆlβββˆλ11+ˆlβθβˆλ12+ˆlθββˆλ21+ˆlθθβˆλ22) +(ˆϕβˆλ21+ˆϕθˆλ22)(ˆlθββˆλ11+ˆlβθθˆλ12+ˆlθβθˆλ21+ˆlθθθˆλ22)]. | (37) |
Where ˆβ and ˆθ are ML estimates of β and θ, and the subscripts represent partial derivatives of variables, such as ϕβ representing the first derivative of β in ϕ(β,θ); similarly, the others are similar representations, λi,j representing the (i, j) element of [−∂2l(β,θ|x)∂β∂θ]−1, (i, j = 1, 2). Then, there is:
ˆhβ=σ1−1ˆβ−ω1,ˆhθ=σ2−1ˆθ−ω2. | (38) |
ˆlββ=∂2l(β,θ|x)∂β2|β=ˆβ=−nˆβ2,ˆlβθ=∂2l(β,θ|x)∂β∂θ|β=ˆβ,θ=ˆθ=∑ni=1(xi1−xi)2ˆθ2+ˆθ(xi1−xi)2=ˆlθβ. | (39) |
ˆlθθ=∂2l(β,θ|x)∂θ2|θ=ˆθ=nˆθ2−(ˆβ+1)∑ni=1(xi1−xi)2[2ˆθ+(xi1−xi)2][ˆθ2+ˆθ(xi1−xi)2]2. | (40) |
ˆlβββ=∂3l(β,λ|x)∂β3|β=ˆβ=2nˆβ3,ˆlββθ=∂3l(β,λ|x)∂β2∂θ|β=ˆβ,θ=ˆθ=0=ˆlθββ. | (41) |
ˆlθθθ=∂3l(β,λ|x)∂θ3|θ=ˆθ=−2nˆθ3−2(ˆβ+1)∑ni=1(xi1−xi)2[ˆθ2+ˆθ(xi1−xi)2]2 +2(ˆβ+1)∑ni=1(xi1−xi)2[2ˆθ+(xi1−xi)2]2[ˆθ2+ˆθ(xi1−xi)2]3. | (42) |
ˆlθθβ=∂3l(β,λ|x)∂θ2∂β|β=ˆβ,θ=ˆθ=−∑ni=1(xi1−xi)2[2ˆθ+(xi1−xi)2][ˆθ2+ˆθ(xi1−xi)2]2=ˆlθβθ. | (43) |
When we calculate the estimate of β under SELF, where ϕ(β,θ)=β, we have
ϕβ=1,ϕθ=ϕββ=ϕβθ=ϕθβ=ϕθθ=0. | (44) |
Bring the Eqs (38)−(44) into the Eq (37) to get the following formula:
ˆβBE=ˆβ+ˆhβˆλ11+ˆhθˆλ12+12[ˆλ11(ˆlβββˆλ11+ˆlθθβˆλ22)+ˆλ21(ˆlβθθˆλ12+ˆlθβθˆλ21+ˆlθθθˆλ22)]. |
When we calculate the estimate of θ under SELF, where ϕ(β,θ)=θ, we have
ϕθ=1,ϕβ=ϕββ=ϕβθ=ϕθβ=ϕθθ=0. (45)
Bring the Eqs (38)−(43) and Eq (45) into the Eq (37) to get the following formula:
ˆθBE=ˆθ+ˆhβˆλ21+ˆhθˆλ22+12[ˆλ12(ˆlβββˆλ11+ˆlθθβˆλ22)+ˆλ22(ˆlβθθˆλ12+ˆlθβθˆλ21+ˆlθθθˆλ22)]. |
In this section, we utilize the Monte Carlo simulation method in conjunction with the estimation technique employed in this study and MATLAB software to compute the mean square error (MSE), mean bias (AB), and mean relative estimate (MRE) of the parameters of the UCRD model. Initially, we set β=0.3,θ=0.1 as the initial parameter values, while σ1=ω1=σ2=ω2=1 serve as hyperparameters. We consider sample sizes of n = 30, 50, 80, and 100 for which we conduct 1000 repeated tests per sample size; the main code can be found in Appendix A. The specific results are presented in Table 2.
Based on ML estimation, we estimate different entropy measures under UCRD to evaluate and compare their performance. First, we set the initial values of the parameters as β=0.35,0.75,1.25,1.65, θ=0.5,1,1.5,2, and the entropy parameter α=0.5,1.5, and obtain the estimates of different entropy measures under UCRD (see Tables 3 and 4). Then, we further set the initial values of the parameters to β=0.5,θ=0.3 and β=0.75,θ=0.4, and set the entropy parameters α=0.8,1.2,1.5,1.7. For the sample size n = 30, 50, 80, 100, we conducted 1000 repetitions. Based on these experiments, we used MATLAB software to calculate the AEEs, AEBs, and corresponding MSEs and MREs of the parameters and five entropy measures under UCRD (see Tables 5−8). The main code is in Appendix B.
n | ML | Lindley | |||
β | θ | β | θ | ||
30 | AE | 0.3360 | 0.1489 | 0.3431 | 0.1560 |
MSE | 0.0109 | 0.0156 | 0.0115 | 0.0164 | |
AB | 0.0702 | 0.0762 | 0.0726 | 0.0780 | |
MRE | 0.1199 | 0.4890 | 0.1436 | 0.5602 | |
50 | AE | 0.3126 | 0.1169 | 0.3168 | 0.1211 |
MSE | 0.0040 | 0.0043 | 0.0041 | 0.0045 | |
AB | 0.0466 | 0.0459 | 0.0473 | 0.0463 | |
MRE | 0.0420 | 0.1691 | 0.0561 | 0.2113 | |
80 | AE | 0.3091 | 0.1103 | 0.3117 | 0.1130 |
MSE | 0.0023 | 0.0023 | 0.0024 | 0.0024 | |
AB | 0.0369 | 0.0347 | 0.0372 | 0.0350 | |
MRE | 0.0302 | 0.1034 | 0.0390 | 0.1298 | |
100 | AE | 0.3077 | 0.1094 | 0.3098 | 0.1115 |
MSE | 0.0018 | 0.0020 | 0.0019 | 0.0021 | |
AB | 0.0329 | 0.0328 | 0.0333 | 0.0330 | |
MRE | 0.0256 | 0.0936 | 0.0326 | 0.1148 |
β | θ | HS | HR | HH | HA | HM |
0.35 | 0.5 | −0.1593 | −0.1012 | −0.1191 | −0.0963 | −0.2134 |
0.75 | −0.1978 | −0.1193 | −0.1398 | −0.1125 | −0.2701 | |
1.25 | −0.3718 | −0.2497 | −0.2833 | −0.2210 | −0.4986 | |
1.65 | −0.4801 | −0.3448 | −0.3823 | −0.2916 | −0.6413 | |
0.35 | 1 | −0.2691 | −0.1708 | −0.1976 | −0.1570 | −0.3726 |
0.75 | −0.2074 | −0.1289 | −0.1507 | −0.1209 | −0.2788 | |
1.25 | −0.3205 | −0.2103 | −0.2410 | −0.1897 | −0.4297 | |
1.65 | −0.3994 | −0.2783 | −0.3136 | −0.2429 | −0.5310 | |
0.35 | 1.5 | −0.3520 | −0.2238 | −0.2556 | −0.2005 | −0.4984 |
0.75 | −0.2361 | −0.1496 | −0.1740 | −0.1390 | −0.3155 | |
1.25 | −0.3146 | −0.2044 | −0.2345 | −0.1849 | −0.4234 | |
1.65 | −0.3761 | −0.2573 | −0.2914 | −0.2268 | −0.5020 | |
0.35 | 2 | −0.4187 | −0.2668 | −0.3016 | −0.2342 | −0.6032 |
0.75 | −0.2666 | −0.1711 | −0.1979 | −0.1573 | −0.3560 | |
1.25 | −0.3212 | −0.2078 | −0.2383 | −0.1877 | −0.4340 | |
1.65 | −0.3706 | −0.2504 | −0.2841 | −0.2215 | −0.4970 |
β | θ | HS | HR | HH | HA | HM |
0.35 | 0.5 | −0.1593 | −0.2028 | −0.3643 | −0.2098 | −0.0987 |
0.75 | −0.1978 | −0.2533 | −0.4610 | −0.2643 | −0.1159 | |
1.25 | −0.3718 | −0.4452 | −0.8512 | −0.4799 | −0.2347 | |
1.65 | −0.4801 | −0.5562 | −1.0947 | −0.6111 | −0.3167 | |
0.35 | 1 | −0.2691 | −0.3417 | −0.6361 | −0.3619 | −0.1637 |
0.75 | −0.2074 | −0.2610 | −0.4759 | −0.2726 | −0.1248 | |
1.25 | −0.3205 | −0.3892 | −0.7336 | −0.4156 | −0.1997 | |
1.65 | −0.3994 | −0.4710 | −0.9065 | −0.5099 | −0.2598 | |
0.35 | 1.5 | −0.3520 | −0.4450 | −0.8509 | −0.4797 | −0.2117 |
0.75 | −0.2361 | −0.2930 | −0.5386 | −0.3078 | −0.1442 | |
1.25 | −0.3146 | −0.3840 | −0.7227 | −0.4097 | −0.1943 | |
1.65 | −0.3761 | −0.4479 | −0.8570 | −0.4830 | −0.2414 | |
0.35 | 2 | −0.4187 | −0.5272 | −1.0297 | −0.5763 | −0.2498 |
0.75 | −0.2666 | −0.3277 | −0.6078 | −0.3462 | −0.1640 | |
1.25 | −0.3212 | −0.3927 | −0.7408 | −0.4196 | −0.1974 | |
1.65 | −0.3706 | −0.4439 | −0.8484 | −0.4784 | −0.2354 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.5000 | 0.3000 | 0.1075 | 0.0920 | 0.1226 | 0.0910 | 0.1229 | |
30 | AEE | 0.5662 | 0.4234 | 0.1397 | 0.1203 | 0.1596 | 0.1182 | 0.1598 |
MSE | 0.0469 | 0.1369 | 0.0044 | 0.0036 | 0.0060 | 0.0033 | 0.0060 | |
AEB | 0.1370 | 0.2059 | 0.0464 | 0.0399 | 0.0523 | 0.0386 | 0.0526 | |
MRE | 0.1324 | 0.4115 | 0.0291 | 0.3080 | 0.3014 | 0.2998 | 0.3001 | |
50 | AEE | 0.5436 | 0.3647 | 0.1287 | 0.1103 | 0.1465 | 0.1086 | 0.1469 |
MSE | 0.0226 | 0.0430 | 0.0025 | 0.0018 | 0.0030 | 0.0016 | 0.0031 | |
AEB | 0.0989 | 0.1296 | 0.0355 | 0.0293 | 0.0385 | 0.0285 | 0.0393 | |
MRE | 0.0873 | 0.2158 | 0.1972 | 0.1984 | 0.1947 | 0.1938 | 0.1953 | |
80 | AEE | 0.5254 | 0.3400 | 0.1199 | 0.1035 | 0.1377 | 0.1021 | 0.1381 |
MSE | 0.0099 | 0.0199 | 0.0012 | 0.0009 | 0.0016 | 0.0009 | 0.0017 | |
AEB | 0.0735 | 0.0996 | 0.0259 | 0.0221 | 0.0291 | 0.0215 | 0.0301 | |
MRE | 0.0507 | 0.1334 | 0.1151 | 0.1253 | 0.1232 | 0.1227 | 0.1238 | |
100 | AEE | 0.5149 | 0.3232 | 0.1179 | 0.0998 | 0.1328 | 0.0985 | 0.1332 |
MSE | 0.0073 | 0.0146 | 0.0009 | 0.0007 | 0.0012 | 0.0006 | 0.0007 | |
AEB | 0.0636 | 0.0863 | 0.0225 | 0.0190 | 0.0250 | 0.0185 | 0.0260 | |
MRE | 0.0298 | 0.0774 | 0.0968 | 0.0845 | 0.0827 | 0.0827 | 0.0838 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.5000 | 0.3000 | 0.1075 | 0.1214 | 0.1899 | 0.1226 | 0.0912 | |
30 | AEE | 0.5662 | 0.4234 | 0.1393 | 0.1588 | 0.2500 | 0.1613 | 0.1199 |
MSE | 0.0469 | 0.1369 | 0.0044 | 0.0060 | 0.0155 | 0.0064 | 0.0036 | |
AEB | 0.1370 | 0.2059 | 0.0460 | 0.0545 | 0.0872 | 0.0561 | 0.0416 | |
MRE | 0.1324 | 0.4115 | 0.2957 | 0.3078 | 0.3166 | 0.3151 | 0.3155 | |
50 | AEE | 0.5436 | 0.3647 | 0.1292 | 0.1448 | 0.2273 | 0.1467 | 0.1091 |
MSE | 0.0226 | 0.0430 | 0.0025 | 0.0030 | 0.0078 | 0.0032 | 0.0018 | |
AEB | 0.0989 | 0.1296 | 0.0356 | 0.0391 | 0.0624 | 0.0402 | 0.0295 | |
MRE | 0.0873 | 0.2158 | 0.2023 | 0.1925 | 0.1974 | 0.1965 | 0.1972 | |
80 | AEE | 0.5254 | 0.3400 | 0.1203 | 0.1346 | 0.2109 | 0.1362 | 0.1013 |
