The green concretes industry benefits from utilizing gel to replace parts of the cement in concretes. However, measuring the compressive strength of geo-polymer concretes (CSGPoC) needs a significant amount of work and expenditure. Therefore, the best idea is predicting CSGPoC with a high level of accuracy. To do this, the base learner and super learner machine learning models were proposed in this study to anticipate CSGPoC. The decision tree (DT) is applied as base learner, and the random forest and extreme gradient boosting (XGBoost) techniques are used as super learner system. In this regard, a database was provided involving 259 CSGPoC data samples, of which four-fifths of is considered for the training model and one-fifth is selected for the testing models. The values of fly ash, ground-granulated blast-furnace slag (GGBS), Na2SiO3, NaOH, fine aggregate, gravel 4/10 mm, gravel 10/20 mm, water/solids ratio, and NaOH molarity were considered as input of the models to estimate CSGPoC. To evaluate the reliability and performance of the decision tree (DT), XGBoost, and random forest (RF) models, 12 performance evaluation metrics were determined. Based on the obtained results, the highest degree of accuracy is achieved by the XGBoost model with mean absolute error (MAE) of 2.073, mean absolute percentage error (MAPE) of 5.547, Nash–Sutcliffe (NS) of 0.981, correlation coefficient (R) of 0.991, R2 of 0.982, root mean square error (RMSE) of 2.458, Willmott's index (WI) of 0.795, weighted mean absolute percentage error (WMAPE) of 0.046, Bias of 2.073, square index (SI) of 0.054, p of 0.027, mean relative error (MRE) of -0.014, and a20 of 0.983 for the training model and MAE of 2.06, MAPE of 6.553, NS of 0.985, R of 0.993, R2 of 0.986, RMSE of 2.307, WI of 0.818, WMAPE of 0.05, Bias of 2.06, SI of 0.056, p of 0.028, MRE of -0.015, and a20 of 0.949 for the testing model. By importing the testing set into trained models, values of 0.8969, 0.9857, and 0.9424 for R2 were obtained for DT, XGBoost, and RF, respectively, which show the superiority of the XGBoost model in CSGPoC estimation. In conclusion, the XGBoost model is capable of more accurately predicting CSGPoC than DT and RF models.
Citation: Ji Zhou, Zhanlin Su, Shahab Hosseini, Qiong Tian, Yijun Lu, Hao Luo, Xingquan Xu, Chupeng Chen, Jiandong Huang. Decision tree models for the estimation of geo-polymer concrete compressive strength[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 1413-1444. doi: 10.3934/mbe.2024061
[1] | Luyao Li, Licheng Fang, Huan Liang, Tengda Wei . Observer-based event-triggered impulsive control of delayed reaction-diffusion neural networks. Mathematical Biosciences and Engineering, 2025, 22(7): 1634-1652. doi: 10.3934/mbe.2025060 |
[2] | Ganesh Kumar Thakur, Sudesh Kumar Garg, Tej Singh, M. Syed Ali, Tarun Kumar Arora . Non-fragile synchronization of BAM neural networks with randomly occurring controller gain fluctuation. Mathematical Biosciences and Engineering, 2023, 20(4): 7302-7315. doi: 10.3934/mbe.2023317 |
[3] | Xinggui Zhao, Bo Meng, Zhen Wang . Event-triggered integral sliding mode control for uncertain networked linear control systems with quantization. Mathematical Biosciences and Engineering, 2023, 20(9): 16705-16724. doi: 10.3934/mbe.2023744 |
[4] | Na Zhang, Jianwei Xia, Tianjiao Liu, Chengyuan Yan, Xiao Wang . Dynamic event-triggered adaptive finite-time consensus control for multi-agent systems with time-varying actuator faults. Mathematical Biosciences and Engineering, 2023, 20(5): 7761-7783. doi: 10.3934/mbe.2023335 |
[5] | Guodong Zhao, Haitao Li, Ting Hou . Survey of semi-tensor product method in robustness analysis on finite systems. Mathematical Biosciences and Engineering, 2023, 20(6): 11464-11481. doi: 10.3934/mbe.2023508 |
[6] | Pan Wang, Xuechen Li, Qianqian Zheng . Synchronization of inertial complex-valued memristor-based neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2024, 21(2): 3319-3334. doi: 10.3934/mbe.2024147 |
[7] | Biwen Li, Xuan Cheng . Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2023, 20(8): 14846-14865. doi: 10.3934/mbe.2023665 |
[8] | Haitao Zhu, Xinrui Ji, Jianquan Lu . Impulsive strategies in nonlinear dynamical systems: A brief overview. Mathematical Biosciences and Engineering, 2023, 20(2): 4274-4321. doi: 10.3934/mbe.2023200 |
[9] | Siyu Li, Shu Li, Lei Liu . Fuzzy adaptive event-triggered distributed control for a class of nonlinear multi-agent systems. Mathematical Biosciences and Engineering, 2024, 21(1): 474-493. doi: 10.3934/mbe.2024021 |
[10] | Yilin Tu, Jin-E Zhang . Event-triggered impulsive control for input-to-state stability of nonlinear time-delay system with delayed impulse. Mathematical Biosciences and Engineering, 2025, 22(4): 876-896. doi: 10.3934/mbe.2025031 |
The green concretes industry benefits from utilizing gel to replace parts of the cement in concretes. However, measuring the compressive strength of geo-polymer concretes (CSGPoC) needs a significant amount of work and expenditure. Therefore, the best idea is predicting CSGPoC with a high level of accuracy. To do this, the base learner and super learner machine learning models were proposed in this study to anticipate CSGPoC. The decision tree (DT) is applied as base learner, and the random forest and extreme gradient boosting (XGBoost) techniques are used as super learner system. In this regard, a database was provided involving 259 CSGPoC data samples, of which four-fifths of is considered for the training model and one-fifth is selected for the testing models. The values of fly ash, ground-granulated blast-furnace slag (GGBS), Na2SiO3, NaOH, fine aggregate, gravel 4/10 mm, gravel 10/20 mm, water/solids ratio, and NaOH molarity were considered as input of the models to estimate CSGPoC. To evaluate the reliability and performance of the decision tree (DT), XGBoost, and random forest (RF) models, 12 performance evaluation metrics were determined. Based on the obtained results, the highest degree of accuracy is achieved by the XGBoost model with mean absolute error (MAE) of 2.073, mean absolute percentage error (MAPE) of 5.547, Nash–Sutcliffe (NS) of 0.981, correlation coefficient (R) of 0.991, R2 of 0.982, root mean square error (RMSE) of 2.458, Willmott's index (WI) of 0.795, weighted mean absolute percentage error (WMAPE) of 0.046, Bias of 2.073, square index (SI) of 0.054, p of 0.027, mean relative error (MRE) of -0.014, and a20 of 0.983 for the training model and MAE of 2.06, MAPE of 6.553, NS of 0.985, R of 0.993, R2 of 0.986, RMSE of 2.307, WI of 0.818, WMAPE of 0.05, Bias of 2.06, SI of 0.056, p of 0.028, MRE of -0.015, and a20 of 0.949 for the testing model. By importing the testing set into trained models, values of 0.8969, 0.9857, and 0.9424 for R2 were obtained for DT, XGBoost, and RF, respectively, which show the superiority of the XGBoost model in CSGPoC estimation. In conclusion, the XGBoost model is capable of more accurately predicting CSGPoC than DT and RF models.
