Research article Special Issues

Automatic recognition of white blood cell images with memory efficient superpixel metric GNN: SMGNN


  • An automatic recognizing system of white blood cells can assist hematologists in the diagnosis of many diseases, where accuracy and efficiency are paramount for computer-based systems. In this paper, we presented a new image processing system to recognize the five types of white blood cells in peripheral blood with marked improvement in efficiency when juxtaposed against mainstream methods. The prevailing deep learning segmentation solutions often utilize millions of parameters to extract high-level image features and neglect the incorporation of prior domain knowledge, which consequently consumes substantial computational resources and increases the risk of overfitting, especially when limited medical image samples are available for training. To address these challenges, we proposed a novel memory-efficient strategy that exploits graph structures derived from the images. Specifically, we introduced a lightweight superpixel-based graph neural network (GNN) and broke new ground by introducing superpixel metric learning to segment nucleus and cytoplasm. Remarkably, our proposed segmentation model superpixel metric graph neural network (SMGNN) achieved state of the art segmentation performance while utilizing at most 10000× less than the parameters compared to existing approaches. The subsequent segmentation-based cell type classification processes showed satisfactory results that such automatic recognizing algorithms are accurate and efficient to execeute in hematological laboratories. Our code is publicly available at https://github.com/jyh6681/SPXL-GNN.

    Citation: Yuanhong Jiang, Yiqing Shen, Yuguang Wang, Qiaoqiao Ding. Automatic recognition of white blood cell images with memory efficient superpixel metric GNN: SMGNN[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2163-2188. doi: 10.3934/mbe.2024095

    Related Papers:

    [1] Chunyan Luo, Yuping Yu, Tingsong Du . Estimates of bounds on the weighted Simpson type inequality and their applications. AIMS Mathematics, 2020, 5(5): 4644-4661. doi: 10.3934/math.2020298
    [2] Sabir Hussain, Javairiya Khalid, Yu Ming Chu . Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375
    [3] Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
    [4] Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218
    [5] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [6] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [7] Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505
    [8] Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403
    [9] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [10] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322
  • An automatic recognizing system of white blood cells can assist hematologists in the diagnosis of many diseases, where accuracy and efficiency are paramount for computer-based systems. In this paper, we presented a new image processing system to recognize the five types of white blood cells in peripheral blood with marked improvement in efficiency when juxtaposed against mainstream methods. The prevailing deep learning segmentation solutions often utilize millions of parameters to extract high-level image features and neglect the incorporation of prior domain knowledge, which consequently consumes substantial computational resources and increases the risk of overfitting, especially when limited medical image samples are available for training. To address these challenges, we proposed a novel memory-efficient strategy that exploits graph structures derived from the images. Specifically, we introduced a lightweight superpixel-based graph neural network (GNN) and broke new ground by introducing superpixel metric learning to segment nucleus and cytoplasm. Remarkably, our proposed segmentation model superpixel metric graph neural network (SMGNN) achieved state of the art segmentation performance while utilizing at most 10000× less than the parameters compared to existing approaches. The subsequent segmentation-based cell type classification processes showed satisfactory results that such automatic recognizing algorithms are accurate and efficient to execeute in hematological laboratories. Our code is publicly available at https://github.com/jyh6681/SPXL-GNN.



    The following inequality is named the Simpson's integral inequality:

    |16[φ(ε)+4φ(ε+ζ2)+φ(ζ)]1ζεζεφ(t)dt|φ(4)(ζε)4, (1.1)

    where φ:[ε,ζ]R is a four-order differentiable mapping on (ε,ζ) and φ(4)=supt(ε,ζ)|φ(4)(t)|<.

    Considering the Simpson-type inequality via mappings of different classes, many results involving the ordinary integrals can be found in [1,3,4,5,18,19] and the references therein.

    Definition 1.1. A set ΩRn is named as invex set with respect to the mapping η:Ω×ΩRn, if

    ε+η(ζ,ε)Ω

    holds, for all ε,ζΩ and θ[0,1].

    Definition 1.2. A mapping φ:ΩR is called preinvex respecting η, if

    φ(ε+η(ζ,ε))(1θ)φ(ε)+θφ(ζ),

    holds for all ε,ζΩ and θ[0,1].

    The preinvex function is an important substantive generalization of the convex function. For the properties, applications, integral inequalities and other aspects of preinvex functions, see [5,7,8,9,10,11,12,13,14] and the references therein.

    Definition 1.3. Let s(0,1) and a mapping φ:ΩR is called s-preinvex respecting η, if

    φ(ε+η(ζ,ε))(1θs)φ(ε)+θsφ(ζ),

    holds for all ε,ζΩ and θ[0,1].

    Fractional calculus has recently been the focus of mathematics and many related sciences. In addition to defining new integral-derivative operators and their properties, many researchers have achieved important results in applied mathematics, engineering and statistics. It is appropriate for the reader to review articles [2,15,16,17] for some recent studies. We end this section by reciting a well known κ-fractional integral operators in the literature.

    Definition 1.4. ([6]) Let φL[ε,ζ], the κ-fractional integrals Jα,κε+ and Jα,κζ of order α>0 are defined by

    Jα,κε+=1κΓκ(α)xε(xθ)ακ1φ(θ)dθ,(0α<x<ζ) (1.2)

    and

    Jα,κζ+=1κΓκ(α)ζx(θx)ακ1φ(θ)dθ,(0α<x<ζ), (1.3)

    respectively, where κ>0, and Γκ is the κ-gamma function defined as Γκ(x):=0θx1eθκκdθ,(x)>0, with the properties Γκ(x+κ)=xΓκ(x) and Γκ(κ)=1.

    This paper aims to obtain estimation type results of Simpson-type inequality related to κ- fractional integral operators. Next, we derive the results with the boundedness of the derivative and with a Lipschitzian condition for the derivative of the considered mapping to derive integral inequalities with new bounds. Application of our results to random variables are also provided.

    Throughout of this work, let ΩR be an open subset respecting η:Ω×ΩR{0} and ε,ζΩ with ε<ζ.

    To prove our results, we obtain a new integral identity as following:

    Lemma 2.1. Let φ:Ω=[ε+η(ζ,ε)]R be a differentiable function on (ε+η(ζ,ε)) with η(ζ,ε)>0. If φL[ε,ε+η(ζ,ε)],n0 and α,κ>0, then the following identity holds:

    Ψ(ε,ζ;n,α,κ):=η(ζ,ε)2(n+1)[10(2(1θ)ακθακ3)φ(ε+1θn+1η(ζ,ε))dθ+10(θακ2(1θ)ακ3)]φ(ε+n+θn+1η(ζ,ε))dθ], (2.1)

    where

    Ψ(ε,ζ;n,α,κ):=16[φ(ε)+φ(ε+η(ζ,ε))+2φ(ε+1n+1η(ζ,ε))+2φ(ε+nn+1η(ζ,ε))Γκ(α+κ)(n+1)ακ6(η(ζ,ε))ακ[Jα,κ(ε)+φ(a+1n+1η(ζ,ε))]+Jα,κ(ε+η(ζ,ε))φ(ε+nn+1η(ζ,ε))]Γκ(α+κ)(n+1)ακ3(η(ζ,ε))ακ[Jα,κ(ε+nn+1η(ζ,ε))+φ(ε+η(ζ,ε))+Jα,κ(ε+1n+1η(ζ,ε))+φ(ε)]].