MSE | 0.0099 | 0.0199 | 0.0012 | 0.0015 | 0.0038 | 0.0016 | 0.0008 | |
AEB | 0.0735 | 0.0996 | 0.0257 | 0.0281 | 0.0446 | 0.0287 | 0.0208 | |
MRE | 0.0507 | 0.1334 | 0.1191 | 0.1084 | 0.1110 | 0.1105 | 0.1109 | |
100 | AEE | 0.5149 | 0.3232 | 0.1171 | 0.1307 | 0.2047 | 0.1322 | 0.0983 |
MSE | 0.0073 | 0.0146 | 0.0008 | 0.0011 | 0.0028 | 0.0012 | 0.0006 | |
AEB | 0.0636 | 0.0863 | 0.0217 | 0.0249 | 0.0395 | 0.0255 | 0.0183 | |
MRE | 0.0298 | 0.0774 | 0.0898 | 0.0762 | 0.0780 | 0.0777 | 0.0782 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.7500 | 0.4000 | 0.2054 | 0.2636 | 0.4810 | 0.2755 | 0.1195 | |
30 | AEE | 0.9566 | 0.6359 | 0.2382 | 0.3036 | 0.5650 | 0.3215 | 0.1477 |
MSE | 0.3901 | 0.4698 | 0.0091 | 0.0121 | 0.0497 | 0.0152 | 0.0049 | |
AEB | 0.3230 | 0.3461 | 0.0720 | 0.0858 | 0.1713 | 0.0953 | 0.0514 | |
MRE | 0.2755 | 0.5896 | 0.1597 | 0.1518 | 0.1746 | 0.1667 | 0.2361 | |
50 | AEE | 0.8346 | 0.5004 | 0.2245 | 0.2829 | 0.5217 | 0.2977 | 0.1335 |
MSE | 0.0833 | 0.0990 | 0.0050 | 0.0063 | 0.0250 | 0.0077 | 0.0023 | |
AEB | 0.1898 | 0.1985 | 0.0543 | 0.0618 | 0.1219 | 0.0680 | 0.0359 | |
MRE | 0.1128 | 0.2509 | 0.0929 | 0.0732 | 0.0846 | 0.0806 | 0.1176 | |
80 | AEE | 0.8075 | 0.4647 | 0.2172 | 0.2797 | 0.5141 | 0.2937 | 0.1303 |
MSE | 0.0350 | 0.0417 | 0.0028 | 0.0035 | 0.0136 | 0.0042 | 0.0012 | |
AEB | 0.1332 | 0.1428 | 0.0406 | 0.0461 | 0.0906 | 0.0506 | 0.0265 | |
MRE | 0.0767 | 0.1618 | 0.0572 | 0.0611 | 0.0687 | 0.0661 | 0.0905 | |
100 | AEE | 0.7893 | 0.4444 | 0.2170 | 0.2749 | 0.5044 | 0.2884 | 0.1272 |
MSE | 0.0225 | 0.0248 | 0.0023 | 0.0027 | 0.0104 | 0.0032 | 0.0009 | |
AEB | 0.1127 | 0.1167 | 0.0378 | 0.0411 | 0.0805 | 0.0450 | 0.0234 | |
MRE | 0.0523 | 0.1110 | 0.0564 | 0.0429 | 0.0485 | 0.0466 | 0.0649 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.7500 | 0.4000 | 0.2054 | 0.2823 | 0.5684 | 0.2994 | 0.0781 | |
30 | AEE | 0.9507 | 0.6352 | 0.2435 | 0.3191 | 0.6599 | 0.3436 | 0.0988 |
MSE | 0.4225 | 0.4765 | 0.0097 | 0.0122 | 0.0673 | 0.0164 | 0.0028 | |
AEB | 0.3187 | 0.3430 | 0.0732 | 0.0855 | 0.1963 | 0.0980 | 0.0364 | |
MRE | 0.2676 | 0.5881 | 0.1430 | 0.1304 | 0.1610 | 0.1478 | 0.2659 | |
50 | AEE | 0.8353 | 0.4948 | 0.2282 | 0.3041 | 0.6217 | 0.3253 | 0.0896 |
MSE | 0.0756 | 0.0891 | 0.0053 | 0.0063 | 0.0329 | 0.0082 | 0.0012 | |
AEB | 0.1855 | 0.1996 | 0.0559 | 0.0620 | 0.1403 | 0.0705 | 0.0251 | |
MRE | 0.1137 | 0.2369 | 0.1112 | 0.0771 | 0.0937 | 0.0866 | 0.1473 | |
80 | AEE | 0.8041 | 0.4610 | 0.2179 | 0.2967 | 0.6033 | 0.3164 | 0.0856 |
MSE | 0.0396 | 0.0468 | 0.0030 | 0.0039 | 0.0202 | 0.0051 | 0.0007 | |
AEB | 0.1384 | 0.1446 | 0.0424 | 0.0496 | 0.1115 | 0.0561 | 0.0195 | |
MRE | 0.0721 | 0.1525 | 0.0609 | 0.0508 | 0.0614 | 0.0569 | 0.0968 | |
100 | AEE | 0.7847 | 0.4398 | 0.2148 | 0.2918 | 0.5917 | 0.3107 | 0.0832 |
MSE | 0.0240 | 0.0275 | 0.0023 | 0.0029 | 0.0145 | 0.0037 | 0.0005 | |
AEB | 0.1140 | 0.1178 | 0.0381 | 0.0426 | 0.0953 | 0.0481 | 0.0164 | |
MRE | 0.0463 | 0.0995 | 0.0459 | 0.0337 | 0.0410 | 0.0379 | 0.0654 |
Based on the above tables, we can draw the following conclusions:
(1) The ML estimation exhibits superior parameter accuracy compared to the BE when considering the SELF. Moreover, as the sample size increases, the MSEs, AEBs, and MREs of parameter estimation all demonstrate a decreasing trend, indicating an improvement in estimation accuracy with larger data volumes.
(2) When θ is fixed, different entropy measures exhibit a decrease with increasing β. Similarly, when β is fixed, various entropy measures tend to decrease as θ increases.
(3) With fixed parameters β and θ, Rényi entropy, Havrda-Charvat entropy, and Arimoto entropy measures tend to decrease as the entropy parameters α increase. Conversely, Mathai-Haubold entropy measures tend to increase with higher values of the entropy parameters α.
(4) As the sample size increases, the AEs of parameters and different entropies gradually approach the initial values, and the MSEs, AEBs, and MREs of parameters and entropies decrease.
(5) Increasing the entropy parameter α generally leads to higher MSEs and AEBs for entropies.
In this section, we employ two sets of actual data to examine the versatility and applicability of the UCRD across the unit interval in comparison with other classical probability distribution models. Additionally, we investigate the feasibility of utilizing ML estimation for estimating various entropy measures. The initial dataset was provided by Bjerkedal [31] and pertains to the survival time of 72 guinea pigs infected with virulent tuberculosis bacillus. The second dataset consists of infection times (in months) among dialysis patients as proposed by Klein and Moeschberger [32], with specific details presented in Table 8. It is important to note that we need to normalize dataset 2 within the range (0, 1), resulting in converted values as follows: 0.08333, 0.08333, 0.11667, 0.11667, 0.11667, 0.15000, 0.18333, 0.21667, 0.21667, 0.25000, 0.25000, 0.25000, 0.25000, 0.28333, 0.31667, 0.35000, 0.38333, 0.41667, 0.41667, 0.45000, 0.48333, 0.48333, 0.71667, 0.71667, 0.75000, 0.75000, 0.85000, 0.91667.
Data | ||||||||||
1 | 0.010 | 0.033 | 0.044 | 0.056 | 0.059 | 0.072 | 0.074 | 0.077 | 0.092 | 0.093 |
0.096 | 0.100 | 0.100 | 0.102 | 0.105 | 0.107 | 0.107 | 0.108 | 0.108 | 0.108 | |
0.109 | 0.112 | 0.113 | 0.115 | 0.116 | 0.120 | 0.121 | 0.122 | 0.122 | 0.124 | |
0.130 | 0.134 | 0.136 | 0.139 | 0.144 | 0.146 | 0.153 | 0.159 | 0.160 | 0.163 | |
0.163 | 0.168 | 0.171 | 0.172 | 0.176 | 0.183 | 0.195 | 0.196 | 0.197 | 0.202 | |
0.213 | 0.215 | 0.216 | 0.222 | 0.230 | 0.231 | 0.240 | 0.245 | 0.251 | 0.253 | |
0.254 | 0.254 | 0.278 | 0.293 | 0.327 | 0.342 | 0.347 | 0.361 | 0.402 | 0.432 | |
0.458 | 0.555 | |||||||||
2.5 | 2.5 | 3.5 | 3.5 | 3.5 | 4.5 | 5.5 | 6.5 | 6.5 | 7.5 | |
2 | 7.5 | 7.5 | 7.5 | 8.5 | 9.5 | 10.5 | 11.5 | 12.5 | 12.5 | 13.5 |
14.5 | 14.5 | 21.5 | 21.5 | 22.5 | 22.5 | 25.5 | 27.5 |
In this study, to comprehensively evaluate the goodness of fit of the UCRD model to both datasets, we selected various probability distribution models for analysis. These included the Kumaraswamy (Kw) distribution, CRD, generalized Rayleigh distribution (GRD), inverse exponential Rayleigh distribution (IERD), and two-parameter Rayleigh distribution (RD), which were compared with the UCRD model. Using MATLAB software, we applied Akaiike information criteria (AIC), Kolmogorov-Smirnov (KS) statistics, and Anderson-Darling (AD) statistics to these models. The P-value of KS statistic was adopted as the criterion for selecting the best-fitting model; the main code can be found in Appendix C and D, and corresponding numerical results are presented in Table 10. Additionally, empirical distributions of both datasets were plotted and visually compared with CDF diagrams corresponding to each model. These comparison results are illustrated in Figure 4. It can be observed from Table 10 and Figure 4 that the UCRD exhibits superior fitting performance for both datasets. Based on this finding, we further analyze the proposed statistics using these two datasets; relevant analysis results are shown in Table 11. In Table 11, it is evident that metric values of Rényi entropy, Havrda-Charvat entropy, and Arimoto entropy decrease with increasing entropy parameters, while metric values of Mathai-Haubold entropy increase with increasing entropy parameters. This conclusion aligns with the findings obtained in the simulation section and further validates the effectiveness and reliability of our proposed method for estimating entropy measures.