According to the WHO (World Health Organization), diseases, especially with the viral cause, will be a serious issue and endanger global health. Since the beginning of the 21st century, a couple of viral outbreaks shocked the world such as SARS-CoV, H1N1 influenza, and MERS-CoV in 2003, 2009, and 2012, respectively. The last of this kind named the coronavirus disease 2019 (COVID-19) observed for the very first time on 17th Nov 2019 in Wuhan, China [1]. Further research suggested that this virus began from Wuhan's seafood wholesale market and the latest finding showing that Pangolin-Cov has 91.02% homology to COVID-19 [2]. As of now, coronavirus infection has been reported in 213 countries where the highest number reported from the USA and following with Brazil, India, Russia, Peru, Chile, Spain, the UK, Mexico, and Iran [3]. Countries from the Middle East and South America due to lack of transparency standing in a lower place in the ranking of COVID-19 prevalence and mortality, but evidence showing that the situation is worse than their claims. The contingency of the virus more than expected that forced WHO on 30th Jan. 2020 declared the state of emergency and changed the status to the pandemic by 11th March 2020. As of 8th July 2020 near 12 million cases have been reported worldwide with more than 547,000 mortality [4]. In the healthcare section only in the united states of America more than 5400 doctors, nurses, and other health care providers infected, and unfortunately, more than dozens of them passed away due to the infection only till the end of April [5]. Fifteen top the list countries are mostly from developed and western countries; however, the main reason is that developed countries such as USA, France, the UK, Italy ranking in the higher place is the true application of “freedom of information” and “Human rights” in such countries which is indeed lacking in 90% of middle eastern and also African countries and; So, the real rate of positive cases and mortality officially manipulated due to lacking transparency throughout the system.
Based on the genomics analysis, coronaviruses have been categorized into 4 subdivisions: α, β, δ, and γ CoVs. The α-CoVs group includes species such as Porcine epidemic diarrhea coronavirus (PEDV), Feline coronavirus (FeCoV) and Human coronavirus 229E (HCoV-229E); the β-CoVs group includes species like Human coronavirus HKU1 (HCoV-HKU1), Middle Eastern respiratory syndrome coronavirus (MERS-CoV), Severe acute respiratory syndrome coronavirus (SARS-CoV) and Bat coronavirus (BCoV); and finally γ-CoVs includes species such as Turkey coronavirus (TCoV) and Avian infectious bronchitis virus (IBV) [6]. The SARS-CoV-2 belongs to the Betacoronavirus group. Phylogenic analysis disclosed that SARS-CoV-2 has 90% homology to bat—SL coVZC45 and Bat-SL-CoVZXC21, and had about 80% homology to SARS-Cov and 50% homology to MERS-Cov [7]. By enlarge, all species of this family can cause enteric, respiratory, neurological, and hepatic diseases in animals such as cattle, camels, bat, and 7 species HCoVs have the power to infect humans. Identification of human coronavirus back to 60s, but the rest discovered in the 21st century [8].
Tiger: Bronx zoo, New York city, announced that a tiger's test reported positive for novel coronavirus.
Pets: Dr. Farina Mustaffa from faculty of Veterinary Sciences, UPM Malaysia, announced that a cat from Belgium and a dog from Hong Kong reported positive for SARS-CoV-2 both of the owners also found to be COVID-19 positive [9].
By the end of 2019 a couple of SARS-CoV-2 disease cases connected to the Wuhan city Fish wholesale market, and transmission route of animal-human predicted. However, the following cases did not come in touch with suspected animals. Consequently, the results found to be that this virus can transmit from human to human too. The possibility of transmission before symptoms develop seems to be infrequent, although it cannot be excluded. Moreover, there are suggestions that individuals who remain asymptomatic could transmit the virus. The above finding showing that the best way to Covid-19 pandemic is isolation. Like other pathogens of the respiratory system such as rhinovirus and flu, the disease communication is thought to be by droplets via sneezing or coughing. Transmission via droplets and aerosols is one of the challenges. Aerosol transmission is also possible in case of protracted exposure following aerosol generation such as suction of tracheal secretions, bronchoalveolar lavage, intubation of the COVID-19 patient in a closed space. The data analysis showing that in most cases the spread is between patient and health care workers and family members [10].
SARS-CoV-2 is a +ssRNA virus with a diameter of 60 to 140 nanometer with spike-like structures that can be observed under an electron microscope. Consequently, for coronavirus can infect man including NL63, HKU1, OC43, and 229E, so far reported in humans and general causes respiratory diseases, but in a mild form. CoVs are enveloped with nucleocapsid [11]. To describe SARS-Cov-2 pathogenic nature its genome should be studied. This type of coronavirus possesses a positive single-strand RNA in its almost 30 kb length; which makes SARS-Cov-2 the heaviest and also the largest RNA virus. The RNA virus has a 5′ cap and a 3′ poly-A tail. RTC (replication-transcription complex) is responsible for the virus transcription, which is wrapped in a double-membrane capsule and through sequences of sgRNAs synthesis (sub-genomic RNA) [12]. Besides, transcription termination happens at the CCAAT box, which can be found between open reading frames (ORF) which has a templet function to produce sub-genomic mRNA. In a unique coronavirus genome, a minimum of 6 ORFs shall be found [13]. Each coronavirus expresses exclusive proteins that are encoded by assigned sgRNA. Coronavirus virulence mechanism and its pathophysiology and specially SARS-Cov-2 associated structural and NSPs (nonstructural proteins). For example, scientists reported that NSPs can suppress the immune system of the host. Amid structural proteins properties, the capsule (envelope) possesses a critical key role in pathogenicity during construction and release of genetic material. However, many of these features (e.g., those of nsp 2, and 11) have not yet been described [13],[14].
The covid-19s clinical features are widely different and depend on the patient's condition, from asymptomatic, mild, or severe to critical respiratory failure which necessarily needs a mechanical ventilator in an ICU (intensive care unit) and there are chances of MODS (multiple organ dysfunction syndromes) or septic shock. Signs and symptoms of COVID-19 may appear 2 to 14 days after exposure and include fever, dry cough, shortness of breath or dyspnea, fatigue, myalgia, sore throat, headache, diarrhea, vomiting, and loss of smell or taste [15],[16]. In one of the first reports on the disease, Huang et al. illustrated that patients (n. 41 patients) suffered from fever, malaise, pertussis, and dyspnea. Chest computerized tomography (CT) scans showed pneumonia with abnormal findings in all cases. About a third of those (13 patients, 32%) required ICU care, and there were 6 (15%) fatal cases in the above study [15].
The authors of the Chinese CDC report divided the clinical manifestations of the disease by their severity:
Wenzhong and Hualan from China reported that attacks the 1-Beta Chain of Hemoglobin and captures the porphyrin to inhibit human heme metabolism, the analysis proven that surface glycoprotein and ORF8 shall bind to porphyrin. Simultaneously ORF10, ORF3a, and ORF1ab proteins may manage to strike the heme unit of 1 beta chain of hemoglobin to detach the Fe from the porphyrin. This strike will lead to lesser hemoglobin capacity to carry O2 or CO2. The pulmonary cells have severe sensitivity to inflammation and poisoning because of the capability to O2 to CO2 continuously, which subsequently end up in a glass-like structure in a lung CT scan [17].
Mild cases of Pneumonia may present signs like mild pyrexia, pertussis, pharyngitis, rhinitis, cephalgia, malaise, and myalgia. In contrast to other human coronaviruses, symptoms like diarrhea are rarely presents. In moderate cases, symptoms such as dyspnea may present. In severe cases of pneumonia high fever also seen along with respiratory distress and dyspnea which count as more than 30 breaths per minute associated with hypoxia. The diagnosis of ARDS (Acute Respiratory Distress Syndrome) needs clinical criteria. ARDS is redolent of severe onset of critical symptoms of respiratory failure. People with underlying conditions such as chronic lung disease, cardiovascular disease, hypertension, diabetes, and malignancy, as well as the elderly, are more likely to develop a severe disease [18]. Brown et al from Stanford reported that in a study of 517 people who tested positive for COVID-19, they also evaluate the cases for the chance of any co-infection like a respiratory syncytial virus, Influenza A & B, adenovirus, rhinovirus, and bacterial pneumonia. Surprisingly, 127 out of 517 COVID-19 cases were positive for one of the above infections too [19].