    Proof. Integration by parts, one can have

    I1=10(2(1θ)ακθακ3)φ(ε+1θn+1η(ζ,ε))dθ=n+13η(ζ,ε)φ(ε)+2(n+1)3η(ζ,ε)φ(ε+1n+1η(ζ,ε))α(n+1)ακ+13κ(η(ζ,ε))ακ+1ε+1n+1η(ζ,ε)ε(ε+1n+1η(ζ,ε)x)ακ1φ(x)dx2α(n+1)ακ+13κ(η(ζ,ε))ακε+1n+1η(ζ,ε)ε(xε)ακ1φ(x)dx

    and

    I2=10(θακ2(1θ)ακ3)]φ(ε+n+θn+1η(ζ,ε))dθ=n+13(η(ζ,ε))φ(ε+η(ζ,ε))+2(n+1)3η(ζ,ε)φ(ε+nn+1η(ζ,ε))α(n+1)ακ+13κ(η(ζ,ε))ακ+1ε+η(ζ,ε)ε+nn+1η(ζ,ε)(x(ε+nn+1η(ζ,ε)))ακ1φ(x)dxα(n+1)ακ+13κ(η(ζ,ε))ακ+1ε+η(ζ,ε)ε+nn+1η(ζ,ε)((ε+η(ζ,ε))x)ακ1φ(x)dx.

    By adding I1 and I2 and multiplying the both sides η(ζ,ε)2(n+1), we can write

    I1+I2=16[φ(ε)+φ(ε+η(ζ,ε))+2φ(ε+1n+1η(ζ,ε))+2φ(ε+nn+1η(ζ,ε))]α(n+1)ακ6κ(η(ζ,ε))ακ[ε+1n+1η(ζ,ε)ε(ε+1n+1η(ζ,ε))ακ1φ(x)dx+ε+η(ζ,ε)ε+nn+1η(ζ,ε)(x(ε+nn+1η(ζ,ε)))ακ1φ(x)dx]α(n+1)ακ3κ(η(ζ,ε))ακ[ε+nn+1η(ζ,ε)ε(ε+η(ζ,ε)x)ακ1φ(x)dx+ε+1n+1η(ζ,ε)ε(xε)ακ1φ(x)dx].

    Using the fact that

    1κΓκ(α)ε+1n+1η(ζ,ε)ε(xε)ακ1φ(x)dx=Jα,κ(ε+1n+1η(ζ,ε))φ(ε),1κΓκ(α)ε+η(ζ,ε)ε+nn+1η(ζ,ε)(ε+η(ζ,ε)x)ακ1φ(x)dx=Jα,κ(ε+nn+1η(ζ,ε))+φ(ε+η(ζ,ε)),1κΓκ(α)ε+1n+1η(ζ,ε)ε(ε+1n+1η(ζ,ε)x)ακ1φ(x)dx=Jα,κ(ε)+φ(ε+1n+1η(ζ,ε)),1κΓκ(α)ε+η(ζ,ε)ε+nn+1η(ζ,ε)(x(ε+1n+1η(ζ,ε)))ακ1φ(x)dx=Jα,κ(ε+η(ζ,ε))φ(ε+nn+1η(ζ,ε)),

    we get the result.

    Remark 2.1. If we choose η(ζ,ε)=ζε with κ=1, then under the assumption of Lemma 2.1 one has Lemma 2.1 in [19].

    Theorem 2.2. Let φ:Ω=[ε,ε+η(ζ,ε)]R be a differentiable function on Ω. If φL[ε,ε+η(ζ,ε)]and |φ|λ for λ>1 with μ1+λ1=1 is s-preinvex function, then the following inequality holds for fractional integrals with α,κ>0, then the following integral inequality holds:

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1)(10|2(1θ)ακθακ3|μdθ)1μ×[[(11(n+1)s(s+1)|φ(ε)|λ+1(n+1)s(s+1)|φ(ζ)|λ)]1λ+[1(n+1)s(s+1)|φ(ε)|λ+(21s1(n+1)s(s+1))|φ(ζ)|λ]1λ]. (2.2)

    Proof. From the integral identity given in Lemma 2.1, the H¨older integral inequality and the s-preinvexity of |φ(x)|λ, we have

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1)[10|(2(1θ)ακθακ3)||φ(ε+1θn+1η(ζ,ε))|dθ+|10(θακ2(1θ)ακ3)||φ(ε+n+θn+1η(ζ,ε))|dθ]η(ζ,ε)2(n+1)[(10|(2(1θ)ακθακ3)|μdθ)1μ×[10((1(1θn+1)s)|φ(ε)|λ+(1θn+1)s|φ(ζ)|λ)dθ]1λ+(10|(θακ2(1θ)ακ3)|μdθ)1μ[10((1(n+θn+1)s)|φ(ε)|λ+(n+θn+1)s|φ(ζ)|λ)dθ]1λ]. (2.3)

    Using the fact that 1χs(1χ)s21sχs for χ[0,1] with s(0,1], we have

    10(1(n+θn+1)s|φ(ε)|λ+(n+θn+1)|φ(ζ)|λ)dθ10[(1θn+1)|φ(ε)|λ+(21s(1θn+1)s)|φ(ζ)|λ]dθ=1(n+1)s(s+1)|φ(ε)|λ+(21s1(n+1)s(s+1))|φ(ζ)|λ (2.4)

    and

    10[(1(1θn+1)s)|φ(ε)|λ+(1θn+1)s|φ(ζ)|λ]dθ=(11(n+1)s(s+1)|φ(ε)|λ+1(n+1)s(s+1)|φ(ζ)|λ). (2.5)

    Remark 2.2. If we choose η(ζ,ε)=ζε with κ=1, then under the assumption of Theorem 2.2, one has Theorem 2.3 in [19].

    Corollary 2.1. If we choose α=κ=1, and n=s=1, then under the assumption of Theoremm 2.2 we have

    |16[φ(ε)+4φ(2ε+η(ζ,ε)2)+φ(ε+η(ζ,ε))]1η(ζ,ε)ε+η(ζ,ε)εφ(x)dx|η(ζ,ε)4[1+2μ+13μ+1(μ+1)]1μ[(34)1λ+(14)1λ][|φ(ε)|+|φ(ζ)|].