Data | Model | β | θ | AIC | AD | KS | KS (p-values) |
1 | UCRD | 1.5824 | 0.0626 | −374.7721 | 0.6281 | 0.0886 | 0.3232 |
Kw | 1.7584 | 16.1025 | −134.5082 | 1.1577 | 0.0918 | 0.2970 | |
CRD | 4.5374 | 0.1483 | −138.6299 | 0.7445 | 0.0977 | 0.2530 | |
GRD | 0.9361 | 4.7828 | −135.0087 | 1.1676 | 0.0966 | 0.2611 | |
IERD | 0.4044 | 0.0021 | −47.0799 | 10.9825 | 0.3320 | 1.2759e-07 | |
RD | 0.1513 | 89.2556 | −164.3701 | 78.8664 | 0.8180 | 1.4387e-42 | |
2 | UCRD | 0.4702 | 0.0622 | −182.1497 | 0.2625 | 0.0820 | 0.6865 |
Kw | 1.2651 | 2.0797 | −3.3250 | 0.7083 | 0.1377 | 0.3457 | |
CRD | 2.7035 | 0.3650 | −3.1880 | 0.4173 | 0.1165 | 0.4675 | |
GRD | 0.7483 | 2.0202 | −3.1094 | 0.5596 | 0.1366 | 0.3516 | |
IERD | 0.6636 | 0.0275 | 1.7176 | 0.9928 | 0.1388 | 0.3400 | |
RD | 0.1985 | 11.0026 | 1.50062 | 16.9951 | 0.4355 | 2.4352e-05 |
Data | (β,θ) | α | HS | HR | HH | HA | HM |
1 | β=1.5824,θ=0.0626 | 0.5 | −0.9660 | −0.7331 | −0.7409 | −0.5196 | −1.4279 |
1.2 | −0.9660 | −1.0186 | −1.7456 | −1.1102 | −0.8204 | ||
1.8 | −0.9660 | −1.1215 | −3.4128 | −1.4538 | −0.3522 | ||
2.2 | −0.9660 | −1.1655 | −5.3998 | −1.6287 | 1.1818 | ||
2 | β=0.4702,θ=0.0622 | 0.5 | −0.1862 | −0.0997 | −0.1173 | −0.0948 | −0.2764 |
1.2 | −0.1862 | −0.2169 | −0.3426 | −0.2209 | −0.1509 | ||
1.8 | −0.1862 | −0.2961 | −0.6281 | −0.3165 | −0.0407 | ||
2.2 | −0.1862 | −0.3390 | −0.8889 | −0.3723 | 0.0451 |
In this paper, we construct a novel UCRD model, which is defined on the bounded interval (0, 1). First, the basic characteristics of the UCRD model are briefly summarized. Then, the core statistical properties such as quantile function, K-moment, expectation, and variance of the distribution are derived in detail, and the application potential and adaptability of the model in practice are deeply discussed. In addition, five entropy measures under the framework of the model are systematically analyzed, and ML estimation and BE are used to estimate the model parameters. Through Monte Carlo simulation, the AEEs, AEBs, MSEs, and MREs of these entropy measures are further calculated. Finally, two sets of real data are used to verify the performance of the UCRD model, and the results show that compared with other traditional distributions, the UCRD model presents a better fitting effect. In future work, we plan to further expand the UCRD model to enhance its adaptability to different types of data. We are considering combining the UCRD model with other models to improve the predictive power of the model. At the same time, we will explore the development of the UCRD model in other subject areas, promote knowledge exchange between disciplines, and solve interdisciplinary problems. In addition, we will deepen theoretical research and model validation to enhance the theoretical support and practical application value of the UCRD model.
Qin Gong: Writing-original draft, Method, Software, Writing-review & editing; Lijun Luo: Methods, Writing-original draft, Writing-review & editing; Haiping Ren: Methods, Writing-review & editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was funded by National Natural Science Foundation of China, grant number 71661012 and the Foundation of Jxust (No.XJG-2020-27).
The authors declare no conflict of interest.
A.Estimating the parameters of the UCRD model using maximum likelihood estimation and Bayesian estimation
clear, clc;
n = 30;%nIndicates the total number of samples
beta0 = 0.3;theta0 = 0.1;%Set the initial value of parameters
a1 = 1;b1 = 1;a2 = 1;b2 = 1;%Set the value of hyperparameterss
for i = 1:1000
G = rand(1, m);
for j = 1:m
H(j) = G(j).^(1/(j+sum(R(m-j+1:m))));
end
for j = 1:m
Z(j) = 1-prod(H(m-j+1:m));
x(j) = 1-(1+(theta0.*(1-Z(j)).^(-1./beta0)-theta0).^(1/2)).^(-1);%Generate random numbers that follow the UCRD distribution
end
thetaML(i) = ER(n, x);
betaML(i) = n./sum(log(1+(1./thetaML(i)).*(x./(1-x)).^2)); %Obtaining maximum likelihood estimates of parameters from the dichotomy method
[beta_BE(i), theta_BE(i)] = Lindley(n, x, a1, b1, a2, b2, betaML(i), thetaML(i));
end
theta = mean(thetaML); beta = mean(betaML); %Maximum likelihood estimation mean of parameters
theta_B = mean(theta_BE); beta_B = mean(beta_BE); %Bayesian estimation mean of parameters
Attached call function:
(1) Dichotomy method
function thetaML = ER(n, x)
f = @(n, x, theta)-n./theta+((n./sum(log(1+(1./theta).*(x./(1-x)).^2)))+1).*sum(((x./(1-x)).^2)./(theta.^2+theta.*(x./(1-x)).^2)); %Merge of likelihood functions
theta_lower = 0;%The lower bound of theta
theta_upper = 5;%The upper bound of theta
tolerance = 1e-5;%Error tolerance
while theta_upper-theta_lower > tolerance
theta_mid = (theta_lower+theta_upper)/2;%The midpoint of theta
f_mid = f(n, x, theta_mid);
if f_mid < 0
theta_upper = theta_mid;
theta_mid = (theta_lower+theta_upper)/2;
else
theta_lower = theta_mid;
theta_mid = (theta_lower+theta_upper)/2;
end
end
thetaML = theta_mid;
end
(2) Lindly approximation
function [beta_BE, theta_BE] = Lindley(n, x, a1, b1, a2, b2, betaML, thetaML)%Lindley approximation for Bayesian estimation
L11 = @(a, b)-n./(a.^2);
L22 = @(a, b)n./(b.^2)-(a+1).*sum(((x./1-x).^2.*(2.*b+(x./1-x).^2))./(b.^2+b.*(x./1-x).^2).^2);
L12 = @(a, b)sum(((x./1-x).^2)./(b.^2+b.*(x./1-x).^2));
L21 = L12;
L111 = @(a, b)2.*n./(a.^3);
L121 = 0;
L211 = L121;
L221 = @(a, b)-sum(((x./1-x).^2.*(2.*b+(x./1-x).^2))./(b.^2+b.*(x./1-x).^2).^2);
L122 = L221;
L212 = L221;
L222 = @(a, b)(-2.*n)./(b.^3)-2.*(a+1).*sum(((x./1-x).^2)./(b.^2+b.*(x./1-x).^2).^2)+2.*(a+1).*sum(((x./1-x).^2.*(2.*b+(x./1-x).^2).^2)./(b.^2+b.*(x./1-x).^2).^3);%On the differentiation of parameters of logarithmic likelihood function
P1 = @(a, b)((a1-1)./a)-b1;
P2 = @(a, b)((a2-1)./b)-b2;%The logarithmic derivative of the logarithmic joint prior distribution of parameters
%Next, we will apply maximum likelihood estimates to each function
L11 = L11(betaML, thetaML); L12 = L12(betaML, thetaML); L21 = L21(betaML, thetaML); L22 = L22(betaML, thetaML);
L111 = L111(betaML, thetaML); L122 = L122(betaML, thetaML); L212 = L122;L221 = L122;L222 = L222(betaML, thetaML);
P1 = P1(betaML, thetaML); P2 = P2(betaML, thetaML);
O = inv([-L11, -L12;-L21, -L22]); O11 = O(1, 1);O12 = O(1, 2);O21 = O(2, 1);O22 = O(2, 2);%Using O to represent Fisher inverse matrix
%Next, calculate the Bayesian estimation of beta under the squared error loss function
U1 = betaML;
U1_1 = 1;
U1_2 = 0;U1_11 = 0;U1_22 = 0;U1_12 = 0;U1_21 = 0;
%Substitute maximum likelihood estimates into U1
beta_BE = U1+0.5*((U1_11+2*U1_1*P1)*O11+(U1_21+2*U1_2*P1)*O21+(U1_12+2*U1_1*P2)*O12+(U1_22+2*U1_2*P2)*O22)+0.5*((U1_1*O11+U1_2*O12)...
*(L111*O11+L221*O22)+(U1_1*O21+U1_2*O22)*(L122*O12+L212*O21+L222*O22));
%Next, calculate the Bayesian estimation of theta under the squared error loss function
U2 = thetaML;
U2_1 = 1;
U2_2 = 0;U2_11 = 0;U2_22 = 0;U2_12 = 0;U2_21 = 0;
%Substitute maximum likelihood estimation into U2
theta_BE = U2+0.5*((U2_11+2*U2_1*P1)*O11+(U2_21+2*U2_2*P1)*O21+(U2_12+2*U2_1*P2)*O12+(U2_22+2*U2_2*P2)*O22)+0.5*((U2_1*O11+U2_2*O12)*...
(L111*O11+L221*O22)+(U2_1*O21+U2_2*O22)*(L122*O12+L212*O21+L222*O22));
end
B.Calculate the average estimate of parameters and entropy, the average deviation, as well as the corresponding mean square error and average relative estimate
clear, clc;
n = 30;%Indicates the total number of samples
beta0 = 0.5;theta0 = 0.3;%Set the initial value of parameters
alpha = 0.8;%Set entropy parameter values
HR = @(a, b)(1./(1-alpha)).*log(integral(@(t)((2*a)./b).^alpha.*(t./(1-t).^3).^alpha.*(1+(1./b).*(t./(1-t)).^2).^(-alpha.*(a+1)), 0, 1));
%Expressions for Renyi entropy
HR0 = HR(beta0, theta0);
%The initial values of Renyi entropy
for i = 1:1000
G = rand(1, m);
for j = 1:m
H(j) = G(j).^(1/(j+sum(R(m-j+1:m))));
end
for j = 1:m
Z(j) = 1-prod(H(m-j+1:m));
x(j) = 1-(1+(theta0.*(1-Z(j)).^(-1./beta0)-theta0).^(1/2)).^(-1);
end
thetaML(i) = ER(n, x);
betaML(i) = n./sum(log(1+(1./thetaML(i)).*(x./(1-x)).^2)); %Estimating parameters through dichotomy method
HR_ML(i) = HR(betaML(i), thetaML(i));
%Obtain estimates of Renyi entropy
end
theta_AEE = mean(thetaML); beta_AEE = mean(betaML); %Mean of parameters
HR_AEE = mean(HR_ML);
%The mean of Renyi entropy
theta_MSE = sum((thetaML-theta0).^2)./1000;
beta_MSE = sum((betaML-beta0).^2)./1000;%Mean squared error of parameters
HR_MSE = sum((HR_ML-HR0).^2)./1000;
%Mean squared error of Renyi entropy
theta_AEB = sum(abs(thetaML-theta0))./1000;
beta_AEB = sum(abs(betaML-beta0))./1000;%The average bias of parameters
HR_AEB = sum(abs(HR_ML-HR0))./1000;
%The average bias of Renyi entropy
theta_MRE = sum((thetaML-theta0)./theta0)./1000;
beta_MRE = sum((betaML-beta0)./beta0)./1000;%The mean relative estimate of parameters
HR_MRE = sum((HR_ML-HR0)./HR0)./1000;
%Mean relative estimates of Renyi entropy
C. Calculate the KS and AD statistics of UCRD on real data:
clear, clc;
n = 72;%Indicates the total number of samples
w = [0.010 0.033 0.044 0.056 0.059 0.072 0.074 0.077 0.092 0.093 0.096 0.100 0.100 0.102 0.105 0.107 0.107 0.108 0.108 0.108...