The WHO recommends collecting samples from upper and lower respiratory tracts such as naso-oropharyngeal and bronchoalveolar lavage or endotracheal aspirate, respectively [18]. The Bronchoalveolar lavage (BAL) sampling has to perform on mechanically ventilated patients only. Because the samples collected from the lower part of the respiratory system may remain +ve for a longer period. The obtained samples need to be kept at 4°C. In the research center or lab, the viral genome amplification done by RT-PCR (reverse polymerase chain reaction) that includes ds-DNA synthesis from on ss-RNA. After completion of this stage, we look for conserved domains throughout the viral genome. The probes hat usually utilized depended on the preliminary genome sequence deposited to databanks by Shanghai Public Health Clinical Center & School of Public Health, Fudan University, Shanghai, China on Virological.org. if the outcome of the test is +ve, the next suggestion is to repeat the test for the confirmation. By considering the lab tests in the preliminary phase of the COVID-19, a decreased or normal total WBC and lowered lymphocytes can be observed. Decreased lymphocyte shall be a negative prognosis factor. Elevated liver enzymes values, muscle enzymes, LDH, and also C reactive protein may be found. Yet the procalcitonin level would be in range. In critical and terminal patients, the D-dimer test showing increased value and decrease in blood lymphocytes have been observed besides coagulation disorder and high amylase, etc. [18]. The latest study by Cheng et al, conducted in admitted patients in a hospital in China suggesting that patients with higher creatinine and blood urea nitrogen (BUN) and acute kidney injury (AKI) showed a greater risk for in-hospital mortality rate in COVID-19 cases [20].
As of now, there is no vaccine or drug to combat the SARS-CoV-2 virus, but currently, much research going on in the field of vaccine development or even drug discovery. The conventional therapy in ICU wards usually includes symptomatic management such as oxygen therapies in case severe COVID-19. In late March 2020, Aaron Miller and his team from the New York Institute of Technology reported that with BCG vaccination policies showed a better recovery rate of confirmed cases than countries without compulsory BCG vaccination like Italy, USA, and the Netherlands. Based on these epidemiological studies 2 clinical trials are underway to prove this claim [21].
So far, there is no absolute treatment or cure for COVID-19. Currently many reports on trial either on vaccines or new drugs going on worldwide [27]. Here going to discuss available antiviral medicines and compare their class of action:
Plaquenil is also prescribed and meanwhile in control clinical trials regarding human immunodeficiency virus treatment and also in a recent clinical trial with patients on COVID-19 treatment. Hydroxychloroquine in combination with azithromycin was effective in patients with COVID-19 [22],[23].
The latest and much spoken antiviral drug is Fujifilm developed Favipiravir which is announced on 9th April that they began II phase of its clinical trials under FDA guidelines [24]. Dr. Kylie Wagstaff from Monash University-Australia announced that in there in vitro study on Ivermectin -a conventional antiparasitic drug- after 48 hrs demonstrated a significant action to kill SARS-CoV-2 and now getting ready for in vivo study in a couple of weeks. Ivermectin is a cheap (around $0.12 for a complete course of treatment) and widely available drugs which previously also proven to be a good choice against Dengue, Influenza, Zika, or even HIV viruses [25]. In another announcement, Prof Arturo Casadevall from Johns Hopkins proposed that the standards method of plasma isolation can be especially for health-care workers. In this convalescent plasma therapy, plasma of cured person from COVID-19 taken, were isolated and transferred to a designated person [26]. This method obtained FDA approval. On 4th April Vanessa Monteil announced that she and her team successfully test a new drug named hrsACE2 in vitro with no toxicity and significant potency to recovery from COVID-19 infection [27]. Jokinen et al reported that patients with a history of exposure to IgG positive (mycoplasma pneumonia) have greater recovery or even resistance to SARS-CoV-2 in comparison to other patients. The reason is re-programmed immune cells [28]. In late April New York city hospital reported a significant recovery rate by patients who took heartburn medicine of famotidine.
The latest effort in the field of immunomodulatory therapy done by Pluristem Therapeutics Inc, based in Haifa-Israel, a pioneer in stem cell therapy in the clinical trial stage. Previously successfully passed the tests in CLI (critical limb ischemia), muscle regeneration after hip fracture operation the last but not least in treatment of ARS (acute radiation syndrome) all above are in late phase III stages. On 7th April, Yaki Yanay, CEO of Pluristem Therapeutics announced that all 7 patients found positive for the COVID-19 showing 100% satisfactory results after treated by a single 300-million-cell-dose of PLX-PAD, an allogeneic mesenchymal-like cell therapy [29]. Other treatments under investigation and clinical trials such as intravenous immunoglobulin (IVIG) and recombinant interferon beta (IFN beta-1a and IFN beta-1b), and corticosteroid therapy (methylprednisolone, dexamethasone, and hydrocortisone) can be considered for the treatment of severe COVID-19 patients [30],[31]. The use of immunosuppressive drugs has been considered, given that the proposed tissue damage in COVID-19 appears to be caused by cytokine storms. Recent clinical trials have been conducted using tocilizumab as an interleukin 6 inhibitor, with promising results in the treatment of patients with COVID-19 [32],[33].
The challenges underway of vaccine development are including (1) safety of the developed vaccine; (2) Providing longer protection time; (3) 50+ people; as vaccines usually don't respond so well on older people like on younger generations. By March 2020 many research centers, pharmaceutical, and biotech companies announced first-hand trials on developing vaccines. The preliminary trials announced as follow:
One of the major setbacks for vaccine production is that unlike other viruses, SARS-CoV-2 cannot be injected into chicken eggs for mass-production like the flu vaccine, as it cannot replicate inside the chicken egg [46].
As of date, 10 vaccine candidates made it to the 2nd and 3rd phase of trials. They belong to different families of vaccines such as Non-replicating viral vector, RNA-based, inactivated form of virus, and DNA-based. Based on WHO factsheet which is published by 9th June 2020, the only vaccine so far could make it into the 2b/3rd phase of clinical trials is the university of Oxford-AstraZeneca candidate by the name of ChAdOx1-S which is a Non-replicative viral vector vaccine. The other candidate could successfully make it into is from the Chinese giant's CanSino biologicals vaccine candidate named Adenovirus Type 5 vector. Moderna's RNA-based vaccine candidate named LNP-encapsulated mRNA successfully passed the 2nd face of the clinical trial. The other candidates at 1/2 and 1st phase of clinical trials including inactivated-form vaccine from Wuhan institute of biological products, Beijing institute of biological products, and Sinovac respectively. the other nominated vaccine is protein subunit-based product from Novavax which is like Pfizer's RNA-based vaccine are at 1/2 phase. And the last two vaccine candidate at the preliminary phase of clinical trials are from the Chinese Academy of medical sciences and Inovio pharmaceuticals, respectively [47].
Patients and families should receive instruction to:
The COVID-19 disease is the first of its kind in modern history which caused the pandemic. Researchers so far made great achievements in terms of genomic analysis of SARS-Cov-2 transcriptome analysis and identifying its novel mutations and working 24 × 7 to develop a vaccine and to discover safe and effective drugs against this dreadful virus. In this latest succinct rapid-review, we tried to cover all the basics along with the latest findings and trials to help researchers, scientists, and graduate students especially in the fields of biology and medicine. With the current status of the disease, we should new lifestyle and great changes in every aspect of life in the near future which nobody knows how it will look like; only time can say.