    Corollary 2.2. If we choose η(ζ,ε)=ζε with α=κ=1, and n=s=1, then under the assumption of Theoremm 2.2 we have

    |16[φ(ε)+4φ(ε+ζ2)+φ(ζ)]1ζεζεφ(x)dx|ζε4[1+2μ+13μ+1(μ+1)]1μ[(34)1λ+(14)1λ][|φ(ε)|+|φ(ζ)|].

    Proof. The proof of the last inequality is obtained by using the fact that

    ni=1(ωi+νi)jni=1(ωi)j+ni=1(νi)j

    for 0j1,ω1,ω2,ω3,...,ωn0;ν1,ν2,ν3,...,νn0.

    Theorem 2.3. Let φ:Ω=[ε,ε+η(ζ,ε)]R be a differentiable function on Ω. If φL[ε,ε+η(ζ,ε)]and |φ| is s-preinvex function, then the following inequality holds for fractional integrals with α,κ>0, then the following integral inequality holds:

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1){(Δ1+Δ3)|φ(ε)|+(Δ1+Δ2)|φ(ζ)|}, (2.6)

    where

    Δ1=24(12κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[β(ακ+1,s+1)2β(2κα2κα+1;ακ+1,s+1)],
    Δ2=21s{32(2κα2ακ+1)ακ+14(12κα2ακ+1)ακ+1}3(ακ+1)24(12κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)β(ακ+1,s+1)]

    and

    Δ3={32(2κα2ακ+1)ακ+14(12κα2ακ+1)ακ+1}3(ακ+1)24(12κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)β(ακ+1,s+1)].

    Proof. From Lemma 2.1 and using the s-preinvexity of |φ(x)|, we have

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1)[10|2(1θ)ακθακ3|[(1(1θn+1)s)|φ(ε)|+(1θn+1)s|φ(ζ)|]dθ+10|θακ2(1θ)ακ3|[(1(n+θn+1)s)|φ(ε)|+(n+θn+1)s|φ(ζ)|]dθ] (2.7)

    From (2.7), we have

    10|θακ2(1θ)ακ3|[(1(n+θn+1)s)|φ(ε)|+(n+θn+1)s|φ(ζ)|]dθ|φ(ε)|10|θακ2(1θ)ακ3|(1θn+1)sdθ+|φ(ζ)|10|θακ2(1θ)ακ3|(21s1θn+1)sdθ, (2.8)

    By taking into account

    Δ1=10|θακ2(1θ)ακ3|(1θn+1)sdθ=24(12κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[β(ακ+1,s+1)2β(2κα2κα+1;ακ+1,s+1)], (2.9)
    Δ2=10|θακ2(1θ)ακ3|(21s1θn+1)sdθ=21s{32(2κα2ακ+1)ακ+14(12κα2ακ+1)ακ+1}3(ακ+1)24(12κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)β(ακ+1,s+1)] (2.10)

    and

    Δ3=10|θακ2(1θ)ακ3|(11θn+1)sdθ={32(2κα2ακ+1)ακ+14(12κα2ακ+1)ακ+1}3(ακ+1)24(12κα2κα+1)ακ+s+13(n+1)s(ακ+s+1)+13(n+1)s[2β(2κα2ακ+1;ακ+1,s+1)β(ακ+1,s+1)], (2.11)

    Theorem 2.4. Let φ:Ω=[ε,ε+η(ζ,ε)]R be a differentiable function on Ω. If φL[ε,ε+η(ζ,ε)]and |φ| is s-preinvex function, then the following inequality holds for fractional integrals with α,κ>0, then the following integral inequality holds:

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1)(Δ0)11λ{(Δ1|φ(ε)|λ+Δ3|φ(ζ)|λ)1λ+(Δ1|φ(ε)|λ+Δ2|φ(ζ)|λ)1λ}, (2.12)

    where

    Δ0={32(2κα2ακ+1)ακ+14(12κα2ακ+1)ακ+1}3(ακ+1).

    Proof. By using Lemma 2.1 and the H¨older's integral inequality for λ>1 we have

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1)[(10|2(1θ)ακθακ3|dθ)11λ×[10|2(1θ)ακθακ3||φ(ε+1θn+1η(ζ,ε))|λdθ)1λ+10|θακ2(1θ)ακ3||φ(ε+n+θn+1η(ζ,ε))|λdθ)1λ]

    Using s-preinvexity of |φ|, we get

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1)[(10|2(1θ)ακθακ3|dθ)11λ×[10|2(1θ)ακθακ3|[((1(1θn+1)s)|φ(ε)|λ+(1θn+1)λ|φ(ζ)|λ)dθ]1λ+10|θακ2(1θ)ακ3|[((1(n+θn+1)s)|φ(ε)|λ+(n+θn+1)λ|φ(ζ)|λ)dθ]1λ,] (2.13)

    using the fact that

    Δ0=10|2(1θ)ακθακ3|dθ={32(2κα2ακ+1)ακ+14(12κα2ακ+1)ακ+1}3(ακ+1). (2.14)

    A combination of (2.9)–(2.11) with (2.14) into (2.13) gives the desired inequality (2.12). The proof is completed.

    Corollary 2.3. If we take n=s=1 and α=κ=1, then under the assumption of Theorem 2.4, we have

    |16(φ(ε)+4φ(2ε+η(ζ,ε)2)+φ(ε+η(ζ,ε)))1η(ζ,ε)ε+η(ζ,ε)εφ(x)dx|η(ζ,ε)4(518)11λ[(61324)1λ+(29324)1λ][|φ(ε)|+|φ(ζ)|].

    Corollary 2.4. If we take η(ζ,ε)=ζε with n=s=1 and α=κ=1, then under the assumption of Theorem 2.4, we have

    |16(φ(ε)+4φ(ε+ζ2)+φ(ζ))1ζεζεφ(x)dx|ζε4(518)11λ[(61324)1λ+(29324)1λ][|φ(ε)|+|φ(ζ)|].

    Remark 2.3. If we take η(ζ,ε)=ζε with λ=1 and κ=s=1, then Theorem 2.4 reduces to Theorem 2.2 in [19].

    Remark 2.4. If we take η(ζ,ε)=ζε with λ=1, κ=s=1, and α=n=1 then Theorem 2.4 reduces to Corollary 1 in [18].

    For deriving further results, we deal with the boundedness and the Lipschitzian condition of φ.

    Theorem 2.5. Let φ:Ω=[ε,ε+η(ζ,ε)]R be a differentiable function on Ω. If |φ| is s-preinvex function, there exists constants m<M satisfying that <mφ(x)M< for all x[ε,ε+η(ζ,ε)] and α,κ>0, and n0, then the following integral inequality holds:

    |Ψ(ε,ζ;n,α,κ)|(Mm)η(ζ,ε)2(n+1)Δ0, (2.15)

    where Δ0 given in (2.14).

