[1]
|
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: Cancer J. Clin., 71 (2021), 209–249. https://doi.org/10.3322/caac.21660 doi: 10.3322/caac.21660
|
[2]
|
S. B. Ahn, D. S. Han, J. H. Bae, T. J. Byun, J. P. Kim, C. S. Eun, The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies, Gut Liver, 6 (2012), 64. https://doi.org/10.5009/gnl.2012.6.1.64 doi: 10.5009/gnl.2012.6.1.64
|
[3]
|
C. M. C. Le Clercq, M. W. E. Bouwens, E. J. A. Rondagh, C. M. Bakker, E. T. P. Keulen, R. J. de Ridder, et al., Postcolonoscopy colorectal cancers are preventable: a population-based study, Gut, 63 (2014), 957–963. http://doi.org/10.1136/gutjnl-2013-304880 doi: 10.1136/gutjnl-2013-304880
|
[4]
|
C. Hao, T. Jin, F. Tan, J. Gao, Z. Ma, J. Cao, The analysis of time-varying high-order moment of wind power time series, Energy Rep., 9 (2023), 3154–3159. https://doi.org/10.1016/j.egyr.2023.02.010 doi: 10.1016/j.egyr.2023.02.010
|
[5]
|
J. Cao, D. Zhao, C. Tian, T. Jin, F. Song, Adopting improved adam optimizer to train dendritic neuron model for water quality prediction, Math. Biosci. Eng., 20 (2023), 9489–9510. https://doi.org/10.3934/mbe.2023417 doi: 10.3934/mbe.2023417
|
[6]
|
P. Brandao, O. Zisimopoulos, E. Mazomenos, G. Ciuti, J. Bernal, M. Visentini-Scarzanella, et al., Towards a computed-aided diagnosis system in colonoscopy: automatic polyp segmentation using convolution neural networks, J. Med. Rob. Res., 3 (2018). https://doi.org/10.1142/S2424905X18400020
|
[7]
|
D. Fan, G. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, et al., Pranet: Parallel reverse attention network for polyp segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 12266 (2020), 263–273. https://doi.org/10.1007/978-3-030-59725-2_26
|
[8]
|
O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 9351 (2015), 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
|
[9]
|
R. Zhang, G. Li, Z. Li, S. Cui, D. Qian, Y. Yu, Adaptive context selection for polyp segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 12266 (2020), 253–262. https://doi.org/10.1007/978-3-030-59725-2_25
|
[10]
|
Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, J. Liang, Unet++: A nested u-net architecture for medical image segmentation, in International Workshop on Deep Learning in Medical Image Analysis, 11045 (2018), 3–11. https://doi.org/10.1007/978-3-030-00889-5_1
|
[11]
|
F. Shen, X. Du, L. Zhang, X. Shu, J. Tang, Triplet contrastive learning for unsupervised vehicle re-identification, preprint, arXiv: 2301.09498.
|
[12]
|
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-end object detection with transformers, in European Conference on Computer Vision, 12346 (2020), 213–229. https://doi.org/10.1007/978-3-030-58452-8_13
|
[13]
|
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, et al., An image is worth 16 × 16 words: Transformers for image recognition at scale, preprint, arXiv: 2010.11929.
|
[14]
|
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, preprint, arXiv: 1706.03762.
|
[15]
|
L. Pan, W. Luan, Y. Zheng, Q. Fu, J. Li, PSGformer: Enhancing 3D point cloud instance segmentation via precise semantic guidance, preprint, arXiv: 2307.07708.
|
[16]
|
F. Shen, Y. Xie, J. Zhu, X. Zhu, H. Zeng, Git: Graph interactive transformer for vehicle re-identification, IEEE Trans. Image Process., 32 (2023), 1039–1051. https://doi.org/10.1109/TIP.2023.3238642 doi: 10.1109/TIP.2023.3238642
|
[17]
|
D. Fan, G. Ji, M. Cheng, L. Shao, Concealed object detection, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2021), 6024–6042. https://doi.org/10.1109/TPAMI.2021.3085766
|
[18]
|
L. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, in European Conference on Computer Vision, 11211 (2018), 833–851. https://doi.org/10.1007/978-3-030-01234-2_49
|
[19]
|
D. Bo, W. Wang, D. Fan, J. Li, H. Fu, L. Shao, Polyp-pvt: Polyp segmentation with pyramidvision transformers, preprint, arXiv: 2108.06932.
|
[20]
|
X. Li, H. Zhao, L. Han, Y. Tong, S. Tan, K. Yang, Gated fully fusion for semantic segmentation, in Proceedings of the AAAI conference on artificial intelligence, 34 (2020), 11418–11425. https://doi.org/10.1609/aaai.v34i07.6805
|
[21]
|
F. Shen, J. Zhu, X. Zhu, Y. Xie, J. Huang, Exploring spatial significance via hybrid pyramidal graph network for vehicle re-identification, IEEE Trans. Intell. Transp. Syst., 23 (2022), 8793–8804. https://doi.org/10.1109/TITS.2021.3086142 doi: 10.1109/TITS.2021.3086142
|
[22]
|
F. Shen, J. Zhu, X. Zhu, J. Huang, H. Zeng, Z. Lei, et al., An efficient multiresolution network for vehicle reidentification, IEEE Internet Things J., 9 (2022), 9049–9059. https://doi.org/10.1109/JIOT.2021.3119525 doi: 10.1109/JIOT.2021.3119525
|
[23]
|
T. Takikawa, D. Acuna, V. Jampani, S. Fidler, Gated-scnn: Gated shape cnns for semantic segmentation, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 5228–5237. https://doi.org/10.1109/ICCV.2019.00533
|
[24]
|
M. Zhen, J. Wang, L. Zhou, S. Li, T. Shen, J. Shang, et al., Joint semantic segmentation and boundary detection using iterative pyramid contexts, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 13663–13672. https://doi.org/10.1109/CVPR42600.2020.01368
|
[25]
|
A. Lou, S. Guan, M. H. Loew, Caranet: context axial reverse attention network for segmentation of small medical objects, J. Med. Imaging, 10 (2023). https://doi.org/10.1117/1.JMI.10.1.014005
|
[26]
|
H. Ma, H. Yang, D. Huang, Boundary guided context aggregation for semantic segmentation, preprint, arXiv: 2110.14587.
|
[27]
|
M. Kim, S. Woo, D. Kim, I. S. Kweon, The devil is in the boundary: Exploiting boundary representation for basis-based instance segmentation, in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), (2021), 928–937. https://doi.org/10.1109/WACV48630.2021.00097
|
[28]
|
A. Sánchez-González, B. García-Zapirain, D. Sierra-Sosa, A. Elmaghraby, Automatized colon polyp segmentation via contour region analysis, Comput. Biol. Med., 100 (2018), 152–164. https://doi.org/10.1016/j.compbiomed.2018.07.002 doi: 10.1016/j.compbiomed.2018.07.002
|
[29]
|
P. N. Figueiredo, I. N. Figueiredo, L. Pinto, S. Kumar, Y. R. Tsai, A. V. Mamonov, Polyp detection with computer-aided diagnosis in white light colonoscopy: comparison of three different methods, Endosc. Int. Open, 7 (2019), 209–215. https://doi.org/10.1055/a-0808-4456 doi: 10.1055/a-0808-4456
|
[30]
|
M. Li, M. Wei, X. He, F. Shen, Enhancing pary features via contrastive attention module for vehicle re-identification, in 2022 IEEE International Conference on Image Processing (ICIP), (2022), 1816–1820. https://doi.org/10.1109/ICIP46576.2022.9897943
|
[31]
|
F. Shen, X. Peng, L. Wang, X. Hao, M. Shu, Y. Wang, Hsgm: A hierarchical similarity graph module for object re-identification, in 2022 IEEE International Conference on Multimedia and Expo (ICME), (2022), 1–6. https://doi.org/10.1109/ICME52920.2022.9859883
|
[32]
|
F. Shen, L. Lin, M. Wei, J. Liu, J. Zhu, H. Zeng, et al., A large benchmark for fabric image retrieval, in 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC), (2019), 247–251. https://doi.org/10.1109/ICIVC47709.2019.8981065
|
[33]
|
M. Li, M. Wei, X. He, F. Shen, Enhancing part features via contrastive attention module for vehicle re-identification, in 2022 IEEE International Conference on Image Processing (ICIP), (2022), 1816–1820. https://doi.org/10.1109/ICIP46576.2022.9897943
|
[34]
|
S. Chen, X. Tan, B. Wang, X. Hu, Reverse attention for salient object detection, in European Conference on Computer Vision, 11213 (2018), 236–252. https://doi.org/10.1007/978-3-030-01240-3_15
|
[35]
|
H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Training data-efficient image transformers & distillation through attention, preprint, arXiv: 2012.12877.
|
[36]
|
Z. Pan, B. Zhuang, J. Liu, H. He, J. Cai, Scalable vision transformers with hierarchical pooling, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 367–376. https://doi.org/10.1109/ICCV48922.2021.00043
|
[37]
|
K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, Y. Wang, Transformer in transformer, preprint, arXiv: 2103.00112.
|
[38]
|
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, et al., Swin transformer: Hierarchical vision transformer using shifted windows, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 9992–10002. https://doi.org/10.1109/ICCV48922.2021.00986
|
[39]
|
W. Wang, E. Xie, X. Li, D. Fan, K. Song, D. Liang, et al., Pvt v2: Improved baselines with pyramid vision transformer, Comput. Visual Media, 8 (2022), 415–424. https://doi.org/10.1007/s41095-022-0274-8 doi: 10.1007/s41095-022-0274-8
|
[40]
|
E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, P. Luo, Segformer: Simple and efficient design for semantic segmentation with transformers, preprint, arXiv: 2105.15203.
|
[41]
|
J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, et al., Transunet: Transformers make strong encoders for medical image segmentation, arXiv: 2102.04306.
|
[42]
|
Y. Zhang, H. Liu, Q. Hu, Transfuse: Fusing transformers and cnns for medical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 12901 (2021), 14–24. https://doi.org/10.1007/978-3-030-87193-2_2
|
[43]
|
J. Schlemper, O. Oktay, M. Schaap, M. Heinrich, B. Kainz, B. Glocker, et al., Attention gated networks: Learning to leverage salient regions in medical images, Med. Image Anal., 53 (2019), 197–207. https://doi.org/10.1016/j.media.2019.01.012 doi: 10.1016/j.media.2019.01.012
|
[44]
|
Y. Lu, Y. Chen, D. Zhao, J. Chen, Graph-fcn for image semantic segmentation, in International Symposium on Neural Networks, 11554 (2019), 97–105. https://doi.org/10.1007/978-3-030-22796-8_11
|
[45]
|
M. M. Rahman, R. Marculescu, Medical image segmentation via cascaded attention decoding, in 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), (2023), 6211–6220. https://doi.org/10.1109/WACV56688.2023.00616
|
[46]
|
G. Bertasius, J. Shi, L. Torresani, Semantic segmentation with boundary neural fields, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 3602–3610. https://doi.org/10.1109/CVPR.2016.392
|
[47]
|
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, EEE Trans. Pattern Anal. Mach. Intell., 40 (2018), 834–848. https://doi.org/10.1109/TPAMI.2017.2699184 doi: 10.1109/TPAMI.2017.2699184
|
[48]
|
Y. Fang, C. Chen, Y. Yuan, K. Tong, Selective feature aggregation network with area-boundary constraints for polyp segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 11764 (2019), 302–310. https://doi.org/10.1007/978-3-030-32239-7_34
|
[49]
|
S. Chen, X. Tan, B. Wang, H. Lu, X. Hu, Y. Fu, Reverse attention-based residual network for salient object detection, IEEE Trans. Image Process., 29 (2020), 3763–3776. https://doi.org/10.1109/TIP.2020.2965989 doi: 10.1109/TIP.2020.2965989
|
[50]
|
H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, Y. Yan, Blendmask: Top-down meets bottom-up for instance segmentation, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2020), 8573–8581. https://doi.org/10.1109/CVPR42600.2020.00860
|
[51]
|
A. Lou, M. Loew, Cfpnet: channel-wise feature pyramid for real-time semantic segmentation, in 2021 IEEE International Conference on Image Processing (ICIP), (2021), 1894–1898. https://doi.org/10.1109/ICIP42928.2021.9506485
|
[52]
|
S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, A. Veit, Understanding robustness of transformers for image classification, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 10211–10221. https://doi.org/10.1109/ICCV48922.2021.01007
|
[53]
|
W. Wang, E. Xie, X. Li, D. Fan, K. Song, D. Liang, et al., Pyramid vision transformer: A versatile backbone for dense prediction without convolutions, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), (2021), 548–558. https://doi.org/10.1109/ICCV48922.2021.00061
|
[54]
|
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556.