0.109 0.112 0.113 0.115 0.116 0.120 0.121 0.122 0.122 0.124...
0.130 0.134 0.136 0.139 0.144 0.146 0.153 0.159 0.160 0.163...
0.163 0.168 0.171 0.172 0.176 0.183 0.195 0.196 0.197 0.202...
0.213 0.215 0.216 0.222 0.230 0.231 0.240 0.245 0.251 0.253...
0.254 0.254 0.278 0.293 0.327 0.342 0.347 0.361 0.402 0.432…
0.458 0.555];%Real dataset
thetaML = ER_2(n, w);
betaML = n./sum(log(1+(1./thetaML).*(w./(1-w)).^2)); %Estimated values of UCRD parameters obtained through dichotomy method
F_u = @(x)1-(1+(1./thetaML).*(x./(1-x)).^2).^(-betaML); %The CDF of UCRD
Fu_values = F_u(w); %Bring this set of real data into the CDF
z = length(w); % Number of data points
ecdf_values = (1:z) / z; % The value of the empirical distribution function
KS_statistic_U = max(abs(Fu_values - ecdf_values)); %Formula for calculating KS test (cumulative distribution function - empirical distribution function)
p_value_U = exp(-2 * (KS_statistic_U)^2 * n); %Formula for calculating p-value
i = 1:z;
AD_u = -g-sum(((2*i-1)./z).*(log(Fu_values)+log(1-Fu_values(end:-1:1)))); %Formula for calculating AD test
D.Calculate the AIC of UCRD on real data:
clear, clc;
n = 72;%Indicates the total number of samples
w = [0.010 0.033 0.044 0.056 0.059 0.072 0.074 0.077 0.092 0.093 0.096 0.100 0.100 0.102 0.105 0.107 0.107 0.108 0.108 0.108...
0.109 0.112 0.113 0.115 0.116 0.120 0.121 0.122 0.122 0.124...
0.130 0.134 0.136 0.139 0.144 0.146 0.153 0.159 0.160 0.163...
0.163 0.168 0.171 0.172 0.176 0.183 0.195 0.196 0.197 0.202...
0.213 0.215 0.216 0.222 0.230 0.231 0.240 0.245 0.251 0.253...
0.254 0.254 0.278 0.293 0.327 0.342 0.347 0.361 0.402 0.432…
0.458 0.555];%Real dataset
thetaML = ER_2(n, w);
betaML = n./sum(log(1+(1./thetaML).*(w./(1-w)).^2)); %Estimated values of UCRD parameters obtained through dichotomy method
f_u = ((2.*betaML.*w)./(thetaML.*(1-w).^3)).*(1+(1./thetaML).*(w./1-w).^2).^(-betaML-1);%The PDF of UCRD
L_u = prod(f_u); %Likelihood function of UCRD
% Calculate AIC
k = 2; % The number of model parameters
AIC_u = -2.* log(L_u) + 2.* k.
[1] | R. M. Anderson, R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991. |
[2] |
J. A. P. Heesterbeek, A brief history of R0 and a recipe for its calculation, Acta Biotheor., 50 (2002), 189–204. https://doi.org/10.1023/a:1016599411804 doi: 10.1023/a:1016599411804
![]() |
[3] |
O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
![]() |
[4] |
L. Pellis, P. J. Birrell, J. Blake, C. E. Overton, F. Scarabel, H. B. Stage et al., Estimation of reproduction numbers in real time: conceptual and statistical challenges, J. R. Stat. Soc. Ser. A Stat. Soc., 185 (2022), S112–S130. https://doi.org/10.1111/rssa.12955 doi: 10.1111/rssa.12955
![]() |
[5] |
M. G. Roberts, J. A. P. Heesterbeek, A new method for estimating the effort required to control an infectious disease, Proc. Royal Soc. B, 270 (2003), 1359–1364. https://doi.org/10.1098/rspb.2003.2339 doi: 10.1098/rspb.2003.2339
![]() |
[6] |
J. A. P. Heesterbeek, M. G. Roberts, The type-reproduction number T in models for infectious disease control, Math. Biosci., 206 (2007), 3–10. https://doi.org/10.1016/j.mbs.2004.10.013 doi: 10.1016/j.mbs.2004.10.013
![]() |
[7] |
H. Inaba, H. Nishiura, The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model, Math. Biosci., 216 (2008), 77–89. https://doi.org/10.1016/j.mbs.2008.08.005 doi: 10.1016/j.mbs.2008.08.005
![]() |
[8] | H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-0188-8 |
[9] |
Z. Shuai, J. Heesterbeek, P. van den Driessche, Extending the type reproduction number to infectious disease control targeting contacts between types, J. Math. Biol., 67 (2013), 1067–1082. https://doi.org/10.1007/s00285-012-0579-9 doi: 10.1007/s00285-012-0579-9
![]() |
[10] |
M. A. Lewis, Z. Shuai, P. van den Driessche, A general theory for target reproduction numbers with applications to ecology and epidemiology, J. Math. Biol., 78 (2019), 2317–2339. https://doi.org/10.1007/s00285-019-01345-4 doi: 10.1007/s00285-019-01345-4
![]() |
[11] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870
![]() |
[12] |
O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface., 7 (2010), 873–885. https://doi.org/10.1098/rsif.2009.0386 doi: 10.1098/rsif.2009.0386
![]() |
[13] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
![]() |
[14] | J. Li, D. Blakeley, R. J. Smith?, The failure of R0, Comput. Math. Methods Med., 2011 (2011). https://doi.org/10.1155/2011/527610 |
[15] |
J. M. Cushing, O. Diekmann, The many guises of R0 (a didactic note), J. Theor. Biol., 404 (2016), 295–302. https://doi.org/10.1016/j.jtbi.2016.06.017 doi: 10.1016/j.jtbi.2016.06.017
![]() |
[16] |
A. F. Brouwer, Why the Spectral Radius? An intuition-building introduction to the basic reproduction number, Bull. Math. Biol., 84 (2022), 96. https://doi.org/10.1007/s11538-022-01057-9 doi: 10.1007/s11538-022-01057-9
![]() |
[17] |
C. Barril, À. Calsina, S. Cuadrado, J. Ripoll, On the basic reproduction number in continuously structured populations, Math. Methods Appl. Sci., 44 (2021), 799–812. https://doi.org/10.1002/mma.6787 doi: 10.1002/mma.6787
![]() |
[18] |
C. Barril, À. Calsina, J. Ripoll, A practical approach to R0 in continuous-time ecological models, Math. Methods Appl. Sci., 41 (2018), 8432–8445. https://doi.org/10.1002/mma.4673 doi: 10.1002/mma.4673
![]() |
[19] |
C. Barril, P. A. Bliman, S. Cuadrado, Final Size for Epidemic Models with Asymptomatic Transmission, Bull. Math. Biol., 85 (2023), 52. https://doi.org/10.1007/s11538-023-01159-y doi: 10.1007/s11538-023-01159-y
![]() |
[20] |
H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral Equ., 3 (1990), 1035–1066. https://doi.org/10.57262/die/1379101977 doi: 10.57262/die/1379101977
![]() |
[21] |
H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission, Discrete Contin. Dyn. Syst. B, 6 (2006), 69–96. https://doi.org/10.3934/dcdsb.2006.6.69 doi: 10.3934/dcdsb.2006.6.69
![]() |
[22] | M. G. Krein, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspekhi Mat. Nauk., 3 (1948), 3–95. |
[23] |
W. Guo, M. Ye, X. Li, A. Meyer-Baese, Q. Zhang, A theta-scheme approximation of basic reproduction number for an age-structured epidemic system in a finite horizon, Math. Biosci. Eng., 16 (2019), 4107–4121. https://doi.org/10.3934/mbe.2019204 doi: 10.3934/mbe.2019204
![]() |
[24] |
T. Kuniya, Numerical approximation of the basic reproduction number for a class of age-structured epidemic models, Appl. Math. Lett., 73 (2017), 106–112. https://doi.org/10.1016/j.aml.2017.04.031 doi: 10.1016/j.aml.2017.04.031
![]() |
[25] |
D. Breda, S. De Reggi, F. Scarabel, R. Vermiglio, J. Wu, Bivariate collocation for computing R0 in epidemic models with two structures, Comput. Math. with Appl., 116 (2022), 15–24. https://doi.org/10.1016/j.camwa.2021.10.026 doi: 10.1016/j.camwa.2021.10.026
![]() |
[26] |
D. Breda, F. Florian, J. Ripoll, R. Vermiglio, Efficient numerical computation of the basic reproduction number for structured populations, J. Comput. Appl. Math., 384 (2021), 113165. https://doi.org/10.1016/j.cam.2020.113165 doi: 10.1016/j.cam.2020.113165
![]() |
[27] |
D. Breda, T. Kuniya, J. Ripoll, R. Vermiglio, Collocation of next-generation operators for computing the basic reproduction number of structured populations, J. Sci. Comput., 85 (2020), 1–33. https://doi.org/10.1007/s10915-020-01339-1 doi: 10.1007/s10915-020-01339-1
![]() |