    Proof. From Lemma 2.1, we have

    Ψ(ε,ζ;n,α,κ)|=η(ζ,ε)2(n+1)[10(2(1θ)ακθακ3)(φ(ε+1θn+1η(ζ,ε))m+M2)dθ+10(θακ2(1θ)ακ3)(φ(ε+n+θn+1η(ζ,ε))m+M2)dθ] (2.16)

    Using the fact that mm+M2φ(ε+1θn+1η(ζ,ε))m+M2Mm+M2, one has

    |φ(ε+1θn+1η(ζ,ε))m+M2|Mm2,

    similarly,

    |φ(ε+n+θn+1η(ζ,ε))m+M2|Mm2,

    Inequality (2.16) implies that

    |Ψ(ε,ζ;n,α,κ)|(Mm)η(ζ,ε)2(n+1)10|2(1θ)ακθακ3|dθ=(Mm)η(ζ,ε)2(n+1)Δ0.

    The proof is completed.

    Corollary 2.5. If we take η(ζ,ε)=ζε with α=κ=1, then under the assumption of Theorem 2.5, we have

    |Ψ(ε,ζ;n,α,κ)|7(Mm)(ζε)36(n+1).

    Theorem 2.6. Let φ:Ω=[ε,ε+η(ζ,ε)]R be a differentiable function on Ω. If φ satisfies Lipchitz conditions on [ε,ε+η(ζ,ε)] for certain L>0, with α>0,κ>0,n0, then the following inequality holds:

    |Ψ(ε,ζ;n,α,κ)|L(η(ζ,ε))22(n+1)2[(n1)Δ04(2ακ2ακ+1)ακ+223(ακ)+2+83β(2ακ2ακ+1;ακ+1,2)43β(ακ+1,2)], (2.17)

    where Δ0 given in (2.14).

    Proof. From Lemma 2.1, we have

    Ψ(ε,ζ;n,α,κ)|=η(ζ,ε)2(n+1)[10(2(1θ)ακθακ3)[φ(ε+1θn+1η(ζ,ε))φ(ε+n+θn+1η(ζ,ε))]dθ.

    Since φ is Lipschitz condition on [ε,ε+η(ζ,ε)], for certain L>0, we have

    |φ(ε+1θn+1η(ζ,ε))φ(ε+n+θn+1η(ζ,ε))|Lη(ζ,ε)(n1+2tn+1)

    Thus

    |Ψ(ε,ζ;n,α,κ)|η(ζ,ε)2(n+1)[10|2(1θ)ακθακ3||φ(ε+1θn+1η(ζ,ε))φ(ε+n+θn+1η(ζ,ε)|]dθL(η(ζ,ε))22(n+1)10|2(1θ)ακθακ3|(n1+2tn+1)dθ=L(η(ζ,ε))22(n+1)2[(n1)Δ04(2ακ2ακ+1)ακ+223(ακ)+2+83β(2ακ2ακ+1;ακ+1,2)43β(ακ+1,2)].

    The proof is completed.

    Corollary 2.6. If we take η(ζ,ε)=ζε with α=κ=1, then under the assumption of Theorem 2.6, we have

    |Ψ(ε,ζ;n,α,κ)|L(ζε)22(n+1)2[7n1118+22135+83β(23;2,2)].

    Let the set ψ and the δ-finite measure ϱ be given, and let the set of all probability densities on ϱ to be defined on Λ:={z|z:ψR,z(x)>0,ψz(x)dϱ(x)=1}.

    Let F:(0,)R be given mapping and consider DF(z,w) be defined by

    DF(z,w):=ψz(x)F(z(x)w(x))dϱ(x),z,wΛ. (3.1)

    If F is convex, then (3.1) is called as the Csiszar F-divergence.

    Consider the following Hermite-Hadamard divergence

    DFHH(z,w):=ψw(x)z(x)1F(t)dtw(x)z(x)1dϱ(x),w,zΛ, (3.2)

    where F is convex on (0,) with F(1)=0. Note that DFHH(z,w)0 with the equality holds if and only if w=z.

    Proposition 3.1. Suppose all assumptions of Corollary 2.2 hold for (0,) and F(1)=0, if w,zΛ, then the following inequality holds:

    |16[DF(w,z)+4ψz(x)F(z(x)+w(x)2w(x)dϱ(x))]DFHH(w,z)|(1+2λ+1)1λ4(3λ+1(1+λ))1λ[(34)1λ+(14)1λ]×[|F(1)|ψ|z(x)w(x)|dϱ(x)+ψ|z(x)w(x)||Fz(x)w(x)|dϱ(x)]. (3.3)

    Proof. Let Θ1={xψ:z(x)=w(x)}. Θ2={xψ:z(x)<w(x)} and Θ3={xψ:z(x)>w(x)} and Obviously, if xΘ1, then equality holds in (3.3).

    Now if xΘ2, then using Corollary 2.2 for ε=z(x)w(x) and ζ=1, multiplying both sides of the obtained results by w(x) and then integrating over Θ2, we obtain

    |16[4ψ2w(x)F(w(x)+z(x)2w(x))dϱ(x)+ψ2w(x)F(z(x)w(x))dϱ(x)]ψ2w(x)z(x)w(x)1F(t)dtz(x)w(x)1dϱ(x)|(1+2λ+1)1λ4(3λ+1(1+λ))1λ[(34)1λ+(14)1λ]×[|F(1)|ψ2|w(x)z(x)|dϱ(x)+ψ2|w(x)z(x)||Fz(x)w(x)|dϱ(x)]. (3.4)

    Similarly if xΘ3, then using Corollary 2.2 for ε=1 and ζ=z(x)w(x), multiplying both sides of the obtained results by w(x) and then integrating over Θ3, we obtain

    |16[4ψ3w(x)F(w(x)+z(x)2w(x))dϱ(x)+ψ3w(x)F(z(x)w(x))dϱ(x)]ψ3w(x)z(x)w(x)1F(t)dtz(x)w(x)1dϱ(x)|(1+2λ+1)1λ4(3λ+1(1+λ))1λ[(34)1λ+(14)1λ]×[|F(1)|ψ3|z(x)w(x)|dϱ(x)+ψ3|z(x)w(x)||Fz(x)w(x)|dϱ(x)]. (3.5)

    Adding inequalities (3.4) and (3.5) and then utilizing triangular inequality, we get the result.