|
[55]
|
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90
|
[56]
|
J. Zhao, J. Liu, D. Fan, Y. Cao, J. Yang, M. Cheng, Egnet: Edge guidance network for salient object detection, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 8778–8787. https://doi.org/10.1109/ICCV.2019.00887
|
[57]
|
Z. Zhang, H. Fu, H. Dai, J. Shen, Y. Pang, L. Shao, Et-net: A generic edge-attention guidance network for medical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, (2019), 442–450. https://doi.org/10.1007/978-3-030-32239-7_49
|
[58]
|
Y. Dai, F. Gieseke, S. Oehmcke, Y. Wu, K. Barnard, Attentional feature fusion, in 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), (2021), 3559–3568. https://doi.org/10.1109/WACV48630.2021.00360
|
[59]
|
Q. Zhang, Y. Yang, Sa-net: Shuffle attention for deep convolutional neural networks, in ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2021), 2235–2239. https://doi.org/10.1109/ICASSP39728.2021.9414568
|
[60]
|
B. Dong, M. Zhuge, Y. Wang, H. Bi, G. Chen, Accurate camouflaged object detection via mixture convolution and interactive fusion, preprint, arXiv: 2101.05687.
|
[61]
|
D. Vázquez, J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, A. M. López, A. Romero, A benchmark for endoluminal scene segmentation of colonoscopy images, J. Healthcare Eng., 2017 (2017), 4037190. https://doi.org/10.1155/2017/4037190 doi: 10.1155/2017/4037190
|
[62]
|
J. Silva, A. Histace, O. Romain, X. Dray, B. Granado, Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer, Int. J. Comput. Assisted Radiol. Surg., 9 (2014), 283–293. https://doi.org/10.1007/s11548-013-0926-3 doi: 10.1007/s11548-013-0926-3
|
[63]
|
J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, F. Vilariño, Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians, Comput. Med. Imaging Graphics, 43 (2015), 99–111. https://doi.org/10.1016/j.compmedimag.2015.02.007 doi: 10.1016/j.compmedimag.2015.02.007
|
[64]
|
N. Tajbakhsh, S. R. Gurudu, J. Liang, Automated polyp detection in colonoscopy videos using shape and context information, IEEE Trans. Med. Imaging, 35 (2016), 630–644. https://doi.org/10.1109/TMI.2015.2487997 doi: 10.1109/TMI.2015.2487997
|
[65]
|
D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, et al., Kvasir-seg: A segmented polyp dataset, in International Conference on Multimedia Modeling, 11962 (2020), 451–462. https://doi.org/10.1007/978-3-030-37734-2_37
|
[66]
|
C. Huang, H. Wu, Y. Lin, Hardnet-mseg: A simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps, preprint, arXiv: 2101.07172.
|
[67]
|
F. Shen, X. He, M. Wei, Y. Xie, A competitive method to vipriors object detection challenge, preprint, arXiv: 2104.09059.
|
[68]
|
I. Loshchilov, F. Hutter, Decoupled weight decay regularization, preprint, arXiv: 1711.05101.
|