[1] |
S. H. Chu, H. Ye, L. Huang, L. G. Li, Carbon fiber reinforced geopolymer (FRG) mix design based on liquid film thickness, Constr. Build. Mater., 269 (2021), 121278. https://doi.org/10.1016/j.conbuildmat.2020.121278 doi: 10.1016/j.conbuildmat.2020.121278
![]() |
[2] |
J. Huang, M. Zhou, J. Zhang, J. Ren, N. I. Vatin, M. M. S. Sabri, The use of GA and PSO in evaluating the shear strength of steel fiber reinforced concrete beams, KSCE J. Civ. Eng., 26 (2022), 3918–3931. https://doi.org/10.1007/s12205-022-0961-0 doi: 10.1007/s12205-022-0961-0
![]() |
[3] |
K. V. Teja, P. P. Sai, T. Meena, Investigation on the behaviour of ternary blended concrete with scba and sf, IOP Conf. Ser.: Mater. Sci. Eng., 263 (2017), 032012. https://doi.org/10.1088/1757-899X/263/3/032012 doi: 10.1088/1757-899X/263/3/032012
![]() |
[4] |
Z. Bayasi, J. Zhou, Properties of silica fume concrete and mortar, Int. Concr. Abstr. Portal, 90 (1993), 349–356. https://doi.org/10.14359/3892 doi: 10.14359/3892
![]() |
[5] |
X. Li, D. Qin, Y. Hu, W. Ahmad, A. Ahmad, F. Aslam, et al., A systematic review of waste materials in cement-based composites for construction applications, J. Build. Eng., 45 (2022), 103447. https://doi.org/10.1016/j.jobe.2021.103447 doi: 10.1016/j.jobe.2021.103447
![]() |
[6] |
J. Huang, M. Zhou, J. Zhang, J. Ren, N. I. Vatin, M. M. S. Sabri, Development of a new stacking model to evaluate the strength parameters of concrete samples in laboratory, Iran. J. Sci. Technol. Trans. Civ. Eng., 46 (2022), 4355–4370. https://doi.org/10.1007/s40996-022-00912-y doi: 10.1007/s40996-022-00912-y
![]() |
[7] | A. Cleetus, R. Shibu, P. M. Sreehari, V. K. Paul, B. Jacob, Analysis and study of the effect of GGBFS on concrete structures, Int. Res. J. Eng. Technol., 5 (2018), 3033–3037. |
[8] |
Y. Qiu, J. Zhou, Short-term rockburst damage assessment in burst-prone mines: an explainable XGBOOST hybrid model with SCSO algorithm, Rock Mech. Rock Eng., 56 (2023), 8745–8770. https://doi.org/10.1007/s00603-023-03522-w doi: 10.1007/s00603-023-03522-w
![]() |
[9] |
V. K. Nagaraj, D. L. V. Babu, Assessing the performance of molarity and alkaline activator ratio on engineering properties of self-compacting alkaline activated concrete at ambient temperature, J. Build. Eng., 20 (2018), 137–155. https://doi.org/10.1016/j.jobe.2018.07.005 doi: 10.1016/j.jobe.2018.07.005
![]() |
[10] |
W. P. Zakka, N. H. A. S. Lim, M. C. Khun, A scientometric review of geopolymer concrete, J. Cleaner Prod., 280 (2021), 124353. https://doi.org/10.1016/j.jclepro.2020.124353 doi: 10.1016/j.jclepro.2020.124353
![]() |
[11] |
P. Zhang, K. Wang, Q. Li, J. Wang, Y. Ling, Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders–––a review, J. Cleaner Prod., 258 (2020), 120896. https://doi.org/10.1016/j.jclepro.2020.120896 doi: 10.1016/j.jclepro.2020.120896
![]() |
[12] |
A. Ahmad, W. Ahmad, F. Aslam, P. Joyklad, Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques, Case Stud. Constr. Mater., 16 (2022), e00840. https://doi.org/10.1016/j.cscm.2021.e00840 doi: 10.1016/j.cscm.2021.e00840
![]() |
[13] |
Y. Qiu, J. Zhou, Short-term rockburst prediction in underground project: insights from an explainable and interpretable ensemble learning model, Acta Geotech., 18 (2023), 6655–6685. https://doi.org/10.1007/s11440-023-01988-0 doi: 10.1007/s11440-023-01988-0
![]() |
[14] |
F. Farooq, X. Jin, M. F. Javed, A. Akbar, M. I. Shah, F. Aslam, et al., Geopolymer concrete as sustainable material: a state of the art review, Constr. Build. Mater., 306 (2021), 124762. https://doi.org/10.1016/j.conbuildmat.2021.124762 doi: 10.1016/j.conbuildmat.2021.124762
![]() |
[15] |
A. Hosan, S. Haque, F. Shaikh, Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: a comparative study, J. Build. Eng., 8 (2016), 123–130. https://doi.org/10.1016/j.jobe.2016.10.005 doi: 10.1016/j.jobe.2016.10.005
![]() |
[16] |
H. L. Muttashar, M. A. M. Ariffin, M. N. Hussein, M. W. Hussin, S. B. Ishaq, Self-compacting geopolymer concrete with spend garnet as sand replacement, J. Build. Eng., 15 (2018), 85–94. https://doi.org/10.1016/j.jobe.2017.10.007 doi: 10.1016/j.jobe.2017.10.007
![]() |
[17] |
K. Z. Farhan, M. A. M. Johari, R. Demirboğa, Assessment of important parameters involved in the synthesis of geopolymer composites: a review, Constr. Build. Mater., 264 (2020), 120276. https://doi.org/10.1016/j.conbuildmat.2020.120276 doi: 10.1016/j.conbuildmat.2020.120276
![]() |
[18] |
C. Herath, C. Gunasekara, D. W. Law, S. Setunge, Long term mechanical performance of nano-engineered high volume fly ash concrete, J. Build. Eng., 43 (2021), 103168. https://doi.org/10.1016/j.jobe.2021.103168 doi: 10.1016/j.jobe.2021.103168
![]() |
[19] |
W. Ahmad, A. Ahmad, K. A. Ostrowski, F. Aslam, P. Joyklad, P. Zajdel, Application of advanced machine learning approaches to predict the compressive strength of concrete containing supplementary cementitious materials, Materials, 14 (2021), 5762. https://doi.org/10.3390/ma14195762 doi: 10.3390/ma14195762
![]() |
[20] |
H. K. Tchakouté, C. H. Rüscher, S. Kong, N. Ranjbar, Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements, J. Build. Eng., 6 (2016), 252–261. https://doi.org/10.1016/j.jobe.2016.04.007 doi: 10.1016/j.jobe.2016.04.007
![]() |
[21] |
A. Ahmad, W. Ahmad, K. Chaiyasarn, K. A. Ostrowski, F. Aslam, P. Zajdel, et al., Prediction of geopolymer concrete compressive strength using novel machine learning algorithms, Polymers, 13 (2021), 3389. https://doi.org/10.3390/polym13193389 doi: 10.3390/polym13193389
![]() |
[22] |
B. B. Jindal, Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: a review, Constr. Build. Mater., 227 (2019), 116644. https://doi.org/10.1016/j.conbuildmat.2019.08.025 doi: 10.1016/j.conbuildmat.2019.08.025
![]() |
[23] |
M. S. Reddy, P. Dinakar, B. H. Rao, Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete, J. Build. Eng., 20 (2018), 712–722. https://doi.org/10.1016/j.jobe.2018.09.010 doi: 10.1016/j.jobe.2018.09.010
![]() |
[24] |
J. Zhou, X. Shen, Y. Qiu, X. Shi, K. Du, Microseismic location in hardrock metal mines by machine learning models based on hyperparameter optimization using bayesian optimizer, Rock Mech. Rock Eng., 56 (2023), 8771–8788. https://doi.org/10.1007/s00603-023-03483-0 doi: 10.1007/s00603-023-03483-0
![]() |
[25] |
C. L. Wong, K. H. Mo, U. J. Alengaram, S. P. Yap, Mechanical strength and permeation properties of high calcium fly ash-based geopolymer containing recycled brick powder, J. Build. Eng., 32 (2020), 101655. https://doi.org/10.1016/j.jobe.2020.101655 doi: 10.1016/j.jobe.2020.101655
![]() |
[26] |
S. K. John, Y. Nadir, K. Girija, Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: a review, Constr. Build. Mater., 280 (2021), 122443. https://doi.org/10.1016/j.conbuildmat.2021.122443 doi: 10.1016/j.conbuildmat.2021.122443
![]() |
[27] |
Y. Zou, C. Zheng, A. Alzahrani, W. Ahmad, A. Ahmad, A. Mohamed, et al., Evaluation of artificial intelligence methods to estimate the compressive strength of geopolymers, Gels, 8 (2022), 271. https://doi.org/10.3390/gels8050271 doi: 10.3390/gels8050271
![]() |
[28] |
J. Huang, M. Zhou, H. Yuan, M. M. S. Sabri, X. Li, Prediction of the compressive strength for cement-based materials with metakaolin based on the hybrid machine learning method, Materials, 15 (2022), 3500. https://doi.org/10.3390/ma15103500 doi: 10.3390/ma15103500
![]() |
[29] |
B. Indraratna, D. J. Armaghani, A. G. Correia, H. Hunt, T. Ngo, Prediction of resilient modulus of ballast under cyclic loading using machine learning techniques, Transp. Geotech., 38 (2023), 100895. https://doi.org/10.1016/j.trgeo.2022.100895 doi: 10.1016/j.trgeo.2022.100895
![]() |
[30] |
S. Medawela, D. J. Armaghani, B. Indraratna, R. K. Rowe, N. Thamwattana, Development of an advanced machine learning model to predict the pH of groundwater in permeable reactive barriers (PRBs) located in acidic terrain, Comput. Geotech., 161 (2023), 105557. https://doi.org/10.1016/j.compgeo.2023.105557 doi: 10.1016/j.compgeo.2023.105557
![]() |
[31] |
D. J. Armaghani, P. G. Asteris, A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength, Neural Comput. Appl., 33 (2021), 4501–4532. https://doi.org/10.1007/s00521-020-05244-4 doi: 10.1007/s00521-020-05244-4
![]() |
[32] |
A. D. Skentou, A. Bardhan, A. Mamou, M. E. Lemonis, G. Kumar, P. Samui, et al., Closed-form equation for estimating unconfined compressive strength of granite from three non-destructive tests using soft computing models, Rock Mech. Rock Eng., 56 (2023), 487–514. https://doi.org/10.1007/s00603-022-03046-9 doi: 10.1007/s00603-022-03046-9
![]() |
[33] |
W. Mahmood, A. S. Mohammed, P. G. Asteris, R. Kurda, D. J. Armaghani, Modeling flexural and compressive strengths behaviour of cement-grouted sands modified with water reducer polymer, Appl. Sci., 12 (2022), 1016. https://doi.org/10.3390/app12031016 doi: 10.3390/app12031016
![]() |
[34] |
P. G. Asteris, P. B. Lourenço, P. C. Roussis, C. E. Adami, D. J. Armaghani, L. Cavaleri, et al., Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques, Constr. Build. Mater., 322 (2022), 126500. https://doi.org/10.1016/j.conbuildmat.2022.126500 doi: 10.1016/j.conbuildmat.2022.126500
![]() |
[35] |
M. S. Barkhordari, D. J. Armaghani, P. G. Asteris, Structural damage identification using ensemble deep convolutional neural network models, CMES-Comp. Model. Eng. Sci., 134 (2023), 835–855. https://doi.org/10.32604/cmes.2022.020840 doi: 10.32604/cmes.2022.020840
![]() |
[36] |
L. Cavaleri, M. S. Barkhordari, C. C. Repapis, D. J. Armaghani, D. V. Ulrikh, P. G. Asteris, Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete, Constr. Build. Mater., 359 (2022), 129504. https://doi.org/10.1016/j.conbuildmat.2022.129504 doi: 10.1016/j.conbuildmat.2022.129504
![]() |
[37] |
M. Koopialipoor, P. G. Asteris, A. S. Mohammed, D. E. Alexakis, A. Mamou, D. J. Armaghani, Introducing stacking machine learning approaches for the prediction of rock deformation, Transp. Geotech., 34 (2022), 100756. https://doi.org/10.1016/j.trgeo.2022.100756 doi: 10.1016/j.trgeo.2022.100756
![]() |
[38] |
M. Parsajoo, D. J. Armaghani, A. S. Mohammed, M. Khari, S. Jahandari, Tensile strength prediction of rock material using non-destructive tests: a comparative intelligent study, Transp. Geotech., 31 (2021), 100652. https://doi.org/10.1016/j.trgeo.2021.100652 doi: 10.1016/j.trgeo.2021.100652
![]() |
[39] | D. J. Armaghani, Y. Y. Ming, A. S. Mohammed, E. Momeni, H. Maizir, Effect of SVM kernel functions on bearing capacity assessment of deep foundations, J. Soft Comput. Civ. Eng., 7 (2023), 111–128. Available from: https://www.jsoftcivil.com/article_169219.html. |
[40] |
E. Momeni, B. He, Y. Abdi, D. J. Armaghani, Novel hybrid XGBoost model to forecast soil shear strength based on some soil index tests, CMES-Comp. Model. Eng. Sci., 136 (2023), 2527–2550. https://doi.org/10.32604/cmes.2023.026531 doi: 10.32604/cmes.2023.026531
![]() |
[41] |
J. Zhou, Z. Wang, C. Li, W. Wei, S. Wang, D. J. Armaghani, et al., Hybridized random forest with population-based optimization for predicting shear properties of rock fractures, J. Comput. Sci., 72 (2023), 102097. https://doi.org/10.1016/j.jocs.2023.102097 doi: 10.1016/j.jocs.2023.102097
![]() |
[42] |
J. Huang, M. Zhou, H. Yuan, M. M. Sabri, X. Li, Towards sustainable construction materials: a comparative study of prediction models for green concrete with metakaolin, Buildings, 12 (2022), 772. https://doi.org/10.3390/buildings12060772 doi: 10.3390/buildings12060772
![]() |
[43] |
A. Ahmad, K. Chaiyasarn, F. Farooq, W. Ahmad, S. Suparp, F. Aslam, Compressive strength prediction via gene expression programming (Gep) and artificial neural network (ann) for concrete containing rca, Buildings, 11 (2021), 324. https://doi.org/10.3390/buildings11080324 doi: 10.3390/buildings11080324
![]() |
[44] |
H. Song, A. Ahmad, K. A. Ostrowski, M. Dudek, Analyzing the compressive strength of ceramic waste-based concrete using experiment and artificial neural network (Ann) approach, Materials, 14 (2021), 4518. https://doi.org/10.3390/ma14164518 doi: 10.3390/ma14164518
![]() |
[45] |
H. Nguyen, T. Vu, T. P. Vo, H. T. Thai, Efficient machine learning models for prediction of concrete strengths, Constr. Build. Mater., 266 (2021), 120950. https://doi.org/10.1016/j.conbuildmat.2020.120950 doi: 10.1016/j.conbuildmat.2020.120950
![]() |
[46] |
J. Huang, Y. Sun, J. Zhang, Reduction of computational error by optimizing SVR kernel coefficients to simulate concrete compressive strength through the use of a human learning optimization algorithm, Eng. Comput., 38 (2022), 3151–3168. https://doi.org/10.1007/s00366-021-01305-x doi: 10.1007/s00366-021-01305-x
![]() |
[47] |
P. Sarir, J. Chen, P. G. Asteris, D. J. Armaghani, M. M. Tahir, Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns, Eng. Comput., 37 (2021), 1–19. https://doi.org/10.1007/s00366-019-00808-y doi: 10.1007/s00366-019-00808-y
![]() |
[48] |
F. R. Balf, H. M. Kordkheili, A. M. Kordkheili, A new method for predicting the ingredients of self-compacting concrete (SCC) including fly ash (FA) using data envelopment analysis (DEA), Arabian J. Sci. Eng., 46 (2021), 4439–4460. https://doi.org/10.1007/s13369-020-04927-3 doi: 10.1007/s13369-020-04927-3
![]() |
[49] |
A. Ahmad, F. Farooq, K. A. Ostrowski, K. Śliwa-Wieczorek, S. Czarnecki, Application of novel machine learning techniques for predicting the surface chloride concentration in concrete containing waste material, Materials, 14 (2021), 2297. https://doi.org/10.3390/ma14092297 doi: 10.3390/ma14092297
![]() |
[50] |
M. Azimi-Pour, H. Eskandari-Naddaf, A. Pakzad, Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete, Constr. Build. Mater., 230 (2020), 117021. https://doi.org/10.1016/j.conbuildmat.2019.117021 doi: 10.1016/j.conbuildmat.2019.117021
![]() |
[51] |
P. Saha, P. Debnath, P. Thomas, Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach, Neural Comput. Appl., 32 (2020), 7995–8010. https://doi.org/10.1007/s00521-019-04267-w doi: 10.1007/s00521-019-04267-w
![]() |
[52] |
A. A. Shahmansouri, H. A. Bengar, E. Jahani, Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm, Constr. Build. Mater., 229 (2019), 116883. https://doi.org/10.1016/j.conbuildmat.2019.116883 doi: 10.1016/j.conbuildmat.2019.116883
![]() |
[53] |
J. Huang, M. M. Sabri, D. V. Ulrikh, M. Ahmad, K. A. Alsaffar, Predicting the compressive strength of the cement-fly ash–slag ternary concrete using the firefly algorithm (FA) and random forest (RF) hybrid machine-learning method, Materials, 15 (2022), 4193. https://doi.org/10.3390/ma15124193 doi: 10.3390/ma15124193
![]() |
[54] |
F. Aslam, F. Farooq, M. N. Amin, K. Khan, A. Waheed, A. Akbar, et al., Applications of gene expression programming for estimating compressive strength of high-strength concrete, Adv. Civ. Eng., 2020 (2020), 8850535. https://doi.org/10.1155/2020/8850535 doi: 10.1155/2020/8850535
![]() |
[55] |
F. Farooq, M. N. Amin, K. Khan, M. R. Sadiq, M. F. Javed, F. Aslam, et al., A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC), Appl. Sci., 10 (2020), 7330. https://doi.org/10.3390/app10207330 doi: 10.3390/app10207330
![]() |
[56] |
P. G. Asteris, K. G. Kolovos, Self-compacting concrete strength prediction using surrogate models, Neural Comput. Appl., 31 (2019), 409–424. https://doi.org/10.1007/s00521-017-3007-7 doi: 10.1007/s00521-017-3007-7
![]() |
[57] |
S. Selvaraj, S. Sivaraman, Prediction model for optimized self-compacting concrete with fly ash using response surface method based on fuzzy classification, Neural Comput. Appl., 31 (2019), 1365–1373. https://doi.org/10.1007/s00521-018-3575-1 doi: 10.1007/s00521-018-3575-1
![]() |
[58] |
J. Zhang, G. Ma, Y. Huang, J. Sun, F. Aslani, B. Nener, Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression, Constr. Build. Mater., 210 (2019), 713–719. https://doi.org/10.1016/j.conbuildmat.2019.03.189 doi: 10.1016/j.conbuildmat.2019.03.189
![]() |
[59] |
A. Kaveh, T. Bakhshpoori, S. M. Hamze-Ziabari, M5' and mars based prediction models for properties of selfcompacting concrete containing fly ash, Period. Polytech., Civ. Eng., 62 (2018), 281–294. https://doi.org/10.3311/PPci.10799 doi: 10.3311/PPci.10799
![]() |
[60] |
D. Sathyan, K. B. Anand, A. J. Prakash, B. Premjith, Modeling the fresh and hardened stage properties of self-compacting concrete using random kitchen sink algorithm, Int. J. Concr. Struct. Mater., 12 (2018), 24. https://doi.org/10.1186/s40069-018-0246-7 doi: 10.1186/s40069-018-0246-7
![]() |
[61] |
B. Vakhshouri, S. Nejadi, Prediction of compressive strength of self-compacting concrete by ANFIS models, Neurocomputing, 280 (2018), 13–22. https://doi.org/10.1016/j.neucom.2017.09.099 doi: 10.1016/j.neucom.2017.09.099
![]() |
[62] |
O. B. Douma, B. Boukhatem, M. Ghrici, A. Tagnit-Hamou, Prediction of properties of self-compacting concrete containing fly ash using artificial neural network, Neural Comput. Appl., 28 (2017), 707–718. https://doi.org/10.1007/s00521-016-2368-7 doi: 10.1007/s00521-016-2368-7
![]() |
[63] |
M. A. Yaman, M. A. Elaty, M. Taman, Predicting the ingredients of self compacting concrete using artificial neural network, Alexandria Eng. J., 56 (2017), 523–532. https://doi.org/10.1016/j.aej.2017.04.007 doi: 10.1016/j.aej.2017.04.007
![]() |
[64] |
A. Ahmad, F. Farooq, P. Niewiadomski, K. Ostrowski, A. Akbar, F. Aslam, et al., Prediction of compressive strength of fly ash based concrete using individual and ensemble algorithm, Materials, 14 (2021), 794. https://doi.org/10.3390/ma14040794 doi: 10.3390/ma14040794
![]() |
[65] |
F. Farooq, W. Ahmed, A. Akbar, F. Aslam, R. Alyousef, Predictive modeling for sustainable high-performance concrete from industrial wastes: a comparison and optimization of models using ensemble learners, J. Cleaner Prod., 292 (2021), 126032. https://doi.org/10.1016/j.jclepro.2021.126032 doi: 10.1016/j.jclepro.2021.126032
![]() |
[66] | R. Buši, M. Benšić, I. Miličević, K. Strukar, Prediction models for the mechanical properties of self-compacting concrete with recycled rubber and silica fume, 13 (2020), 1821. https://doi.org/10.3390/ma13081821 |
[67] |
M. F. Javed, F. Farooq, S. A. Memon, A. Akbar, M. A. Khan, F. Aslam, et al., New prediction model for the ultimate axial capacity of concrete-filled steel tubes: an evolutionary approach, Crystals, 10 (2020), 741. https://doi.org/10.3390/cryst10090741 doi: 10.3390/cryst10090741
![]() |
[68] |
M. Nematzadeh, A. A. Shahmansouri, M. Fakoor, Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers : optimization and prediction via RSM and GEP, Constr. Build. Mater., 252 (2020), 119057. https://doi.org/10.1016/j.conbuildmat.2020.119057 doi: 10.1016/j.conbuildmat.2020.119057
![]() |
[69] |
K. Güçlüer, A. Özbeyaz, S. Göymen, O. Günaydın, A comparative investigation using machine learning methods for concrete compressive strength estimation, Mater. Today Commun., 27 (2021), 102278. https://doi.org/10.1016/j.mtcomm.2021.102278 doi: 10.1016/j.mtcomm.2021.102278
![]() |
[70] |