    Proposition 3.2. Suppose all assumptions of Corollary 2.4 holds for (0,) and f(1)=0, if w,zΛ, then the following inequality holds:

    |16[DF(w,z)+4ψz(x)F(z(x)+w(x)2w(x)dϱ(x))]DFHH(w,z)|(518)1λ[(61324)1λ+(29324)1λ]×[|F(1)|ψ|z(x)w(x)|4dϱ(x)+ψ|z(x)w(x)|4|Fz(x)w(x)|dϱ(x)]. (3.6)

    Proof. The proof is similar as one has done for Corollary 2.2.

    Let G:[ε,ε+η(ζ,ε)][0,1] be the probability density function of a continuous random variable Y with the cumulative distribution function of G

    F(y)=P(Yy)=xεG(t)dt.

    As we know E(y)=ε+η(ζ,ε)εtdF(t)=(ε+η(ζ,ε))ε+η(ζ,ε)εF(t)

    Proposition 3.3. By Corollary 2.1, we get the inequality

    |16[4P(Y2ε+η(ζ,ε)2)+1]1η(ζ,ε)(ε+η(ζ,ε)E(y))|η(ζ,ε)4[1+2μ+13μ+1(μ+1)]1μ[(34)1λ+(14)1λ][|G(ε)|+|G(ζ)|].

    Proposition 3.4. By Corollary 2.3, we get the inequality

    |16[4P(Y2ε+η(ζ,ε)2)+1]1η(ζ,ε)(ε+η(ζ,ε)E(y))|η(ζ,ε)4(518)11λ[(61324)1λ+(29324)1λ][|G(ε)|+|G(ζ)|].

    Same applications can be found for Corollary 2.2 and Corollary 2.4, respectively. We leave it to the interested readers.

    In this paper, we have established several Simpson's type inequalities via κ-fractional integrals in terms of preinvex functions. We also have obtained the inequalities applied to F-divergence measures and application for probability density functions. These results can be viewed as refinement and significant improvements of the previously known for [18,19] and preinvex functions. Applications can be provided in terms of the obtained results to special means. The ideas and techniques of this paper may be attracted to interested readers.

    The authors declare that there is no conflicts of interest in this paper.