[28] | L. Trefethen, Spectral Methods in MATLAB, Software Environ. Tools, Society for Industrial and Applied Mathematics, Philadelphia, 2000. https://doi.org/10.1137/1.9780898719598 |
[29] |
A. Andò, S. De Reggi, D. Liessi, F. Scarabel, A pseudospectral method for investigating the stability of linear population models with two physiological structures, Math. Biosci. Eng., 20 (2023), 4493–4515. https://doi.org/10.3934/mbe.2023208 doi: 10.3934/mbe.2023208
![]() |
[30] | D. Breda, S. De Reggi, R. Vermiglio, A numerical method for the stability analysis of linear age-structured models with nonlocal diffusion, SIAM J. Sci. Comput., In press. Available from: https://arXiv.org/abs/2304.10835v2. |
[31] |
F. Scarabel, D. Breda, O. Diekmann, M. Gyllenberg, R. Vermiglio, Numerical bifurcation analysis of physiologically structured population models via pseudospectral approximation, Vietnam J. Math., 49 (2021), 37–67. https://doi.org/10.1007/s10013-020-00421-3 doi: 10.1007/s10013-020-00421-3
![]() |
[32] |
F. Scarabel, O. Diekmann, R. Vermiglio, Numerical bifurcation analysis of renewal equations via pseudospectral approximation, J. Comput. Appl. Math., 397 (2021), 113611. https://doi.org/10.1016/j.cam.2021.113611 doi: 10.1016/j.cam.2021.113611
![]() |
[33] | S. De Reggi, F. Scarabel, R. Vermiglio, On the convergence of the pseudospectral approximation of reproduction numbers for age-structured models, in preparation. |
[34] |
H. Inaba, On the definition and the computation of the type-reproduction number T for structured populations in heterogeneous environments, J. Math. Biol., 66 (2013), 1065–1097. https://doi.org/10.1007/s00285-012-0522-0 doi: 10.1007/s00285-012-0522-0
![]() |
[35] |
P. van den Driessche, Reproduction numbers of infectious disease models, Infect. Dis. Model., 2 (2017), 288–303. https://doi.org/10.1016/j.idm.2017.06.002 doi: 10.1016/j.idm.2017.06.002
![]() |
[36] | K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, no. 194 in Grad. Texts in Math., Springer, New York, 2000. https://doi.org/10.1007/b97696 |
[37] |
D. Breda, S. Maset, R. Vermiglio, Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, SIAM J. Numer. Anal., 50 (2012), 1456–1483. https://doi.org/10.1137/100815505 doi: 10.1137/100815505
![]() |
[38] | J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edition, Dover, Mineola, NY, 2001, reprint of the Springer, Berlin, 1989 edition. |
[39] | L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics, Philadelphia, 2013. |
[40] |
K. Xu, The Chebyshev points of the first kind, Appl. Numer. Math., 102 (2016), 17–30. https://doi.org/10.1016/j.apnum.2015.12.002 doi: 10.1016/j.apnum.2015.12.002
![]() |
[41] |
O. Diekmann, F. Scarabel, R. Vermiglio, Pseudospectral discretization of delay differential equations in sun-star formulation: results and conjectures, Discrete Contin. Dyn. Syst. S, 13 (2020), 2575–2602. https://doi.org/10.3934/dcdss.2020196 doi: 10.3934/dcdss.2020196
![]() |
[42] |
H. Inaba, Endemic threshold analysis for the Kermack-McKendrick reinfection model, Josai Math. Monogr., 9 (2016), 105–133. https://doi.org/10.20566/13447777_9_105 doi: 10.20566/13447777_9_105
![]() |
[43] | G. Mastroianni, G. V. Milovanović, Interpolation Processes: Basic Theory and Applications, Springer, Berlin, 2008. https://dx.doi.org/10.1007/978-3-540-68349-0 |
[44] |
C. W. Clenshaw, A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. (Heidelb), 2 (1960), 197–205. https://doi.org/10.1007/BF01386223 doi: 10.1007/BF01386223
![]() |
[45] |
L. N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis?, SIAM Rev., 50 (2008), 67–87. https://doi.org/10.1137/060659831 doi: 10.1137/060659831
![]() |
[46] |
F. Scarabel, L. Pellis, N. H. Ogden, J. Wu, A renewal equation model to assess roles and limitations of contact tracing for disease outbreak control, R. Soc. Open Sci., 8 (2021), 202091. https://doi.org/10.1101/2020.12.27.20232934 doi: 10.1101/2020.12.27.20232934
![]() |
[47] |
C. E. Overton, H. B. Stage, S. Ahmad, J. Curran-Sebastian, P. Dark, R. Das et al., Using statistics and mathematical modelling to understand infectious disease outbreaks: COVID-19 as an example, Infect. Dis. Model., 5 (2020), 409–441. https://doi.org/10.1016/j.idm.2020.06.008 doi: 10.1016/j.idm.2020.06.008
![]() |
[48] |
L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner et al., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368 (2020), eabb6936. https://doi.org/10.1126/science.abb6936 doi: 10.1126/science.abb6936
![]() |
[49] |
Z. Qiu, X. Li, M. Martcheva, Multi-strain persistence induced by host age structure, J. Math. Anal. Appl., 391 (2012), 595–612. https://doi.org/10.1016/j.jmaa.2012.02.052 doi: 10.1016/j.jmaa.2012.02.052
![]() |
[50] |
C. Castillo-Chavez, H. W. Hethcote, V. Andreasen, S.A. Levin, W. M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity, J. Math. Biol., 27 (1989), 233–258. https://doi.org/10.1007/bf00275810 doi: 10.1007/bf00275810
![]() |
[51] |
C. Barril, À. Calsina, S. Cuadrado, J. Ripoll, Reproduction number for an age of infection structured model, Math. Model. Nat. Phenom., 16 (2021), 42. https://doi.org/10.1051/mmnp/2021033 doi: 10.1051/mmnp/2021033
![]() |
[52] | Center for Disease Control and Prevention (CDC), Rubella (German Measles, Three-Day Measles), 2020. Available from: https://www.cdc.gov/rubella/about/index.html. |
[53] | World Health Organization (WHO), Rubella, 2019. Available from: https://www.who.int/en/news-room/fact-sheets/detail/rubella |
[54] |
R. M. Anderson, B. T. Grenfell, Quantitative investigations of different vaccination policies for the control of congenital rubella syndrome (CRS) in the United Kingdom, Epidemiol. Infect., 96 (1986), 305–333. https://doi.org/10.1017/s0022172400066079 doi: 10.1017/s0022172400066079
![]() |
[55] |
R. M. Anderson, R. M. May, Vaccination against rubella and measles: quantitative investigations of different policies, Epidemiol. Infect., 90 (1983), 259–325. https://doi.org/10.1017/s002217240002893x doi: 10.1017/s002217240002893x
![]() |
[56] |
R. M. Anderson, R. M. May, Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes, Epidemiol. Infect., 94 (1985), 365–436. https://doi.org/10.1017/s002217240006160x doi: 10.1017/s002217240006160x
![]() |
[57] |
H. Kang, X. Huo, S. Ruan, On first-order hyperbolic partial differential equations with two internal variables modeling population dynamics of two physiological structures, Ann. di Mat. Pura ed Appl., 200 (2021), 403–452. https://doi.org/10.1007/s10231-020-01001-5 doi: 10.1007/s10231-020-01001-5
![]() |
[58] |
G. Webb, Dynamics of populations structured by internal variables, Math. Zeitschrift, 189 (1985), 319–335. https://doi.org/10.1007/BF01164156 doi: 10.1007/BF01164156
![]() |
[59] |
À. Calsina, O. Diekmann, J. Z. Farkas, Structured populations with distributed recruitment: from PDE to delay formulation, Math. Methods Appl. Sci., 39 (2016), 5175–5191. https://doi.org/10.1002/mma.3898 doi: 10.1002/mma.3898
![]() |
[60] |
M. Gyllenberg, F. Scarabel, R. Vermiglio, Equations with infinite delay: Numerical bifurcation analysis via pseudospectral discretization, Appl. Math. Comput., 333 (2018), 490–505. https://doi.org/10.1016/j.amc.2018.03.104 doi: 10.1016/j.amc.2018.03.104
![]() |
[61] | F. Scarabel, R. Vermiglio, Equations with infinite delay: pseudospectral discretization for numerical stability and bifurcation in an abstract framework, arXiv preprint arXiv: 2306.13351. |
[62] | M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e Stampatori, Pisa, 1995. |
1. | Sule Omeiza Bashiru, Mohamed Kayid, R.M. Sayed, Oluwafemi Samson Balogun, M. M. Abd El-Raouf, Ahmed M. Gemeay, Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data, 2025, 18, 16878507, 101204, 10.1016/j.jrras.2024.101204 |
β | θ | μ1 | σ2 | CV | CSk | Cku |
0.2 | 0.5 | 0.7359 | 0.0583 | 0.3281 | −0.1962 | 0.9496 |
0.5 | 0.5566 | 0.0515 | 0.4079 | 0.0447 | 1.1493 | |
0.9 | 0.4445 | 0.0369 | 0.4322 | 0.0482 | 1.2148 | |
1.3 | 0.3831 | 0.0282 | 0.4380 | 0.0401 | 1.2202 | |
0.2 | 1 | 0.7811 | 0.0465 | 0.2759 | −0.2559 | 1.0234 |
0.5 | 0.6232 | 0.0464 | 0.3457 | −0.0139 | 1.1506 | |
0.9 | 0.5180 | 0.0373 | 0.3728 | 0.0004 | 1.2073 | |
1.3 | 0.4571 | 0.0307 | 0.3836 | −0.0018 | 1.2138 | |
0.2 | 1.5 | 0.8056 | 0.0400 | 0.2481 | −0.2848 | 1.0685 |
0.5 | 0.6608 | 0.0427 | 0.3126 | −0.0460 | 1.1603 | |
0.9 | 0.5608 | 0.0364 | 0.3404 | −0.0274 | 1.2103 | |
1.3 | 0.5013 | 0.0313 | 0.3531 | −0.0270 | 1.2158 | |
0.2 | 2 | 0.8220 | 0.0356 | 0.2296 | −0.3028 | 1.1005 |
0.5 | 0.6864 | 0.0397 | 0.2904 | −0.0674 | 1.1705 | |
0.9 | 0.5908 | 0.0354 | 0.3184 | −0.0468 | 1.2155 | |
1.3 | 0.5327 | 0.0313 | 0.3322 | −0.0449 | 1.2200 |
n | ML | Lindley | |||
β | θ | β | θ | ||
30 | AE | 0.3360 | 0.1489 | 0.3431 | 0.1560 |
MSE | 0.0109 | 0.0156 | 0.0115 | 0.0164 | |
AB | 0.0702 | 0.0762 | 0.0726 | 0.0780 | |
MRE | 0.1199 | 0.4890 | 0.1436 | 0.5602 | |
50 | AE | 0.3126 | 0.1169 | 0.3168 | 0.1211 |
MSE | 0.0040 | 0.0043 | 0.0041 | 0.0045 | |
AB | 0.0466 | 0.0459 | 0.0473 | 0.0463 | |
MRE | 0.0420 | 0.1691 | 0.0561 | 0.2113 | |
80 | AE | 0.3091 | 0.1103 | 0.3117 | 0.1130 |
MSE | 0.0023 | 0.0023 | 0.0024 | 0.0024 | |
AB | 0.0369 | 0.0347 | 0.0372 | 0.0350 | |
MRE | 0.0302 | 0.1034 | 0.0390 | 0.1298 | |
100 | AE | 0.3077 | 0.1094 | 0.3098 | 0.1115 |
MSE | 0.0018 | 0.0020 | 0.0019 | 0.0021 | |
AB | 0.0329 | 0.0328 | 0.0333 | 0.0330 | |
MRE | 0.0256 | 0.0936 | 0.0326 | 0.1148 |
β | θ | HS | HR | HH | HA | HM |
0.35 | 0.5 | −0.1593 | −0.1012 | −0.1191 | −0.0963 | −0.2134 |
0.75 | −0.1978 | −0.1193 | −0.1398 | −0.1125 | −0.2701 | |
1.25 | −0.3718 | −0.2497 | −0.2833 | −0.2210 | −0.4986 | |
1.65 | −0.4801 | −0.3448 | −0.3823 | −0.2916 | −0.6413 | |
0.35 | 1 | −0.2691 | −0.1708 | −0.1976 | −0.1570 | −0.3726 |
0.75 | −0.2074 | −0.1289 | −0.1507 | −0.1209 | −0.2788 | |
1.25 | −0.3205 | −0.2103 | −0.2410 | −0.1897 | −0.4297 | |
1.65 | −0.3994 | −0.2783 | −0.3136 | −0.2429 | −0.5310 | |
0.35 | 1.5 | −0.3520 | −0.2238 | −0.2556 | −0.2005 | −0.4984 |
0.75 | −0.2361 | −0.1496 | −0.1740 | −0.1390 | −0.3155 | |
1.25 | −0.3146 | −0.2044 | −0.2345 | −0.1849 | −0.4234 | |
1.65 | −0.3761 | −0.2573 | −0.2914 | −0.2268 | −0.5020 | |
0.35 | 2 | −0.4187 | −0.2668 | −0.3016 | −0.2342 | −0.6032 |
0.75 | −0.2666 | −0.1711 | −0.1979 | −0.1573 | −0.3560 | |
1.25 | −0.3212 | −0.2078 | −0.2383 | −0.1877 | −0.4340 | |
1.65 | −0.3706 | −0.2504 | −0.2841 | −0.2215 | −0.4970 |
β | θ | HS | HR | HH | HA | HM |
0.35 | 0.5 | −0.1593 | −0.2028 | −0.3643 | −0.2098 | −0.0987 |
0.75 | −0.1978 | −0.2533 | −0.4610 | −0.2643 | −0.1159 | |
1.25 | −0.3718 | −0.4452 | −0.8512 | −0.4799 | −0.2347 | |
1.65 | −0.4801 | −0.5562 | −1.0947 | −0.6111 | −0.3167 | |
0.35 | 1 | −0.2691 | −0.3417 | −0.6361 | −0.3619 | −0.1637 |
0.75 | −0.2074 | −0.2610 | −0.4759 | −0.2726 | −0.1248 | |
1.25 | −0.3205 | −0.3892 | −0.7336 | −0.4156 | −0.1997 | |
1.65 | −0.3994 | −0.4710 | −0.9065 | −0.5099 | −0.2598 | |
0.35 | 1.5 | −0.3520 | −0.4450 | −0.8509 | −0.4797 | −0.2117 |
0.75 | −0.2361 | −0.2930 | −0.5386 | −0.3078 | −0.1442 | |
1.25 | −0.3146 | −0.3840 | −0.7227 | −0.4097 | −0.1943 | |
1.65 | −0.3761 | −0.4479 | −0.8570 | −0.4830 | −0.2414 | |
0.35 | 2 | −0.4187 | −0.5272 | −1.0297 | −0.5763 | −0.2498 |
0.75 | −0.2666 | −0.3277 | −0.6078 | −0.3462 | −0.1640 | |
1.25 | −0.3212 | −0.3927 | −0.7408 | −0.4196 | −0.1974 | |
1.65 | −0.3706 | −0.4439 | −0.8484 | −0.4784 | −0.2354 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.5000 | 0.3000 | 0.1075 | 0.0920 | 0.1226 | 0.0910 | 0.1229 | |
30 | AEE | 0.5662 | 0.4234 | 0.1397 | 0.1203 | 0.1596 | 0.1182 | 0.1598 |
MSE | 0.0469 | 0.1369 | 0.0044 | 0.0036 | 0.0060 | 0.0033 | 0.0060 | |
AEB | 0.1370 | 0.2059 | 0.0464 | 0.0399 | 0.0523 | 0.0386 | 0.0526 | |
MRE | 0.1324 | 0.4115 | 0.0291 | 0.3080 | 0.3014 | 0.2998 | 0.3001 | |
50 | AEE | 0.5436 | 0.3647 | 0.1287 | 0.1103 | 0.1465 | 0.1086 | 0.1469 |
MSE | 0.0226 | 0.0430 | 0.0025 | 0.0018 | 0.0030 | 0.0016 | 0.0031 | |
AEB | 0.0989 | 0.1296 | 0.0355 | 0.0293 | 0.0385 | 0.0285 | 0.0393 | |
MRE | 0.0873 | 0.2158 | 0.1972 | 0.1984 | 0.1947 | 0.1938 | 0.1953 | |
80 | AEE | 0.5254 | 0.3400 | 0.1199 | 0.1035 | 0.1377 | 0.1021 | 0.1381 |
MSE | 0.0099 | 0.0199 | 0.0012 | 0.0009 | 0.0016 | 0.0009 | 0.0017 | |
AEB | 0.0735 | 0.0996 | 0.0259 | 0.0221 | 0.0291 | 0.0215 | 0.0301 | |
MRE | 0.0507 | 0.1334 | 0.1151 | 0.1253 | 0.1232 | 0.1227 | 0.1238 | |
100 | AEE | 0.5149 | 0.3232 | 0.1179 | 0.0998 | 0.1328 | 0.0985 | 0.1332 |
MSE | 0.0073 | 0.0146 | 0.0009 | 0.0007 | 0.0012 | 0.0006 | 0.0007 | |
AEB | 0.0636 | 0.0863 | 0.0225 | 0.0190 | 0.0250 | 0.0185 | 0.0260 | |
MRE | 0.0298 | 0.0774 | 0.0968 | 0.0845 | 0.0827 | 0.0827 | 0.0838 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.5000 | 0.3000 | 0.1075 | 0.1214 | 0.1899 | 0.1226 | 0.0912 | |
30 | AEE | 0.5662 | 0.4234 | 0.1393 | 0.1588 | 0.2500 | 0.1613 | 0.1199 |
MSE | 0.0469 | 0.1369 | 0.0044 | 0.0060 | 0.0155 | 0.0064 | 0.0036 | |
AEB | 0.1370 | 0.2059 | 0.0460 | 0.0545 | 0.0872 | 0.0561 | 0.0416 | |
MRE | 0.1324 | 0.4115 | 0.2957 | 0.3078 | 0.3166 | 0.3151 | 0.3155 | |
50 | AEE | 0.5436 | 0.3647 | 0.1292 | 0.1448 | 0.2273 | 0.1467 | 0.1091 |
MSE | 0.0226 | 0.0430 | 0.0025 | 0.0030 | 0.0078 | 0.0032 | 0.0018 | |
AEB | 0.0989 | 0.1296 | 0.0356 | 0.0391 | 0.0624 | 0.0402 | 0.0295 | |
MRE | 0.0873 | 0.2158 | 0.2023 | 0.1925 | 0.1974 | 0.1965 | 0.1972 | |
80 | AEE | 0.5254 | 0.3400 | 0.1203 | 0.1346 | 0.2109 | 0.1362 | 0.1013 |
MSE | 0.0099 | 0.0199 | 0.0012 | 0.0015 | 0.0038 | 0.0016 | 0.0008 | |
AEB | 0.0735 | 0.0996 | 0.0257 | 0.0281 | 0.0446 | 0.0287 | 0.0208 | |
MRE | 0.0507 | 0.1334 | 0.1191 | 0.1084 | 0.1110 | 0.1105 | 0.1109 | |
100 | AEE | 0.5149 | 0.3232 | 0.1171 | 0.1307 | 0.2047 | 0.1322 | 0.0983 |
MSE | 0.0073 | 0.0146 | 0.0008 | 0.0011 | 0.0028 | 0.0012 | 0.0006 | |
AEB | 0.0636 | 0.0863 | 0.0217 | 0.0249 | 0.0395 | 0.0255 | 0.0183 | |
MRE | 0.0298 | 0.0774 | 0.0898 | 0.0762 | 0.0780 | 0.0777 | 0.0782 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.7500 | 0.4000 | 0.2054 | 0.2636 | 0.4810 | 0.2755 | 0.1195 | |
30 | AEE | 0.9566 | 0.6359 | 0.2382 | 0.3036 | 0.5650 | 0.3215 | 0.1477 |
MSE | 0.3901 | 0.4698 | 0.0091 | 0.0121 | 0.0497 | 0.0152 | 0.0049 | |
AEB | 0.3230 | 0.3461 | 0.0720 | 0.0858 | 0.1713 | 0.0953 | 0.0514 | |
MRE | 0.2755 | 0.5896 | 0.1597 | 0.1518 | 0.1746 | 0.1667 | 0.2361 | |
50 | AEE | 0.8346 | 0.5004 | 0.2245 | 0.2829 | 0.5217 | 0.2977 | 0.1335 |
MSE | 0.0833 | 0.0990 | 0.0050 | 0.0063 | 0.0250 | 0.0077 | 0.0023 | |
AEB | 0.1898 | 0.1985 | 0.0543 | 0.0618 | 0.1219 | 0.0680 | 0.0359 | |
MRE | 0.1128 | 0.2509 | 0.0929 | 0.0732 | 0.0846 | 0.0806 | 0.1176 | |
80 | AEE | 0.8075 | 0.4647 | 0.2172 | 0.2797 | 0.5141 | 0.2937 | 0.1303 |
MSE | 0.0350 | 0.0417 | 0.0028 | 0.0035 | 0.0136 | 0.0042 | 0.0012 | |
AEB | 0.1332 | 0.1428 | 0.0406 | 0.0461 | 0.0906 | 0.0506 | 0.0265 | |
MRE | 0.0767 | 0.1618 | 0.0572 | 0.0611 | 0.0687 | 0.0661 | 0.0905 | |
100 | AEE | 0.7893 | 0.4444 | 0.2170 | 0.2749 | 0.5044 | 0.2884 | 0.1272 |
MSE | 0.0225 | 0.0248 | 0.0023 | 0.0027 | 0.0104 | 0.0032 | 0.0009 | |
AEB | 0.1127 | 0.1167 | 0.0378 | 0.0411 | 0.0805 | 0.0450 | 0.0234 | |
MRE | 0.0523 | 0.1110 | 0.0564 | 0.0429 | 0.0485 | 0.0466 | 0.0649 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.7500 | 0.4000 | 0.2054 | 0.2823 | 0.5684 | 0.2994 | 0.0781 | |
30 | AEE | 0.9507 | 0.6352 | 0.2435 | 0.3191 | 0.6599 | 0.3436 | 0.0988 |
MSE | 0.4225 | 0.4765 | 0.0097 | 0.0122 | 0.0673 | 0.0164 | 0.0028 | |
AEB | 0.3187 | 0.3430 | 0.0732 | 0.0855 | 0.1963 | 0.0980 | 0.0364 | |
MRE | 0.2676 | 0.5881 | 0.1430 | 0.1304 | 0.1610 | 0.1478 | 0.2659 | |
50 | AEE | 0.8353 | 0.4948 | 0.2282 | 0.3041 | 0.6217 | 0.3253 | 0.0896 |
MSE | 0.0756 | 0.0891 | 0.0053 | 0.0063 | 0.0329 | 0.0082 | 0.0012 | |
AEB | 0.1855 | 0.1996 | 0.0559 | 0.0620 | 0.1403 | 0.0705 | 0.0251 | |
MRE | 0.1137 | 0.2369 | 0.1112 | 0.0771 | 0.0937 | 0.0866 | 0.1473 | |
80 | AEE | 0.8041 | 0.4610 | 0.2179 | 0.2967 | 0.6033 | 0.3164 | 0.0856 |
MSE | 0.0396 | 0.0468 | 0.0030 | 0.0039 | 0.0202 | 0.0051 | 0.0007 | |
AEB | 0.1384 | 0.1446 | 0.0424 | 0.0496 | 0.1115 | 0.0561 | 0.0195 | |
MRE | 0.0721 | 0.1525 | 0.0609 | 0.0508 | 0.0614 | 0.0569 | 0.0968 | |
100 | AEE | 0.7847 | 0.4398 | 0.2148 | 0.2918 | 0.5917 | 0.3107 | 0.0832 |
MSE | 0.0240 | 0.0275 | 0.0023 | 0.0029 | 0.0145 | 0.0037 | 0.0005 | |
AEB | 0.1140 | 0.1178 | 0.0381 | 0.0426 | 0.0953 | 0.0481 | 0.0164 | |
MRE | 0.0463 | 0.0995 | 0.0459 | 0.0337 | 0.0410 | 0.0379 | 0.0654 |
Data | ||||||||||
1 | 0.010 | 0.033 | 0.044 | 0.056 | 0.059 | 0.072 | 0.074 | 0.077 | 0.092 | 0.093 |
0.096 | 0.100 | 0.100 | 0.102 | 0.105 | 0.107 | 0.107 | 0.108 | 0.108 | 0.108 | |
0.109 | 0.112 | 0.113 | 0.115 | 0.116 | 0.120 | 0.121 | 0.122 | 0.122 | 0.124 | |
0.130 | 0.134 | 0.136 | 0.139 | 0.144 | 0.146 | 0.153 | 0.159 | 0.160 | 0.163 | |
0.163 | 0.168 | 0.171 | 0.172 | 0.176 | 0.183 | 0.195 | 0.196 | 0.197 | 0.202 | |
0.213 | 0.215 | 0.216 | 0.222 | 0.230 | 0.231 | 0.240 | 0.245 | 0.251 | 0.253 | |
0.254 | 0.254 | 0.278 | 0.293 | 0.327 | 0.342 | 0.347 | 0.361 | 0.402 | 0.432 | |
0.458 | 0.555 | |||||||||
2.5 | 2.5 | 3.5 | 3.5 | 3.5 | 4.5 | 5.5 | 6.5 | 6.5 | 7.5 | |
2 | 7.5 | 7.5 | 7.5 | 8.5 | 9.5 | 10.5 | 11.5 | 12.5 | 12.5 | 13.5 |
14.5 | 14.5 | 21.5 | 21.5 | 22.5 | 22.5 | 25.5 | 27.5 |
Data | Model | β | θ | AIC | AD | KS | KS (p-values) |
1 | UCRD | 1.5824 | 0.0626 | −374.7721 | 0.6281 | 0.0886 | 0.3232 |
Kw | 1.7584 | 16.1025 | −134.5082 | 1.1577 | 0.0918 | 0.2970 | |
CRD | 4.5374 | 0.1483 | −138.6299 | 0.7445 | 0.0977 | 0.2530 | |
GRD | 0.9361 | 4.7828 | −135.0087 | 1.1676 | 0.0966 | 0.2611 | |
IERD | 0.4044 | 0.0021 | −47.0799 | 10.9825 | 0.3320 | 1.2759e-07 | |
RD | 0.1513 | 89.2556 | −164.3701 | 78.8664 | 0.8180 | 1.4387e-42 | |
2 | UCRD | 0.4702 | 0.0622 | −182.1497 | 0.2625 | 0.0820 | 0.6865 |
Kw | 1.2651 | 2.0797 | −3.3250 | 0.7083 | 0.1377 | 0.3457 | |
CRD | 2.7035 | 0.3650 | −3.1880 | 0.4173 | 0.1165 | 0.4675 | |
GRD | 0.7483 | 2.0202 | −3.1094 | 0.5596 | 0.1366 | 0.3516 | |
IERD | 0.6636 | 0.0275 | 1.7176 | 0.9928 | 0.1388 | 0.3400 | |
RD | 0.1985 | 11.0026 | 1.50062 | 16.9951 | 0.4355 | 2.4352e-05 |
Data | (β,θ) | α | HS | HR | HH | HA | HM |
1 | β=1.5824,θ=0.0626 | 0.5 | −0.9660 | −0.7331 | −0.7409 | −0.5196 | −1.4279 |
1.2 | −0.9660 | −1.0186 | −1.7456 | −1.1102 | −0.8204 | ||
1.8 | −0.9660 | −1.1215 | −3.4128 | −1.4538 | −0.3522 | ||
2.2 | −0.9660 | −1.1655 | −5.3998 | −1.6287 | 1.1818 | ||
2 | β=0.4702,θ=0.0622 | 0.5 | −0.1862 | −0.0997 | −0.1173 | −0.0948 | −0.2764 |
1.2 | −0.1862 | −0.2169 | −0.3426 | −0.2209 | −0.1509 | ||
1.8 | −0.1862 | −0.2961 | −0.6281 | −0.3165 | −0.0407 | ||
2.2 | −0.1862 | −0.3390 | −0.8889 | −0.3723 | 0.0451 |
β | θ | μ1 | σ2 | CV | CSk | Cku |
0.2 | 0.5 | 0.7359 | 0.0583 | 0.3281 | −0.1962 | 0.9496 |
0.5 | 0.5566 | 0.0515 | 0.4079 | 0.0447 | 1.1493 | |
0.9 | 0.4445 | 0.0369 | 0.4322 | 0.0482 | 1.2148 | |
1.3 | 0.3831 | 0.0282 | 0.4380 | 0.0401 | 1.2202 | |
0.2 | 1 | 0.7811 | 0.0465 | 0.2759 | −0.2559 | 1.0234 |
0.5 | 0.6232 | 0.0464 | 0.3457 | −0.0139 | 1.1506 | |
0.9 | 0.5180 | 0.0373 | 0.3728 | 0.0004 | 1.2073 | |
1.3 | 0.4571 | 0.0307 | 0.3836 | −0.0018 | 1.2138 | |
0.2 | 1.5 | 0.8056 | 0.0400 | 0.2481 | −0.2848 | 1.0685 |
0.5 | 0.6608 | 0.0427 | 0.3126 | −0.0460 | 1.1603 | |
0.9 | 0.5608 | 0.0364 | 0.3404 | −0.0274 | 1.2103 | |
1.3 | 0.5013 | 0.0313 | 0.3531 | −0.0270 | 1.2158 | |
0.2 | 2 | 0.8220 | 0.0356 | 0.2296 | −0.3028 | 1.1005 |
0.5 | 0.6864 | 0.0397 | 0.2904 | −0.0674 | 1.1705 | |
0.9 | 0.5908 | 0.0354 | 0.3184 | −0.0468 | 1.2155 | |
1.3 | 0.5327 | 0.0313 | 0.3322 | −0.0449 | 1.2200 |
n | ML | Lindley | |||
β | θ | β | θ | ||
30 | AE | 0.3360 | 0.1489 | 0.3431 | 0.1560 |
MSE | 0.0109 | 0.0156 | 0.0115 | 0.0164 | |
AB | 0.0702 | 0.0762 | 0.0726 | 0.0780 | |
MRE | 0.1199 | 0.4890 | 0.1436 | 0.5602 | |
50 | AE | 0.3126 | 0.1169 | 0.3168 | 0.1211 |
MSE | 0.0040 | 0.0043 | 0.0041 | 0.0045 | |
AB | 0.0466 | 0.0459 | 0.0473 | 0.0463 | |
MRE | 0.0420 | 0.1691 | 0.0561 | 0.2113 | |
80 | AE | 0.3091 | 0.1103 | 0.3117 | 0.1130 |
MSE | 0.0023 | 0.0023 | 0.0024 | 0.0024 | |
AB | 0.0369 | 0.0347 | 0.0372 | 0.0350 | |
MRE | 0.0302 | 0.1034 | 0.0390 | 0.1298 | |
100 | AE | 0.3077 | 0.1094 | 0.3098 | 0.1115 |
MSE | 0.0018 | 0.0020 | 0.0019 | 0.0021 | |
AB | 0.0329 | 0.0328 | 0.0333 | 0.0330 | |
MRE | 0.0256 | 0.0936 | 0.0326 | 0.1148 |
β | θ | HS | HR | HH | HA | HM |
0.35 | 0.5 | −0.1593 | −0.1012 | −0.1191 | −0.0963 | −0.2134 |
0.75 | −0.1978 | −0.1193 | −0.1398 | −0.1125 | −0.2701 | |
1.25 | −0.3718 | −0.2497 | −0.2833 | −0.2210 | −0.4986 | |
1.65 | −0.4801 | −0.3448 | −0.3823 | −0.2916 | −0.6413 | |
0.35 | 1 | −0.2691 | −0.1708 | −0.1976 | −0.1570 | −0.3726 |
0.75 | −0.2074 | −0.1289 | −0.1507 | −0.1209 | −0.2788 | |
1.25 | −0.3205 | −0.2103 | −0.2410 | −0.1897 | −0.4297 | |
1.65 | −0.3994 | −0.2783 | −0.3136 | −0.2429 | −0.5310 | |
0.35 | 1.5 | −0.3520 | −0.2238 | −0.2556 | −0.2005 | −0.4984 |
0.75 | −0.2361 | −0.1496 | −0.1740 | −0.1390 | −0.3155 | |
1.25 | −0.3146 | −0.2044 | −0.2345 | −0.1849 | −0.4234 | |
1.65 | −0.3761 | −0.2573 | −0.2914 | −0.2268 | −0.5020 | |
0.35 | 2 | −0.4187 | −0.2668 | −0.3016 | −0.2342 | −0.6032 |
0.75 | −0.2666 | −0.1711 | −0.1979 | −0.1573 | −0.3560 | |
1.25 | −0.3212 | −0.2078 | −0.2383 | −0.1877 | −0.4340 | |
1.65 | −0.3706 | −0.2504 | −0.2841 | −0.2215 | −0.4970 |
β | θ | HS | HR | HH | HA | HM |
0.35 | 0.5 | −0.1593 | −0.2028 | −0.3643 | −0.2098 | −0.0987 |
0.75 | −0.1978 | −0.2533 | −0.4610 | −0.2643 | −0.1159 | |
1.25 | −0.3718 | −0.4452 | −0.8512 | −0.4799 | −0.2347 | |
1.65 | −0.4801 | −0.5562 | −1.0947 | −0.6111 | −0.3167 | |
0.35 | 1 | −0.2691 | −0.3417 | −0.6361 | −0.3619 | −0.1637 |
0.75 | −0.2074 | −0.2610 | −0.4759 | −0.2726 | −0.1248 | |
1.25 | −0.3205 | −0.3892 | −0.7336 | −0.4156 | −0.1997 | |
1.65 | −0.3994 | −0.4710 | −0.9065 | −0.5099 | −0.2598 | |
0.35 | 1.5 | −0.3520 | −0.4450 | −0.8509 | −0.4797 | −0.2117 |
0.75 | −0.2361 | −0.2930 | −0.5386 | −0.3078 | −0.1442 | |
1.25 | −0.3146 | −0.3840 | −0.7227 | −0.4097 | −0.1943 | |
1.65 | −0.3761 | −0.4479 | −0.8570 | −0.4830 | −0.2414 | |
0.35 | 2 | −0.4187 | −0.5272 | −1.0297 | −0.5763 | −0.2498 |
0.75 | −0.2666 | −0.3277 | −0.6078 | −0.3462 | −0.1640 | |
1.25 | −0.3212 | −0.3927 | −0.7408 | −0.4196 | −0.1974 | |
1.65 | −0.3706 | −0.4439 | −0.8484 | −0.4784 | −0.2354 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.5000 | 0.3000 | 0.1075 | 0.0920 | 0.1226 | 0.0910 | 0.1229 | |
30 | AEE | 0.5662 | 0.4234 | 0.1397 | 0.1203 | 0.1596 | 0.1182 | 0.1598 |
MSE | 0.0469 | 0.1369 | 0.0044 | 0.0036 | 0.0060 | 0.0033 | 0.0060 | |
AEB | 0.1370 | 0.2059 | 0.0464 | 0.0399 | 0.0523 | 0.0386 | 0.0526 | |
MRE | 0.1324 | 0.4115 | 0.0291 | 0.3080 | 0.3014 | 0.2998 | 0.3001 | |
50 | AEE | 0.5436 | 0.3647 | 0.1287 | 0.1103 | 0.1465 | 0.1086 | 0.1469 |
MSE | 0.0226 | 0.0430 | 0.0025 | 0.0018 | 0.0030 | 0.0016 | 0.0031 | |
AEB | 0.0989 | 0.1296 | 0.0355 | 0.0293 | 0.0385 | 0.0285 | 0.0393 | |
MRE | 0.0873 | 0.2158 | 0.1972 | 0.1984 | 0.1947 | 0.1938 | 0.1953 | |
80 | AEE | 0.5254 | 0.3400 | 0.1199 | 0.1035 | 0.1377 | 0.1021 | 0.1381 |
MSE | 0.0099 | 0.0199 | 0.0012 | 0.0009 | 0.0016 | 0.0009 | 0.0017 | |
AEB | 0.0735 | 0.0996 | 0.0259 | 0.0221 | 0.0291 | 0.0215 | 0.0301 | |
MRE | 0.0507 | 0.1334 | 0.1151 | 0.1253 | 0.1232 | 0.1227 | 0.1238 | |
100 | AEE | 0.5149 | 0.3232 | 0.1179 | 0.0998 | 0.1328 | 0.0985 | 0.1332 |
MSE | 0.0073 | 0.0146 | 0.0009 | 0.0007 | 0.0012 | 0.0006 | 0.0007 | |
AEB | 0.0636 | 0.0863 | 0.0225 | 0.0190 | 0.0250 | 0.0185 | 0.0260 | |
MRE | 0.0298 | 0.0774 | 0.0968 | 0.0845 | 0.0827 | 0.0827 | 0.0838 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.5000 | 0.3000 | 0.1075 | 0.1214 | 0.1899 | 0.1226 | 0.0912 | |
30 | AEE | 0.5662 | 0.4234 | 0.1393 | 0.1588 | 0.2500 | 0.1613 | 0.1199 |
MSE | 0.0469 | 0.1369 | 0.0044 | 0.0060 | 0.0155 | 0.0064 | 0.0036 | |
AEB | 0.1370 | 0.2059 | 0.0460 | 0.0545 | 0.0872 | 0.0561 | 0.0416 | |
MRE | 0.1324 | 0.4115 | 0.2957 | 0.3078 | 0.3166 | 0.3151 | 0.3155 | |
50 | AEE | 0.5436 | 0.3647 | 0.1292 | 0.1448 | 0.2273 | 0.1467 | 0.1091 |
MSE | 0.0226 | 0.0430 | 0.0025 | 0.0030 | 0.0078 | 0.0032 | 0.0018 | |
AEB | 0.0989 | 0.1296 | 0.0356 | 0.0391 | 0.0624 | 0.0402 | 0.0295 | |
MRE | 0.0873 | 0.2158 | 0.2023 | 0.1925 | 0.1974 | 0.1965 | 0.1972 | |
80 | AEE | 0.5254 | 0.3400 | 0.1203 | 0.1346 | 0.2109 | 0.1362 | 0.1013 |
MSE | 0.0099 | 0.0199 | 0.0012 | 0.0015 | 0.0038 | 0.0016 | 0.0008 | |
AEB | 0.0735 | 0.0996 | 0.0257 | 0.0281 | 0.0446 | 0.0287 | 0.0208 | |
MRE | 0.0507 | 0.1334 | 0.1191 | 0.1084 | 0.1110 | 0.1105 | 0.1109 | |
100 | AEE | 0.5149 | 0.3232 | 0.1171 | 0.1307 | 0.2047 | 0.1322 | 0.0983 |
MSE | 0.0073 | 0.0146 | 0.0008 | 0.0011 | 0.0028 | 0.0012 | 0.0006 | |
AEB | 0.0636 | 0.0863 | 0.0217 | 0.0249 | 0.0395 | 0.0255 | 0.0183 | |
MRE | 0.0298 | 0.0774 | 0.0898 | 0.0762 | 0.0780 | 0.0777 | 0.0782 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.7500 | 0.4000 | 0.2054 | 0.2636 | 0.4810 | 0.2755 | 0.1195 | |
30 | AEE | 0.9566 | 0.6359 | 0.2382 | 0.3036 | 0.5650 | 0.3215 | 0.1477 |
MSE | 0.3901 | 0.4698 | 0.0091 | 0.0121 | 0.0497 | 0.0152 | 0.0049 | |
AEB | 0.3230 | 0.3461 | 0.0720 | 0.0858 | 0.1713 | 0.0953 | 0.0514 | |
MRE | 0.2755 | 0.5896 | 0.1597 | 0.1518 | 0.1746 | 0.1667 | 0.2361 | |
50 | AEE | 0.8346 | 0.5004 | 0.2245 | 0.2829 | 0.5217 | 0.2977 | 0.1335 |
MSE | 0.0833 | 0.0990 | 0.0050 | 0.0063 | 0.0250 | 0.0077 | 0.0023 | |
AEB | 0.1898 | 0.1985 | 0.0543 | 0.0618 | 0.1219 | 0.0680 | 0.0359 | |
MRE | 0.1128 | 0.2509 | 0.0929 | 0.0732 | 0.0846 | 0.0806 | 0.1176 | |
80 | AEE | 0.8075 | 0.4647 | 0.2172 | 0.2797 | 0.5141 | 0.2937 | 0.1303 |
MSE | 0.0350 | 0.0417 | 0.0028 | 0.0035 | 0.0136 | 0.0042 | 0.0012 | |
AEB | 0.1332 | 0.1428 | 0.0406 | 0.0461 | 0.0906 | 0.0506 | 0.0265 | |
MRE | 0.0767 | 0.1618 | 0.0572 | 0.0611 | 0.0687 | 0.0661 | 0.0905 | |
100 | AEE | 0.7893 | 0.4444 | 0.2170 | 0.2749 | 0.5044 | 0.2884 | 0.1272 |
MSE | 0.0225 | 0.0248 | 0.0023 | 0.0027 | 0.0104 | 0.0032 | 0.0009 | |
AEB | 0.1127 | 0.1167 | 0.0378 | 0.0411 | 0.0805 | 0.0450 | 0.0234 | |
MRE | 0.0523 | 0.1110 | 0.0564 | 0.0429 | 0.0485 | 0.0466 | 0.0649 |
n | β | θ | HS | HR | HH | HA | HM | |
Initial value | 0.7500 | 0.4000 | 0.2054 | 0.2823 | 0.5684 | 0.2994 | 0.0781 | |
30 | AEE | 0.9507 | 0.6352 | 0.2435 | 0.3191 | 0.6599 | 0.3436 | 0.0988 |
MSE | 0.4225 | 0.4765 | 0.0097 | 0.0122 | 0.0673 | 0.0164 | 0.0028 | |
AEB | 0.3187 | 0.3430 | 0.0732 | 0.0855 | 0.1963 | 0.0980 | 0.0364 | |
MRE | 0.2676 | 0.5881 | 0.1430 | 0.1304 | 0.1610 | 0.1478 | 0.2659 | |
50 | AEE | 0.8353 | 0.4948 | 0.2282 | 0.3041 | 0.6217 | 0.3253 | 0.0896 |
MSE | 0.0756 | 0.0891 | 0.0053 | 0.0063 | 0.0329 | 0.0082 | 0.0012 | |
AEB | 0.1855 | 0.1996 | 0.0559 | 0.0620 | 0.1403 | 0.0705 | 0.0251 | |
MRE | 0.1137 | 0.2369 | 0.1112 | 0.0771 | 0.0937 | 0.0866 | 0.1473 | |
80 | AEE | 0.8041 | 0.4610 | 0.2179 | 0.2967 | 0.6033 | 0.3164 | 0.0856 |
MSE | 0.0396 | 0.0468 | 0.0030 | 0.0039 | 0.0202 | 0.0051 | 0.0007 | |
AEB | 0.1384 | 0.1446 | 0.0424 | 0.0496 | 0.1115 | 0.0561 | 0.0195 | |
MRE | 0.0721 | 0.1525 | 0.0609 | 0.0508 | 0.0614 | 0.0569 | 0.0968 | |
100 | AEE | 0.7847 | 0.4398 | 0.2148 | 0.2918 | 0.5917 | 0.3107 | 0.0832 |
MSE | 0.0240 | 0.0275 | 0.0023 | 0.0029 | 0.0145 | 0.0037 | 0.0005 | |
AEB | 0.1140 | 0.1178 | 0.0381 | 0.0426 | 0.0953 | 0.0481 | 0.0164 | |
MRE | 0.0463 | 0.0995 | 0.0459 | 0.0337 | 0.0410 | 0.0379 | 0.0654 |
Data | ||||||||||
1 | 0.010 | 0.033 | 0.044 | 0.056 | 0.059 | 0.072 | 0.074 | 0.077 | 0.092 | 0.093 |
0.096 | 0.100 | 0.100 | 0.102 | 0.105 | 0.107 | 0.107 | 0.108 | 0.108 | 0.108 | |
0.109 | 0.112 | 0.113 | 0.115 | 0.116 | 0.120 | 0.121 | 0.122 | 0.122 | 0.124 | |
0.130 | 0.134 | 0.136 | 0.139 | 0.144 | 0.146 | 0.153 | 0.159 | 0.160 | 0.163 | |
0.163 | 0.168 | 0.171 | 0.172 | 0.176 | 0.183 | 0.195 | 0.196 | 0.197 | 0.202 | |
0.213 | 0.215 | 0.216 | 0.222 | 0.230 | 0.231 | 0.240 | 0.245 | 0.251 | 0.253 | |
0.254 | 0.254 | 0.278 | 0.293 | 0.327 | 0.342 | 0.347 | 0.361 | 0.402 | 0.432 | |
0.458 | 0.555 | |||||||||
2.5 | 2.5 | 3.5 | 3.5 | 3.5 | 4.5 | 5.5 | 6.5 | 6.5 | 7.5 | |
2 | 7.5 | 7.5 | 7.5 | 8.5 | 9.5 | 10.5 | 11.5 | 12.5 | 12.5 | 13.5 |
14.5 | 14.5 | 21.5 | 21.5 | 22.5 | 22.5 | 25.5 | 27.5 |
Data | Model | β | θ | AIC | AD | KS | KS (p-values) |
1 | UCRD | 1.5824 | 0.0626 | −374.7721 | 0.6281 | 0.0886 | 0.3232 |
Kw | 1.7584 | 16.1025 | −134.5082 | 1.1577 | 0.0918 | 0.2970 | |
CRD | 4.5374 | 0.1483 | −138.6299 | 0.7445 | 0.0977 | 0.2530 | |
GRD | 0.9361 | 4.7828 | −135.0087 | 1.1676 | 0.0966 | 0.2611 | |
IERD | 0.4044 | 0.0021 | −47.0799 | 10.9825 | 0.3320 | 1.2759e-07 | |
RD | 0.1513 | 89.2556 | −164.3701 | 78.8664 | 0.8180 | 1.4387e-42 | |
2 | UCRD | 0.4702 | 0.0622 | −182.1497 | 0.2625 | 0.0820 | 0.6865 |
Kw | 1.2651 | 2.0797 | −3.3250 | 0.7083 | 0.1377 | 0.3457 | |
CRD | 2.7035 | 0.3650 | −3.1880 | 0.4173 | 0.1165 | 0.4675 | |
GRD | 0.7483 | 2.0202 | −3.1094 | 0.5596 | 0.1366 | 0.3516 | |
IERD | 0.6636 | 0.0275 | 1.7176 | 0.9928 | 0.1388 | 0.3400 | |
RD | 0.1985 | 11.0026 | 1.50062 | 16.9951 | 0.4355 | 2.4352e-05 |
Data | (β,θ) | α | HS | HR | HH | HA | HM |
1 | β=1.5824,θ=0.0626 | 0.5 | −0.9660 | −0.7331 | −0.7409 | −0.5196 | −1.4279 |
1.2 | −0.9660 | −1.0186 | −1.7456 | −1.1102 | −0.8204 | ||
1.8 | −0.9660 | −1.1215 | −3.4128 | −1.4538 | −0.3522 | ||
2.2 | −0.9660 | −1.1655 | −5.3998 | −1.6287 | 1.1818 | ||
2 | β=0.4702,θ=0.0622 | 0.5 | −0.1862 | −0.0997 | −0.1173 | −0.0948 | −0.2764 |
1.2 | −0.1862 | −0.2169 | −0.3426 | −0.2209 | −0.1509 | ||
1.8 | −0.1862 | −0.2961 | −0.6281 | −0.3165 | −0.0407 | ||
2.2 | −0.1862 | −0.3390 | −0.8889 | −0.3723 | 0.0451 |