A. Ahmad, K. A. Ostrowski, M. Maślak, F. Farooq, I. Mehmood, A. Nafees, Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature, Materials, 14 (2021), 4222. https://doi.org/10.3390/ma14154222 doi: 10.3390/ma14154222
![]() |
[71] |
P. G. Asteris, A. D. Skentou, A. Bardhan, P. Samui, K. Pilakoutas, Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models, Cem. Concr. Res., 145 (2021), 106449. https://doi.org/10.1016/j.cemconres.2021.106449 doi: 10.1016/j.cemconres.2021.106449
![]() |
[72] |
W. Emad, A. S. Mohammed, R. Kurda, K. Ghafor, L. Cavaleri, S. M. A. Qaidi, et al., Prediction of concrete materials compressive strength using surrogate models, Structures, 46 (2022), 1243–1267. https://doi.org/10.1016/j.istruc.2022.11.002 doi: 10.1016/j.istruc.2022.11.002
![]() |
[73] |
Z. Shen, A. F. Deifalla, P. Kamiński, A. Dyczko, Compressive strength evaluation of ultra-high-strength concrete by machine learning, Materials, 15 (2022), 3523. https://doi.org/10.3390/ma15103523 doi: 10.3390/ma15103523
![]() |
[74] |
A. Kumar, H. C. Arora, N. R. Kapoor, M. A. Mohammed, K. Kumar, A. Majumdar, et al., Compressive strength prediction of lightweight concrete: machine learning models, Sustainability, 14 (2022), 2404. https://doi.org/10.3390/su14042404 doi: 10.3390/su14042404
![]() |
[75] |
D. K. I. Jaf, P. I. Abdulrahman, A. S. Mohammed, R. Kurda, S. M. A. Qaidi, P. G. Asteris, Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete, Constr. Build. Mater., 400 (2023), 132604. https://doi.org/10.1016/j.conbuildmat.2023.132604 doi: 10.1016/j.conbuildmat.2023.132604
![]() |
[76] |
W. Mahmood, A. S. Mohammed, P. G. Asteris, H. Ahmed, Soft computing technics to predict the early-age compressive strength of flowable ordinary Portland cement, Soft Comput., 27 (2023), 3133–3150. https://doi.org/10.1007/s00500-022-07505-x doi: 10.1007/s00500-022-07505-x
![]() |
[77] |
R. Ali, M. Muayad, A. S. Mohammed, P. G. Asteris, Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches, Struct. Concr., 24 (2023), 4161–4184. https://doi.org/10.1002/suco.202200718 doi: 10.1002/suco.202200718
![]() |
[78] |
J. Huang, J. Zhang, X. Li, Y. Qiao, R. Zhang, G. S. Kumar, Investigating the effects of ensemble and weight optimization approaches on neural networks' performance to estimate the dynamic modulus of asphalt concrete, Road Mater. Pavement Des., 24 (2023), 1939–1959. https://doi.org/10.1080/14680629.2022.2112061 doi: 10.1080/14680629.2022.2112061
![]() |
[79] |
J. Zhou, S. Huang, Y. Qiu, Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations, Tunnelling Underground Space Technol., 124 (2022), 104494. https://doi.org/10.1016/j.tust.2022.104494 doi: 10.1016/j.tust.2022.104494
![]() |
[80] |
D. V. Dao, S. H. Trinh, H. B. Ly, B. T. Pham, Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: novel hybrid artificial intelligence approaches, Appl. Sci., 9 (2019), 1113. https://doi.org/10.3390/app9061113 doi: 10.3390/app9061113
![]() |
[81] |
Q. A. Wang, J. Zhang, J. Huang, Simulation of the compressive strength of cemented tailing backfill through the use of firefly algorithm and random forest model, Shock Vib., 2021 (2021), 5536998. https://doi.org/10.1155/2021/5536998 doi: 10.1155/2021/5536998
![]() |
[82] |
X. Liang, X. Yu, G. Ding, Y. Jing, J. Huang, Environmental and mechanical effects of rubberised open-graded asphalt mixtures incorporating with titanium dioxide: a laboratory investigation, Int. J. Pavement Eng., 24 (2023), 2241604. https://doi.org/10.1080/10298436.2023.2241604 doi: 10.1080/10298436.2023.2241604
![]() |
[83] |
X. Liang, X. Yu, B. Xu, C. Chen, G. Ding, Y. Jin, et al., Storage stability and compatibility in foamed warm-mix asphalt (FWMA) containing recycled asphalt pavement (RAP) binder, J. Mater. Civ. Eng., 2024. https://doi.org/10.1061/JMCEE7/MTENG-16468 doi: 10.1061/JMCEE7/MTENG-16468
![]() |
[84] |
G. Gu, F. Xu, X. Huang, S. Ruan, C. Peng, J. Lin, Foamed geopolymer: the relationship between rheological properties of geopolymer paste and pore-formation mechanism, J. Cleaner Prod., 277 (2020), 123238. https://doi.org/10.1016/j.jclepro.2020.123238 doi: 10.1016/j.jclepro.2020.123238
![]() |
[85] |
J. Huang, J. Xue, Optimization of SVR functions for flyrock evaluation in mine blasting operations, Environ. Earth Sci., 81 (2022), 434. https://doi.org/10.1007/s12665-022-10523-5 doi: 10.1007/s12665-022-10523-5
![]() |
[86] |
J. Huang, J. Zhang, Y. Gao, H. Liu, Intelligently predict the rock joint shear strength using the support vector regression and firefly algorithm, Lithosphere, 2021 (2021), 2467126. https://doi.org/10.2113/2021/2467126 doi: 10.2113/2021/2467126
![]() |
[87] |
J. Zhou, X. Shen, Y. Qiu, X. Shi, M. Khandelwal, Cross-correlation stacking-based microseismic source location using three metaheuristic optimization algorithms, Tunnelling Underground Space Technol., 126 (2022), 104570. https://doi.org/10.1016/j.tust.2022.104570 doi: 10.1016/j.tust.2022.104570
![]() |
[88] |
X. Wang, S. Hosseini, D. J. Armaghani, E. T. Mohamad, Data-driven optimized artificial neural network technique for prediction of flyrock induced by boulder blasting, Mathematics, 11 (2023), 2358. https://doi.org/10.3390/math11102358 doi: 10.3390/math11102358
![]() |
[89] |
S. Hosseini, R. Poormirzaee, M. Hajihassani, Application of reliability-based back-propagation causality-weighted neural networks to estimate air-overpressure due to mine blasting, Eng. Appl. Artif. Intell., 115 (2022), 105281. https://doi.org/10.1016/j.engappai.2022.105281 doi: 10.1016/j.engappai.2022.105281
![]() |
[90] |
S. Hosseini, R. Pourmirzaee, D. J. Armaghani, M. M. S. Sabri, Prediction of ground vibration due to mine blasting in a surface lead–zinc mine using machine learning ensemble techniques, Sci. Rep., 13 (2023), 6591. https://doi.org/10.1038/s41598-023-33796-7 doi: 10.1038/s41598-023-33796-7
![]() |
[91] |
S. Hosseini, M. Monjezi, E. Bakhtavar, A. Mousavi, Prediction of dust emission due to open pit mine blasting using a hybrid artificial neural network, Nat. Resour. Res., 30 (2021), 4773–4788. https://doi.org/10.1007/s11053-021-09930-5 doi: 10.1007/s11053-021-09930-5
![]() |
[92] |
S. Hosseini, A. Mousavi, M. Monjezi, Prediction of blast-induced dust emissions in surface mines using integration of dimensional analysis and multivariate regression analysis, Arabian J. Geosci., 15 (2022), 163. https://doi.org/10.1007/s12517-021-09376-2 doi: 10.1007/s12517-021-09376-2
![]() |
[93] |
H. I. Erdal, Two-level and hybrid ensembles of decision trees for high performance concrete compressive strength prediction, Eng. Appl. Artif. Intell., 26 (2013), 1689–1697. https://doi.org/10.1016/j.engappai.2013.03.014 doi: 10.1016/j.engappai.2013.03.014
![]() |
[94] |
W. B. Chaabene, M. Flah, M. L. Nehdi, Machine learning prediction of mechanical properties of concrete: critical review, Constr. Build. Mater., 260 (2020), 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889 doi: 10.1016/j.conbuildmat.2020.119889
![]() |
[95] |
L. Breiman, Random forests, Mach. Learn., 45 (2001), 5–32. https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324
![]() |
[96] | A. Liaw, M. Wiener, Classification and regression by randomForest, R News, 2 (2002), 18–22. |
[97] | T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 785–794. https://doi.org/10.1145/2939672.2939785 |
[98] |
J. Zhao, S. Hosseini, Q. Chen, D. J. Armaghani, Super learner ensemble model: a novel approach for predicting monthly copper price in future, Resour. Policy, 85 (2023), 103903. https://doi.org/10.1016/j.resourpol.2023.103903 doi: 10.1016/j.resourpol.2023.103903
![]() |
[99] |
Q. Wang, J. Qi, S. Hosseini, H. Rasekh, J. Huang, ICA-LightGBM algorithm for predicting compressive strength of geo-polymer concrete, Buildings, 13 (2023), 2278. https://doi.org/10.3390/buildings13092278 doi: 10.3390/buildings13092278
![]() |
[100] |
E. Bakhtavar, S. Hosseini, K. Hewage, R. Sadiq, Green blasting policy: simultaneous forecast of vertical and horizontal distribution of dust emissions using artificial causality-weighted neural network, J. Cleaner Prod., 283 (2021), 124562. https://doi.org/10.1016/j.jclepro.2020.124562 doi: 10.1016/j.jclepro.2020.124562
![]() |
[101] |
E. Bakhtavar, S. Hosseini, K. Hewage, R. Sadiq, Air pollution risk assessment using a hybrid fuzzy intelligent probability-based approach: mine blasting dust impacts, Nat. Resour. Res., 30 (2021), 2607–2627. https://doi.org/10.1007/s11053-020-09810-4 doi: 10.1007/s11053-020-09810-4
![]() |
[102] |
S. Hosseini, R. Poormirzaee, M. Hajihassani, R. Kalatehjari, An ANN-Fuzzy cognitive map-based Z-number theory to predict flyrock induced by blasting in open-pit mines, Rock Mech. Rock Eng., 55 (2022), 4373–4390. https://doi.org/10.1007/s00603-022-02866-z doi: 10.1007/s00603-022-02866-z
![]() |
[103] |
R. Ali, M. Muayad, A. S. Mohammed, P. G. Asteris, Analysis and prediction of the effect of Nanosilica on the compressive strength of concrete with different mix proportions and specimen sizes using various numerical approaches, Struct. Concr., 24 (2022), 4161–4184. https://doi.org/10.1002/suco.202200718 doi: 10.1002/suco.202200718
![]() |
[104] |
S. Hosseini, A. Mousavi, M. Monjezi, M. Khandelwal, Mine-to-crusher policy: planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach, Resour. Policy, 79 (2022), 103087. https://doi.org/10.1016/j.resourpol.2022.103087 doi: 10.1016/j.resourpol.2022.103087
![]() |
[105] |
S. Hosseini, R. Poormirzaee, M. Hajihassani, An uncertainty hybrid model for risk assessment and prediction of blast-induced rock mass fragmentation, Int. J. Rock Mech. Min. Sci., 160 (2022), 105250. https://doi.org/10.1016/j.ijrmms.2022.105250 doi: 10.1016/j.ijrmms.2022.105250
![]() |
[106] |
S. Hosseini, J. Khatti, B. O. Taiwo, Y. Fissha, K. S. Grover, H. Ikeda, et al., Assessment of the ground vibration during blasting in mining projects using different computational approaches, Sci. Rep., 13 (2023), 18582. https://doi.org/10.1038/s41598-023-46064-5 doi: 10.1038/s41598-023-46064-5
![]() |
[107] |
S. Hosseini, S. Javanshir, H. Sabeti, P. Tahmasebizadeh, Mathematical-based gene expression programming (GEP): a novel model to predict zinc separation from a bench-scale bioleaching process, J. Sustainable Metall., 9 (2023), 1601–1619. https://doi.org/10.1007/s40831-023-00751-9 doi: 10.1007/s40831-023-00751-9
![]() |
[108] |
S. Hosseini, R. Pourmirzaee, Green policy for managing blasting induced dust dispersion in open-pit mines using probability-based deep learning algorithm, Expert Syst. Appl., 240 (2023), 122469. https://doi.org/10.1016/j.eswa.2023.122469 doi: 10.1016/j.eswa.2023.122469
![]() |
[109] |
A. I. Lawal, S. Hosseini, M. Kim, N. O. Ogunsola, S. Kwon, Prediction of factor of safety of slopes using stochastically modified ANN and classical methods: a rigorous statistical model selection approach, Nat. Hazard., 2023. https://doi.org/10.1007/s11069-023-06275-5 doi: 10.1007/s11069-023-06275-5
![]() |
[110] |
M. Apostolopoulou, P. G. Asteris, D. J. Armaghani, M. G. Douvika, P. B. Lourenço, L. Cavaleri, et al., Mapping and holistic design of natural hydraulic lime mortars, Cem. Concr. Res., 136 (2020), 106167. https://doi.org/10.1016/j.cemconres.2020.106167 doi: 10.1016/j.cemconres.2020.106167
![]() |
[111] |
P. G. Asteris, M. Koopialipoor, D. J. Armaghani, E. A. Kotsonis, P. B. Lourenço, Prediction of cement-based mortars compressive strength using machine learning techniques, Neural Comput. Appl., 33 (2021), 13089–13121. https://doi.org/10.1007/s00521-021-06004-8 doi: 10.1007/s00521-021-06004-8
![]() |
[112] |
S. Hosseini, M. Monjezi, E. Bakhtavar, Minimization of blast-induced dust emission using gene-expression programming and grasshopper optimization algorithm: a smart mining solution based on blasting plan optimization, Clean Technol. Environ. Policy, 24 (2022), 2313–2328. https://doi.org/10.1007/s10098-022-02327-9 doi: 10.1007/s10098-022-02327-9
![]() |
[113] |
Y. H. Jong, C. I. Lee, Influence of geological conditions on the powder factor for tunnel blasting, Int. J. Rock Mech. Min. Sci., 41 (2004), 533–538. https://doi.org/10.1016/j.ijrmms.2004.03.095 doi: 10.1016/j.ijrmms.2004.03.095
![]() |
1. | Tianqi Yu, Lei Liu, Yan-Jun Liu, Observer-based adaptive fuzzy output feedback control for functional constraint systems with dead-zone input, 2022, 20, 1551-0018, 2628, 10.3934/mbe.2023123 | |
2. | Yuxiang Ji, Yu Zhang, Xiaofeng Ma, Xinling Li, Taiping Jiang, Resilient Energy-to-peak Event-triggered Control of NCSs, 2023, 2638, 1742-6588, 012006, 10.1088/1742-6596/2638/1/012006 | |
3. | Huiyu Wang, Shutang Liu, Xiang Wu, Jie Sun, Wei Qiao, Synchronization of Fractional Delayed Memristive Neural Networks with Jump Mismatches via Event-Based Hybrid Impulsive Controller, 2024, 8, 2504-3110, 297, 10.3390/fractalfract8050297 |