    [1] H. Mohamed, R. Omar, N. Saeed, A. Essam, N. Ayman, T. Mohiy, et al., Automated detection of white blood cells cancer diseases, in 2018 First International Workshop on Deep and Representation Learning (IWDRL), (2018), 48–54. https://doi.org/10.1109/IWDRL.2018.8358214
    [2] M. S. Kruskall, T. H. Lee, S. F. Assmann, M. Laycock, L. A. Kalish, M. M. Lederman, et al., Survival of transfused donor white blood cells in hiv-infected recipients, Blood J. Am. Soc. Hematol., 98 (2001), 272–279. https://doi.org/10.1182/blood.V98.2.272 doi: 10.1182/blood.V98.2.272
    [3] F. Xing, L. Yang, Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review, IEEE Rev. Biomed. Eng., 9 (2016), 234–263. https://doi.org/10.1109/RBME.2016.2515127 doi: 10.1109/RBME.2016.2515127
    [4] X. Zheng, Y. Wang, G. Wang, J. Liu, Fast and robust segmentation of white blood cell images by self-supervised learning, Micron, 107 (2018), 55–71. https://doi.org/10.1016/j.micron.2018.01.010 doi: 10.1016/j.micron.2018.01.010
    [5] Z. Zhu, S. H. Wang, Y. D. Zhang, Rernet: A deep learning network for classifying blood cells, Technol. Cancer Res. Treatment, 22 (2023), 15330338231165856. https://doi.org/10.1177/15330338231165856 doi: 10.1177/15330338231165856
    [6] Z. Zhu, Z. Ren, S. Lu, S. Wang, Y. Zhang, Dlbcnet: A deep learning network for classifying blood cells, Big Data Cognit. Comput., 7 (2023), 75. https://doi.org/10.3390/bdcc7020075 doi: 10.3390/bdcc7020075
    [7] C. Cheuque, M. Querales, R. León, R. Salas, R. Torres, An efficient multi-level convolutional neural network approach for white blood cells classification, Diagnostics, 12 (2022), 248. https://doi.org/10.3390/diagnostics12020248 doi: 10.3390/diagnostics12020248
    [8] Y. Zhou, Y. Wu, Z. Wang, B. Wei, M. Lai, J. Shou, et al., Cyclic learning: Bridging image-level labels and nuclei instance segmentation, IEEE Trans. Med. Imaging, 42 (2023), 3104–3116. https://doi.org/10.1109/TMI.2023.3275609 doi: 10.1109/TMI.2023.3275609
    [9] Z. Gao, J. Shi, X. Zhang, Y. Li, H. Zhang, J. Wu, et al., Nuclei grading of clear cell renal cell carcinoma in histopathological image by composite high-resolution network, in International Conference on Medical Image Computing and Computer-Assisted Intervention, (2021), 132–142. https://doi.org/10.1007/978-3-030-87237-3_13
    [10] X. Liu, L. Song, S. Liu, Y. Zhang, A review of deep-learning-based medical image segmentation methods, Sustainability, 13 (2021), 1224. https://doi.org/10.3390/su13031224 doi: 10.3390/su13031224
    [11] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
    [12] F. Falck, C. Williams, D. Danks, G. Deligiannidis, C. Yau, C. Holmes, et al., A multi-resolution framework for U-Nets with applications to hierarchical VAEs, Adv. Neural Inf. Process. Syst., 35 (2022), 15529–15544.
    [13] Z. Zhou, M. Rahman Siddiquee, N. Tajbakhsh, J. Liang, Unet++: A nested u-net architecture for medical image segmentation, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, (2018), 3–11. https://doi.org/10.1007/978-3-030-00889-5_1
    [14] H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, et al., Unet 3+: A full-scale connected unet for medical image segmentation, in IEEE International Conference on Acoustics, Speech and Signal Processing, (2020), 1055–1059. https://doi.org/10.1109/icassp40776.2020.9053405
    [15] F. Jia, J. Liu, X. Tai, A regularized convolutional neural network for semantic image segmentation, Anal. Appl., 19 (01), 147–165. https://doi.org/10.1142/s0219530519410148
    [16] N. Akram, S. Adnan, M. Asif, S. Imran, M. Yasir, R. Naqvi, et al., Exploiting the multiscale information fusion capabilities for aiding the leukemia diagnosis through white blood cells segmentation, IEEE Access, 10 (2022), 48747–48760. https://doi.org/10.1109/access.2022.3171916 doi: 10.1109/access.2022.3171916
    [17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., An image is worth 16x16 words: Transformers for image recognition at scale, in International Conference on Learning Representations, 2021.
    [18] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, et al., Swin transformer: Hierarchical vision transformer using shifted windows, in Proceedings of the IEEE International Conference on Computer Vision, (2021), 10012–10022. https://doi.org/10.1109/iccv48922.2021.00986
    [19] C. Nicolas, M. Francisco, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, in European Conference on Computer Vision, (2020), 213–229.
    [20] O. Petit, N. Thome, C. Rambour, L. Themyr, T. Collins, L. Soler, U-net transformer: Self and cross attention for medical image segmentation, in International Workshop on Machine Learning in Medical Imaging, (2021), 267–276. https://doi.org/10.1007/978-3-030-87589-3_28
    [21] J. Valanarasu, P. Oza, I. Hacihaliloglu, V. Patel, Medical transformer: Gated axial-attention for medical image segmentation, in Medical Image Computing and Computer Assisted Intervention, (2021), 36–46. https://doi.org/10.1007/978-3-030-87193-2_4
    [22] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, et al., Swin-unet: Unet-like pure transformer for medical image segmentation, in Proceedings of European Conference on Computer Vision Workshops, 3 (2023), 205–218. https://doi.org/10.1007/978-3-031-25066-8_9
    [23] Z. Chi, Z. Wang, M. Yang, D. Li, W. Du, Learning to capture the query distribution for few-shot learning, IEEE Trans. Circuits Syst. Video Technol., 32 (2021), 4163–4173. https://doi.org/10.1109/tcsvt.2021.3125129 doi: 10.1109/tcsvt.2021.3125129
    [24] G. Li, S. Masuda, D. Yamaguchi, M. Nagai, The optimal gnn-pid control system using particle swarm optimization algorithm, Int. J. Innovative Comput. Inf. Control, 5 (2009), 3457–3469. https://doi.org/10.1109/GSIS.2009.5408225 doi: 10.1109/GSIS.2009.5408225
    [25] Y. Wang, K. Yi, X. Liu, Y. Wang, S. Jin, Acmp: Allen-cahn message passing with attractive and repulsive forces for graph neural networks, in International Conference on Learning Representations, 2022.
    [26] S. Min, Z. Gao, J. Peng, L. Wang, K. Qin, B. Fang, Stgsn—a spatial–temporal graph neural network framework for time-evolving social networks, Knowl. Based Syst., 214 (2021), 106746. https://doi.org/10.1016/j.knosys.2021.106746 doi: 10.1016/j.knosys.2021.106746
    [27] B. Bumgardner, F. Tanvir, K. Saifuddin, E. Akbas, Drug-drug interaction prediction: a purely smiles based approach, in IEEE International Conference on Big Data, (2021), 5571–5579. https://doi.org/10.1109/bigdata52589.2021.9671766
    [28] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, in International Conference on Learning Representations, 2014.
    [29] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Adv. Neural Inf. Process. Syst., 29 (2016).
    [30] T. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, International Conference on Learning Representations, 2017.
    [31] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph attention networks, in International Conference on Learning Representations, 2018.
    [32] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?, preprint, arXiv: 1810.00826.
    [33] Y. Lu, Y. Chen, D. Zhao, J. Chen, Graph-FCN for image semantic segmentation, in International Symposium on Neural Networks, 2019.
    [34] L. Zhang, X. Li, A. Arnab, K. Yang, Y. Tong, P. Torr, et al., Dual graph convolutional network for semantic segmentation, in British Machine Vision Conference, 2019.
    [35] Y. Jiang, Q. Ding, Y. G. Wang, P. Liò, X.Zhang, Vision graph u-net: Geometric learning enhanced encoder for medical image segmentation and restoration, Inverse Prob. Imaging, 2023 (2023). https://doi.org/10.3934/ipi.2023049
    [36] Z. Tian, L. Liu, Z. Zhang, B. Fei, Superpixel-based segmentation for 3d prostate mr images, IEEE Trans. Med. Imaging, 35 (2015), 791–801. https://doi.org/10.1109/tmi.2015.2496296 doi: 10.1109/tmi.2015.2496296
    [37] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model cnns, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 5115–5124. https://doi.org/10.1109/cvpr.2017.576
    [38] R. Gadde, V. Jampani, M. Kiefel, D. Kappler, P. Gehler, Superpixel convolutional networks using bilateral inceptions, in Proceedings of the European Conference on Computer Vision, (2016). https://doi.org/10.1007/978-3-319-46448-0_36
    [39] P. Avelar, A. Tavares, T. Silveira, C. Jung, L. Lamb, Superpixel image classification with graph attention networks, in SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), (2020), 203–209. https://doi.org/10.1109/sibgrapi51738.2020.00035
    [40] W. Zhao, L. Jiao, W. Ma, J. Zhao, J. Zhao, H. Liu, et al, . Superpixel-based multiple local cnn for panchromatic and multispectral image classification, IEEE Trans. Geosci. Remote Sens., 55 (2017), 4141–4156. https://doi.org/10.1109/tgrs.2017.2689018 doi: 10.1109/tgrs.2017.2689018
    [41] B. Cui, X. Xie, X. Ma, G. Ren, Y. Ma, Superpixel-based extended random walker for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 56 (2018), 3233–3243. https://doi.org/10.1109/tgrs.2018.2796069 doi: 10.1109/tgrs.2018.2796069
    [42] S. Zhang, S. Li, W. Fu, L. Fang, Multiscale superpixel-based sparse representation for hyperspectral image classification, Remote Sens., 9 (2017), 139. https://doi.org/10.3390/rs9020139 doi: 10.3390/rs9020139
    [43] Q. Liu, L. Xiao, J. Yang, Z. Wei, Cnn-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 59 (2020), 8657–8671. https://doi.org/10.1109/tgrs.2020.3037361 doi: 10.1109/tgrs.2020.3037361
    [44] P. Felzenszwalb, D. Huttenlocher, Efficient graph-based image segmentation, Int. J. Comput. Vision, 59 (2010), 167–181. https://doi.org/10.1109/icip.2010.5653963 doi: 10.1109/icip.2010.5653963
    [45] X. Ren, J. Malik, Learning a classification model for segmentation, Proceedings of the IEEE International Conference on Computer Vision, 2 (2003), 10–10. https://doi.org/10.1109/iccv.2003.1238308 doi: 10.1109/iccv.2003.1238308
    [46] M. Liu, O. Tuzel, S. Ramalingam, R. Chellappa, Entropy rate superpixel segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2011), 2097–2104. https://doi.org/10.1109/cvpr.2011.5995323
    [47] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. FuaSü, S. Sstrunk, Slic superpixels compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell., 34 (11), 2274–2282. https://doi.org/10.1109/tpami.2012.120
    [48] Z. Li, J. Chen, Superpixel segmentation using linear spectral clustering, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2015), 1356–1363. https://doi.org/10.1109/cvpr.2015.7298741
    [49] Y. Liu, C. Yu, M. Yu, Y. He, Manifold slic: a fast method to compute content-sensitive superpixels, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, (2016), 651–659. https://doi.org/10.1109/cvpr.2016.77
    [50] R. Achanta, S. Susstrunk, Superpixels and polygons using simple non-iterative clustering, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2017), 4651–4660. https://doi.org/10.1109/cvpr.2017.520
    [51] W. Tu, M. Liu, V. Jampani, D. Sun, S. Chien, M. Yang, et al., Learning superpixels with segmentation-aware affinity loss, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 568–576. https://doi.org/10.1109/cvpr.2018.00066
    [52] V. Jampani, D. Sun, M. Liu, M. Yang, J. Kautz, Superpixel sampling networks, in Proceedings of the European Conference on Computer Vision, (2018), 352–368. https://doi.org/10.1007/978-3-030-01234-2_22
    [53] F. Yang, Q. Sun, H. Jin, Z. Zhou, Superpixel segmentation with fully convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2020), 13964–13973. https://doi.org/10.1109/cvpr42600.2020.01398
    [54] T. Suzuki, Superpixel segmentation via convolutional neural networks with regularized information maximization, in IEEE International Conference on Acoustics, Speech and Signal Processing, (2020), 2573–2577. https://doi.org/10.1109/icassp40776.2020.9054140
    [55] L. Zhu, Q. She, B. Zhang, Y. Lu, Z. Lu, D. Li, J. Hu, Learning the superpixel in a non-iterative and lifelong manner, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2021), 1225–1234. https://doi.org/10.1109/cvpr46437.2021.00128
    [56] C. Saueressig, A. Berkley, R. Munbodh, R. Singh, A joint graph and image convolution network for automatic brain tumor segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention Workshop, (2021), 356–365. https://doi.org/10.1007/978-3-031-08999-2_30
    [57] V. Kulikov, V. Lempitsky, Instance segmentation of biological images using harmonic embeddings, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2020), 3843–3851. https://doi.org/10.1109/cvpr42600.2020.00390
    [58] J. Kim, T. Kim, S. Kim, C. Yoo, Edge-labeling graph neural network for few-shot learning, in Proceedings of the IEEE conference on computer vision and pattern recognition, (2019), 11–20. https://doi.org/10.1109/cvpr.2019.00010
    [59] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for contrastive learning of visual representations, in International conference on machine learning, (2020), 1597–1607.
    [60] X. Chen, H. Fan, R. Girshick, K. He, Improved baselines with momentum contrastive learning, preprint, arXiv: 2003.04297.
    [61] K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2020), 9729–9738. https://doi.org/10.1109/cvpr42600.2020.00975
    [62] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, A. Joulin, Unsupervised learning of visual features by contrasting cluster assignments, Adv. Neural Inf. Process. Syst., 33 (2020), 9912–9924.
    [63] W. Wang, T. Zhou, F. Yu, J. Dai, E. KonukogluVan, L. Gool, Exploring cross-image pixel contrast for semantic segmentation, in Proceedings of the IEEE International Conference on Computer Vision, (2021), 7303–7313. https://doi.org/10.1109/iccv48922.2021.00721
    [64] J. Gilmer, S. Schoenholz, P. Riley, O. Vinyals, G. Dahl, Neural message passing for quantum chemistry, in International Conference on Machine Learning, 2017.
    [65] B. Weisfeiler, A. Leman, A reduction of a graph to a canonical form and an algebra arising during this reduction, Nauchno Tech. Inf., 2 (1968), 12–16.
    [66] R. Achanta, S. Susstrunk, Superpixels and polygons using simple non-iterative clustering, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. https://doi.org/10.1109/cvpr.2017.520
    [67] F. Milletari, N. Navab, S. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in International Conference on 3D Vision, (2016), 565–571. https://doi.org/10.1109/3dv.2016.79
    [68] D. Kingma, J. Ba, Adam: A method for stochastic optimization, in International Conference on Learning Representations, 2015.
    [69] X. Zheng, Y. Wang, G. Wang, Z. Chen, A novel algorithm based on visual saliency attention for localization and segmentation in rapidly-stained leukocyte images, Micron, 56 (2014), 17–28. https://doi.org/10.1016/j.micron.2013.09.006 doi: 10.1016/j.micron.2013.09.006
    [70] L. McInnes, J. Healy, J. Melville, Umap: Uniform manifold approximation and projection for dimension reduction, preprint, arXiv: 1802.03426.
    [71] A. Acevedo, A. Merino, S. Alférez, A. Molina, L. Boldú, J. Rodellar, A dataset of microscopic peripheral blood cell images for development of automatic recognition systems, Data Brief, 30 (2020), 105474. https://doi.org/10.1016/j.dib.2020.105474 doi: 10.1016/j.dib.2020.105474
    [72] P. Yampri, C. Pintavirooj, S. Daochai, S. Teartulakarn, White blood cell classification based on the combination of eigen cell and parametric feature detection, in IEEE Conference on Industrial Electronics and Applications, (2006), 1–4. https://doi.org/10.1109/iciea.2006.257341
    [73] I. Livieris, E. Pintelas, A. Kanavos, P. Pintelas, Identification of blood cell subtypes from images using an improved ssl algorithm, Biomed. J. Sci. Tech. Res., 9 (2018), 6923–6929. https://doi.org/10.26717/bjstr.2018.09.001755 doi: 10.26717/bjstr.2018.09.001755
    [74] R. Banerjee, A. Ghose, A light-weight deep residual network for classification of abnormal heart rhythms on tiny devices, in Joint European Conference on Machine Learning and Knowledge Discovery in Databases, (2022), 317–331. https://doi.org/10.1007/978-3-031-23633-4_22
    [75] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, (2016), 770–778. https://doi.org/10.1109/cvpr.2016.90
  • This article has been cited by:

    1. Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, Hermite-Hadamard Type Inequalities for the Class of Convex Functions on Time Scale, 2019, 7, 2227-7390, 956, 10.3390/math7100956
    2. Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom, Yu-Ming Chu, Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function, 2019, 7, 2227-7390, 1225, 10.3390/math7121225
    3. Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Grüss-type integrals inequalities via generalized proportional fractional operators, 2020, 114, 1578-7303, 10.1007/s13398-020-00823-5
    4. Muhammad Samraiz, Fakhra Nawaz, Sajid Iqbal, Thabet Abdeljawad, Gauhar Rahman, Kottakkaran Sooppy Nisar, Certain mean-type fractional integral inequalities via different convexities with applications, 2020, 2020, 1029-242X, 10.1186/s13660-020-02474-x
    5. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9
    6. Zeynep ŞANLI, SIMPSON TYPE INTEGRAL INEQUALITIES FOR HARMONIC CONVEX FUNCTIONS VIA CONFORMABLE FRACTIONAL INTEGRALS, 2020, 2147-1630, 10.37094/adyujsci.780433
    7. Thabet Abdeljawad, 2020, 9781119654223, 133, 10.1002/9781119654223.ch5
    8. Shuang-Shuang Zhou, Saima Rashid, Saima Parveen, Ahmet Ocak Akdemir, Zakia Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, 2021, 6, 2473-6988, 4507, 10.3934/math.2021267
    9. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, Yu-Ming Chu, Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02865-w
    10. Humaira Kalsoom, Saima Rashid, Muhammad Idrees, Yu-Ming Chu, Dumitru Baleanu, Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions, 2019, 12, 2073-8994, 51, 10.3390/sym12010051
    11. Saima Rashid, Fahd Jarad, Zakia Hammouch, Some new bounds analogous to generalized proportional fractional integral operator with respect to another function, 2021, 0, 1937-1179, 0, 10.3934/dcdss.2021020
    12. Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor, Dumitru Baleanu, Jia-Bao Liu, On Grüss inequalities within generalized K-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-02644-7
    13. Saad Ihsan Butt, Mehroz Nadeem, Shahid Qaisar, Ahmet Ocak Akdemir, Thabet Abdeljawad, Hermite–Jensen–Mercer type inequalities for conformable integrals and related results, 2020, 2020, 1687-1847, 10.1186/s13662-020-02968-4
    14. Saima Rashid, Muhammad Amer Latif, Zakia Hammouch, Yu-Ming Chu, Fractional Integral Inequalities for Strongly h -Preinvex Functions for a kth Order Differentiable Functions, 2019, 11, 2073-8994, 1448, 10.3390/sym11121448
    15. SAIMA RASHID, ZAKIA HAMMOUCH, FAHD JARAD, YU-MING CHU, NEW ESTIMATES OF INTEGRAL INEQUALITIES VIA GENERALIZED PROPORTIONAL FRACTIONAL INTEGRAL OPERATOR WITH RESPECT TO ANOTHER FUNCTION, 2020, 28, 0218-348X, 2040027, 10.1142/S0218348X20400277
    16. Fatih Hezenci, Hüseyin Budak, Hasan Kara, New version of fractional Simpson type inequalities for twice differentiable functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03615-2
    17. Hüseyin Budak, Seda Kilinç Yildirim, Hasan Kara, Hüseyin Yildirim, On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals, 2021, 44, 0170-4214, 13069, 10.1002/mma.7610
    18. Muhammad Aamir Ali, Hasan Kara, Jessada Tariboon, Suphawat Asawasamrit, Hüseyin Budak, Fatih Hezenci, Some New Simpson’s-Formula-Type Inequalities for Twice-Differentiable Convex Functions via Generalized Fractional Operators, 2021, 13, 2073-8994, 2249, 10.3390/sym13122249
    19. Humaira Kalsoom, Hüseyin Budak, Hasan Kara, Muhammad Aamir Ali, Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals, 2021, 19, 2391-5455, 1153, 10.1515/math-2021-0072
    20. İmdat İşcan, Erhan Set, Ahmet Ocak Akdemir, Alper Ekinci, Sinan Aslan, 2023, 9780323909532, 157, 10.1016/B978-0-32-390953-2.00017-7
    21. MIAO-KUN WANG, SAIMA RASHID, YELIZ KARACA, DUMITRU BALEANU, YU-MING CHU, NEW MULTI-FUNCTIONAL APPROACH FOR κTH-ORDER DIFFERENTIABILITY GOVERNED BY FRACTIONAL CALCULUS VIA APPROXIMATELY GENERALIZED (ψ, ℏ)-CONVEX FUNCTIONS IN HILBERT SPACE, 2021, 29, 0218-348X, 2140019, 10.1142/S0218348X21400193
    22. Saima Rashid, Dumitru Baleanu, Yu-Ming Chu, Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems, 2020, 18, 2391-5471, 478, 10.1515/phys-2020-0114
    23. Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, 2022, 7, 2473-6988, 3959, 10.3934/math.2022218
    24. YONG-MIN LI, SAIMA RASHID, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, NEW NEWTON’S TYPE ESTIMATES PERTAINING TO LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p-CONVEXITY WITH APPLICATIONS, 2021, 29, 0218-348X, 2140018, 10.1142/S0218348X21400181
    25. Miguel Vivas-Cortez, Pshtiwan O. Mohammed, Y. S. Hamed, Artion Kashuri, Jorge E. Hernández, Jorge E. Macías-Díaz, On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities, 2022, 7, 2473-6988, 10256, 10.3934/math.2022571
    26. Yu-Ming Chu, Saima Rashid, Fahd Jarad, Muhammad Aslam Noor, Humaira Kalsoom, More new results on integral inequalities for generalized K-fractional conformable Integral operators, 2021, 14, 1937-1179, 2119, 10.3934/dcdss.2021063
    27. Nassima Nasri, Badreddine Meftah, Abdelkader Moumen, Hicham Saber, Fractional 3/8-Simpson type inequalities for differentiable convex functions, 2024, 9, 2473-6988, 5349, 10.3934/math.2024258
    28. Fatih Hezenci, Hüseyin Budak, A note on fractional Simpson-like type inequalities for functions whose third derivatives are convex, 2023, 37, 0354-5180, 3715, 10.2298/FIL2312715H
    29. Zeynep Sanlı, Simpson type Katugampola fractional integral inequalities via Harmonic convex functions, 2022, 10, 23193786, 364, 10.26637/mjm1004/007
    30. Meriem Merad, Badreddine Meftah, Abdelkader Moumen, Mohamed Bouye, Fractional Maclaurin-Type Inequalities for Multiplicatively Convex Functions, 2023, 7, 2504-3110, 879, 10.3390/fractalfract7120879
    31. Fatih Hezenci, A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions, 2023, 73, 1337-2211, 675, 10.1515/ms-2023-0049
    32. Hüseyin Budak, Fatih Hezenci, Hasan Kara, Mehmet Zeki Sarikaya, Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule, 2023, 11, 2227-7390, 2282, 10.3390/math11102282
    33. Nazakat Nazeer, Ali Akgül, Faeem Ali, Study of the results of Hilbert transformation for some fractional derivatives, 2024, 0228-6203, 1, 10.1080/02286203.2024.2371685
    34. Tarek Chiheb, Badreddine Meftah, Abdelkader Moumen, Mouataz Billah Mesmouli, Mohamed Bouye, Some Simpson-like Inequalities Involving the (s,m)-Preinvexity, 2023, 15, 2073-8994, 2178, 10.3390/sym15122178
    35. Gamzenur Köksaldı, Tuba Tunç, Simpson-type inequalities for the functions with bounded second derivatives involving generalized fractional integrals, 2025, 2025, 1687-2770, 10.1186/s13661-025-02040-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2003) PDF downloads(86) Cited by(0)

Figures and Tables

Figures(13)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog