Fake news has already become a severe problem on social media, with substantially more detrimental impacts on society than previously thought. Research on multi-modal fake news detection has substantial practical significance since online fake news that includes multimedia elements are more likely to mislead users and propagate widely than text-only fake news. However, the existing multi-modal fake news detection methods have the following problems: 1) Existing methods usually use traditional CNN models and their variants to extract image features, which cannot fully extract high-quality visual features. 2) Existing approaches usually adopt a simple concatenate approach to fuse inter-modal features, leading to unsatisfactory detection results. 3) Most fake news has large disparity in feature similarity between images and texts, yet existing models do not fully utilize this aspect. Thus, we propose a novel model (TGA) based on transformers and multi-modal fusion to address the above problems. Specifically, we extract text and image features by different transformers and fuse features by attention mechanisms. In addition, we utilize the degree of feature similarity between texts and images in the classifier to improve the performance of TGA. Experimental results on the public datasets show the effectiveness of TGA*.
* Our code is available at https://github.com/PPEXCEPED/TGA.
Citation: Pingping Yang, Jiachen Ma, Yong Liu, Meng Liu. Multi-modal transformer for fake news detection[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14699-14717. doi: 10.3934/mbe.2023657
[1] | Giuseppe Maria Coclite, Lorenzo di Ruvo . A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks and Heterogeneous Media, 2016, 11(2): 281-300. doi: 10.3934/nhm.2016.11.281 |
[2] | Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, Eun Heui Kim . Deep neural network approach to forward-inverse problems. Networks and Heterogeneous Media, 2020, 15(2): 247-259. doi: 10.3934/nhm.2020011 |
[3] | Anya Désilles, Hélène Frankowska . Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727 |
[4] | Tong Yan . The numerical solutions for the nonhomogeneous Burgers' equation with the generalized Hopf-Cole transformation. Networks and Heterogeneous Media, 2023, 18(1): 359-379. doi: 10.3934/nhm.2023014 |
[5] | Jinyi Sun, Weining Wang, Dandan Zhao . Global existence of 3D rotating magnetohydrodynamic equations arising from Earth's fluid core. Networks and Heterogeneous Media, 2025, 20(1): 35-51. doi: 10.3934/nhm.2025003 |
[6] | Guillermo Reyes, Juan-Luis Vázquez . The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1(2): 337-351. doi: 10.3934/nhm.2006.1.337 |
[7] | Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005 |
[8] | Bendong Lou . Self-similar solutions in a sector for a quasilinear parabolic equation. Networks and Heterogeneous Media, 2012, 7(4): 857-879. doi: 10.3934/nhm.2012.7.857 |
[9] | Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016 |
[10] | Flavia Smarrazzo, Alberto Tesei . Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7(4): 941-966. doi: 10.3934/nhm.2012.7.941 |
Fake news has already become a severe problem on social media, with substantially more detrimental impacts on society than previously thought. Research on multi-modal fake news detection has substantial practical significance since online fake news that includes multimedia elements are more likely to mislead users and propagate widely than text-only fake news. However, the existing multi-modal fake news detection methods have the following problems: 1) Existing methods usually use traditional CNN models and their variants to extract image features, which cannot fully extract high-quality visual features. 2) Existing approaches usually adopt a simple concatenate approach to fuse inter-modal features, leading to unsatisfactory detection results. 3) Most fake news has large disparity in feature similarity between images and texts, yet existing models do not fully utilize this aspect. Thus, we propose a novel model (TGA) based on transformers and multi-modal fusion to address the above problems. Specifically, we extract text and image features by different transformers and fuse features by attention mechanisms. In addition, we utilize the degree of feature similarity between texts and images in the classifier to improve the performance of TGA. Experimental results on the public datasets show the effectiveness of TGA*.
* Our code is available at https://github.com/PPEXCEPED/TGA.
The equation:
{∂tu+∂xf(u)−β2∂2xu+δ∂3xu+κu+γ2|u|u=0,0<t<T,x∈R,u(0,x)=u0(x),x∈R, | (1.1) |
was originally derived in [14,17] with f(u)=au2 focusing on microbubbles coated by viscoelastic shells. These structures are crucial in ultrasound diagnosis using contrast agents, and the dynamics of individual coated bubbles are explored, taking into account nonlinear competition and dissipation factors such as dispersion, thermal effects, and drag force.
The coefficients β2, δ, κ, and γ2 are related to the dissipation, the dispersion, the thermal conduction dissipation, and to the drag force, repsctively.
If κ=γ=0, we obtain the Kudryashov-Sinelshchikov [18] Korteweg-de Vries-Burgers [3,20] equation
∂tu+a∂xu2−β2∂2xu+δ∂3xu=0, | (1.2) |
that models pressure waves in liquids with gas bubbles, taking into account heat transfer and viscosity. The mathematical results on Eq (1.2) are the following:
● analysis of exact solutions in [13],
● existence of the traveling waves in [2],
● well-posedness and asymptotic behavior in [7,11].
If β=0, we derive the Korteweg-de Vries equation:
∂tu+a∂xu2+δ∂3xu=0, | (1.3) |
which describes surface waves of small amplitude and long wavelength in shallow water. Here, u(t,x) represents the wave height above a flat bottom, x corresponds to the distance in the propagation direction, and t denotes the elapsed time. In [4,6,10,12,15,16], the completele integrability of Eq (1.3) and the existence of solitary wave solutions are proved.
Through the manuscript, we will assume
● on the coefficients
β,δ,κ,γ∈R,β,δ,γ≠0; | (1.4) |
● on the flux f, one of the following conditions:
f(u)=au2+bu3, | (1.5) |
f∈C1(R),|f′(u)|≤C0(1+|u|),u∈R, | (1.6) |
for some positive constant C0;
● on the initial value
u0∈H1(R). | (1.7) |
The main result of this paper is the following theorem.
Theorem 1.1. Assume Eqs (1.5)–(1.7). For fixed T>0, there exists a unique distributional solution u of Eq (1.1), such that
u∈L∞(0,T;H1(R))∩L4(0,T;W1,4(R))∩L6(0,T;W1,6(R))∂2xu∈L2((0,T)×R). | (1.8) |
Moreover, if u1 and u2 are solutions to Eq (1.1) corresponding to the initial conditions u1,0 and u2,0, respectively, it holds that:
‖u1(t,⋅)−u2(t,⋅)‖L2(R)≤eC(T)t‖u1,0−u2,0‖L2(R), | (1.9) |
for some suitable C(T)>0, and every, 0≤t≤T.
Observe that Theorem 1.1 gives the well-posedness of (1.1), without conditions on the constants. Moreover, the proof of Theorem 1.1 is based on the Aubin-Lions Lemma [5,21]. The analysis of Eq (1.1) is more delicate than the one of Eq (1.2) due to the presence of the nonlinear sources and the very general assumptions on the coefficients.
The structure of the paper is outlined as follows. Section 2 is dedicated to establishing several a priori estimates for a vanishing viscosity approximation of Eq (1.1). These estimates are crucial for proving our main result, which is presented in Section 3.
To establish existence, we utilize a vanishing viscosity approximation of equation (1.1), as discussed in [19]. Let 0<ε<1 be a small parameter, and denote by uε∈C∞([0,T)×R) the unique classical solution to the following problem [1,9]:
{∂tuε+∂xf(uε)−β2∂2xuε+δ∂3xuε+κu+γ2|u|u=−ε∂4xuε,0<t<T,x∈R,uε(0,x)=uε,0(x),x∈R, | (2.1) |
where uε,0 is a C∞ approximation of u0, such that
‖uε,0‖H1(R)≤‖u0‖H1(R). | (2.2) |
Let us prove some a priori estimates on uε, denoting with C0 constants which depend only on the initial data, and with C(T) the constants which depend also on T.
We begin by proving the following lemma:
Lemma 2.1. Let T>0 be fixed. There exists a constant C(T)>0, which does not depend on ε, such that
‖uε(t,⋅)‖2L2(R)+2γ2e|κ|t∫t0∫Re−|κ|su2ε|uε|dsdx+2β2e|κ|t∫t0e−|κ|s‖∂xuε(s,⋅)‖2L2(R)ds+2εe|κ|t∫t0e−|κ|s‖∂2xuε(s,⋅)‖2L2(R)≤C(T), | (2.3) |
for every 0≤t≤T.
Proof. For 0≤t≤T. Multiplying equations (2.1) by 2uε, and integrating over R yields
ddt‖uε(t,⋅)‖2L2(R)=2∫Ruε∂tuεdx=−2∫Ruεf′(uε)∂xuεdx⏟=0+2β2∫Ruε∂2xuεdx−2δ∫Ruε∂3xuεdx−κ‖uε(t,⋅)‖2L2(R)−2γ2∫R|uε|u2εdx−2ε∫Ruε∂4xuεdx=−2β2‖∂xuε(t,⋅)‖2L2(R)+2δ∫R∂xuε∂2xuεdx−κ‖uε(t,⋅)‖2L2(R)−2γ2∫R|uε|u2εdx+2ε∫R∂xuε∂3xuεdx=−2β2‖∂xuε(t,⋅)‖2L2(R)−κ‖uε(t,⋅)‖2L2(R)−2γ2∫R|uε|u2εdx−2ε‖∂2xuε(t,⋅)‖2L2(R). |
Thus, it follows that
ddt‖uε(t,⋅)‖2L2(R)+2β2‖∂xuε(t,⋅)‖2L2(R)+2γ2∫R|uε|u2εdx+2ε‖∂2xuε(t,⋅)‖2L2(R)=κ‖uε(t,⋅)‖2L2(R)≤|κ|‖uε(t,⋅)‖2L2(R). |
Therefore, applying the Gronwall's lemma and using Eq (2.2), we obtain
‖uε(t,⋅)‖2L2(R)+2β2e|κ|t∫t0e−|κ|s‖∂xuε(s,⋅)‖2L2(R)ds+2γ2e|κ|t∫t0∫Re−|κ|t|uε|u2εdsdx+2ε‖∂2xuε(t,⋅)‖2L2(R)+2εe|κ|t∫t0e−|κ|s‖∂2xuε(s,⋅)‖2L2(R)ds≤C0e|κ|t≤C(T), |
which gives Eq (2.3).
Lemma 2.2. Fix T>0 and assume (1.5). There exists a constant C(T)>0, independent of ε, such that
‖uε‖L∞((0,T)×R)≤C(T), | (2.4) |
‖∂xuε(t,⋅)‖2L2(R)+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds | (2.5) |
+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)ds≤C(T),∫t0‖∂xuε(s,⋅)‖4L4(R)ds≤C(T), | (2.6) |
holds for every 0≤t≤T.
Proof. Let 0≤t≤T. Consider A,B as two real constants, which will be specified later. Thanks to Eq (1.5), multiplying Eq (2.1) by
−2∂2xuε+Au2ε+Bu3ε, |
we have that
(−2∂2xuε+Au2ε+Bu3ε)∂tuε+2a(−2∂2xuε+Au2ε+Bu3ε)uε∂xuε+3b(−2∂2xuε+Au2ε+Bu3ε)u2ε∂xuε−β2(−2∂2xuε+Au2ε+Bu3ε)∂2xuε+δ(−2∂2xuε+Au2ε+Bu3ε)∂3xuε+κ(−2∂2xuε+Au2ε+Bu3ε)uε+γ2(−2∂2xuε+Au2ε+Bu3ε)|uε|uε=−ε(−2∂2xuε+Au2ε+Bu3ε)∂4xuε. | (2.7) |
Observe that
∫R(−2∂2xuε+Au2ε+Bu3ε)∂tuεdx=ddt(‖∂xuε(t,⋅)‖2L2(R)+A3∫Ru3εdx+B4∫Ru4εdx),2a∫R(−2∂2xuε+Au2ε+Bu3ε)uε∂xuεdx=−4a∫Ruε∂xuε∂2xuεdx,3b∫R(−2∂2xuε+Au2ε+Bu3ε)u2ε∂xuεdx=−6b∫Ru2ε∂xuε∂2xuεdx,−β2∫R(−2∂2xuε+Au2ε+Bu3ε)∂2xuεdx=2β2‖∂2xuε(t,⋅)‖2L2(R)+2Aβ2∫Ruε(∂xuε)2dx+3Bβ2∫Ru2ε(∂xuε)2dx,δ∫R(−2∂2xuε+Au2ε+Bu3ε)∂3xuεdx=−2Aδ∫Ruε∂xuε∂2xuεdx−3Bδ∫Ru2ε∂xuε∂2xuεdx,κ∫R(−2∂2xuε+Au2ε+Bu3ε)uεdx=2κ‖∂xuε(t,⋅)‖2L2(R)+Aκ∫Ru3εdx+Bκ∫Ru4εdx,γ2∫R(−2∂2xuε+Au2ε+Bu3ε)|uε|uεdx=−2γ2∫R|uε|uε∂2xuεdx+Aγ2∫R|u|u3εdx+Bγ2∫R|uε|u4dx,−ε∫R(−2∂2xuε+Au2ε+Bu3ε)∂4xuεdx=−2ε‖∂3xuε(t,⋅)‖2L2(R)+2Aε∫Ruε∂xuε∂3xuεdx+3Bε∫Ru2ε∂xuε∂3xuεdx=−2ε‖∂3xuε(t,⋅)‖2L2(R)−Aε∫R(∂xuε)3dx−6Bε∫Ruε(∂xuε)2∂2xuεdx−3Bε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R)=−2ε‖∂3xuε(t,⋅)‖2L2(R)−Aε∫R(∂xuε)3dx+2Bε∫R(∂xuε)4dx−3Bε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R). |
Therefore, an integration on R gives
ddt(‖∂xuε(t,⋅)‖2L2(R)+A3∫Ru3εdx+B4∫Ru4εdx)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)=−(4a+Aδ)∫Ruε∂xuε∂2xuεdx−3(2b+Bδ)∫Ru2ε∂xuε∂2xuεdx−2Aβ2∫Ruε(∂xuε)2dx−3Bβ2∫Ru2ε(∂xuε)2dx−κ‖∂xuε(t,⋅)‖2L2(R)−Aκ3∫Ru3εdx−Bκ4∫Ru4εdx+2γ2∫R|uε|uε∂2xuεdx−Aγ2∫R|uε|u3εdx−Bγ2∫R|uε|u4εdx−Aε∫R(∂xuε)3dx+2Bε∫R(∂xuε)4dx−3Bε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R). |
Taking
(A,B)=(−4aδ,−2bδ), |
we get
ddt(‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx)+2β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)=8aβ2δ∫Ruε(∂xuε)2dx+6bβ2δ∫Ru2ε(∂xuε)2dx−κ‖∂xuε(t,⋅)‖2L2(R)+4aκ3δ∫Ru3εdx+bκ2∫Ru4εdx+2γ2∫R|uε|uε∂2xuεdx+4aγ2δ∫R|uε|u3εdx+2bγ2δ∫R|uε|u4εdx+4aεδ∫R(∂xuε)3dx−4bεδ∫R(∂xuε)4dx+6bεδ‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R). | (2.8) |
Since 0<ε<1, due to the Young inequality and (2.3),
8aβ2δ∫R|uε|(∂xuε)2dx≤4∫Ru2ε(∂xuε)2dx+4a2β4δ2‖∂xuε(t,⋅)‖2L2(R)≤4‖uε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R)+4a2β4δ2‖∂xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R),|6bβ2δ|∫Ru2ε(∂xuε)2dx≤|6bβ2δ|‖uε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R),|4aκ3δ|∫R|uε|3dx≤|4aκ3δ|‖uε‖L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖L∞((0,T)×R),|bκ2|∫Ru4εdx≤|bκ2|‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R),2γ2∫R|uε|uε∂2xuεdx≤2∫R|γ2|uε|uεβ||β∂2xuε|dx≤γ4β2∫Ruε4dx+β2‖∂2xuε(t,⋅)‖2L2(R)≤γ4β2‖uε‖2L∞((0.T)×R)‖uε(t,⋅)‖2L2(R)+β2‖∂2xuε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R)+β2‖∂2xuε(t,⋅)‖2L2(R),|4aγ2δ|∫R|uε||uε|3dx=|4aγ2δ|∫Ru4εdx≤|4aγ2δ|‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R),|2bγ2δ|∫R|uε|uε4dx≤|2bγ2δ|‖uε‖3L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)‖uε‖3L∞((0,T)×R),|4aεδ|∫R|∂xuε|3dx≤|4aεδ|‖∂xuε(t,⋅)‖2L2(R)+|4aεδ|∫R(∂xuε)4dx≤|4aδ|‖∂xuε(t,⋅)‖2L2(R)+|4aεδ|∫R(∂xuε)4dx. |
It follows from Eq (2.8) that
ddt(‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+C(T)‖uε‖L∞((0,T)×R)+C(T)‖uε‖2L∞((0,T)×R)+C(T)‖uε‖3L∞((0,T)×R)+C0ε∫R(∂xuε)4dx+C0ε‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R)+C0‖∂xuε(t,⋅)‖2L2(R). | (2.9) |
[8, Lemma 2.3] says that
∫R(∂xuε)4dx≤9∫Ru2ε(∂2xuε)2dx≤9‖uε‖2L∞((0,T)×R)‖∂2xuε(t,⋅)‖2L2(R). | (2.10) |
Moreover, we have that
‖uε(t,⋅)∂2xuε(t,⋅)‖2L2(R)=∫Ru2ε(∂2xuε)2dx≤‖uε‖2L∞((0,T)×R)‖∂2xuε(t,⋅)‖2L2(R). | (2.11) |
Consequentially, by Eqs (2.9)–(2.11), we have that
ddt(‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+C(T)‖uε‖L∞((0,T)×R)+C(T)‖uε‖2L∞((0,T)×R)+C(T)‖uε‖3L∞((0,T)×R)+C0ε‖uε‖2L∞((0,T)×R)‖∂2xuε(t,⋅)‖2L2(R)+C0‖∂xuε(t,⋅)‖2L2(R). |
An integration on (0,t) and Eqs (2.2) and (2.3) give
‖∂xuε(t,⋅)‖2L2(R)−4a3δ∫Ru3εdx−bδ∫Ru4εdx+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)ds≤C0(1+‖uε‖2L∞((0,T)×R))∫t0‖∂xuε(s,⋅)‖2L2(R)ds+C(T)‖uε‖L∞((0,T)×R)t+C(T)‖uε‖2L∞((0,T)×R)t+C(T)‖uε‖3L∞((0,T)×R)t+C0ε‖uε‖2L∞((0,T)×R)∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+C0∫t0‖∂xuε(s,⋅)‖2L2(R)ds≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R)). |
Therefore, by Eq (2.3),
‖∂xuε(t,⋅)‖2L2(R)+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)ds≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R))+4a3δ∫Ru3εdx+bδ∫Ru4εdx≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R))+|4a3δ|∫R|uε|3dx+|bδ|∫Ru4εdx≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R))+|4a3δ|‖uε‖L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+|bδ|‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R)). | (2.12) |
We prove Eq (2.4). Thanks to the Hölder inequality,
u2ε(t,x)=2∫x−∞uε∂xuεdx≤2∫R|uε||∂xuε|dx≤2‖uε(t,⋅)‖L2(R)‖∂xuε(t,⋅)‖L2(R). |
Hence, we have that
‖uε(t,⋅)‖4L∞(R)≤4‖uε(t,⋅)‖2L2(R)‖∂xuε(t,⋅)‖2L2(R). | (2.13) |
Thanks to Eqs (2.3) and (2.12), we have that
‖uε‖4L∞((0,T)×R)≤C(T)(1+‖uε‖L∞((0,T)×R)+‖uε‖2L∞((0,T)×R)+‖uε‖3L∞((0,T)×R)). | (2.14) |
Due to the Young inequality,
C(T)‖uε‖3L∞((0,T)×R)≤12‖uε‖4L∞((0,T)×R)+C(T)‖uε‖2L∞((0,T)×R),C(T)‖uε‖L∞((0,T)×R)≤C(T)‖uε‖2L∞((0,T)×R)+C(T). |
By Eq (2.14), we have that
12‖uε‖4L∞((0,T)×R)−C(T)‖uε‖2L∞((0,T)×R)−C(T)≤0, |
which gives Eq (2.4).
Equation (2.5) follows from Eqs (2.4) and (2.12).
Finally, we prove Eq (2.6). We begin by observing that, from Eqs (2.4) and (2.10), we have
‖∂xuε(t,⋅)‖4L4(R)≤C(T)‖∂2xuε(t,⋅)‖2L2(R). |
An integration on (0,t) and Eqs (2.5) give Eq (2.6).
Lemma 2.3. Fix T>0 and assume (1.6). There exists a constant C(T)>0, independent of ε, such that Eq (2.4) holds. Moreover, we have Eqs (2.5) and (2.6).
Proof. Let 0≤t≤T. Multiplying Eq (2.1) by −2∂2xuε, an integration on R gives
ddt‖∂xuε(t,⋅)‖2L2(R)=−2∫R∂2xuε∂tuεdx=−2∫Rf′(uε)∂xuε∂2xuεdx−2β2‖∂2xuε(t,⋅)‖2L2(R)−2δ∫R∂2xuε∂3xuεdx−2κ∫Ruε∂2xuεdx−2γ2∫R|uε|uε∂2xuεdx+2ε∫R∂2xuε∂4xuεdx=−2∫Rf′(uε)∂xuε∂2xuεdx−2β2‖∂2xuε(t,⋅)‖2L2(R)+2κ‖∂xuε(t,⋅)‖2L2(R)+2γ2∫R|uε|uε∂2xuεdx−2ε‖∂3xuε(t,⋅)‖2L2(R). |
Therefore, we have that
ddt‖∂xuε(t,⋅)‖2L2(R)+2β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)=−2∫Rf′(uε)∂xuε∂2xuεdx+2κ‖∂xuε(t,⋅)‖2L2(R)+2γ2∫R|uε|uε∂2xuεdx. | (2.15) |
Due Eqs (1.6) and (2.3) and the Young inequality,
2∫R|f′(uε)||∂xuε||∂2xuε|dx≤C0∫R|∂xuε∂2xuε|dx+C0∫R|uε∂xuε||∂2xuε|dx=2∫R|C0√3∂xuε2β||β∂2xuε√3|dx+2∫R|C0√3uε∂xuε2β||√3β∂2xuε|dx≤C0‖∂xuε(t,⋅)‖2L2(R)+C0∫Ru2ε(∂xuε)2dx+2β23‖∂2xuε(t,⋅)‖2L2(R)≤C0‖∂xuε(t,⋅)‖2L2(R)+C0‖uε‖2L∞((0,T)×R)‖∂xuε(t,⋅)‖2L2(R)+2β23‖∂2xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+2β23‖∂2xuε(t,⋅)‖2L2(R),2γ2∫R|uε|uε∂2xuεdx≤2γ2∫Ru2ε|∂2xuε|dx=2∫R|√3γ2u2εβ||β∂2xuε√3|dx≤3γ4β2∫Ru4εdx+β23‖∂2xuε(t,⋅)‖2L2(R)≤3γ4β2‖uε‖2L∞((0,T)×R)‖uε(t,⋅)‖2L2(R)+β23‖∂2xuε(t,⋅)‖2L2(R)≤C(T)‖uε‖2L∞((0,T)×R)+β23‖∂2xuε(t,⋅)‖2L2(R). |
It follows from Eq (2.15) that
ddt‖∂xuε(t,⋅)‖2L2(R)+β2‖∂2xuε(t,⋅)‖2L2(R)+2ε‖∂3xuε(t,⋅)‖2L2(R)≤C0(1+‖uε‖2L∞((0,T)×R))‖∂xuε(t,⋅)‖2L2(R)+C(T)‖uε‖2L∞((0,T)×R). |
Integrating on (0,t), by Eq (2.3), we have that
‖∂xuε(t,⋅)‖2L2(R)+β2∫t0‖∂2xuε(s,⋅)‖2L2(R)ds+2ε∫t0‖∂3xuε(s,⋅)‖2L2(R)≤C0+C0(1+‖uε‖2L∞((0,T)×R))∫t0‖∂xuε(s,⋅)‖2L2(R)ds+C(T)‖uε‖2L∞((0,T)×R)t≤C(T)(1+‖uε‖2L∞((0,T)×R)). | (2.16) |
Thanks to Eqs (2.3), (2.13), and (2.16), we have that
‖uε‖4L∞((0,T)×R)≤C(T)(1+‖uε‖2L∞((0,T)×R)). |
Therefore,
‖uε‖4L∞((0,T)×R)−C(T)‖uε‖2L∞((0,T)×R)−C(T)≤0, |
which gives (2.4).
Equation (2.5) follows from (2.4) and (2.16), while, arguing as in Lemma 2.2, we have Eq (2.6).
Lemma 2.4. Fix T>0. There exists a constant C(T)>0, independent of ε, such that
∫t0‖∂xuε(s,⋅)‖6L6(R)ds≤C(T), | (2.17) |
for every 0≤t≤T.
Proof. Let 0≤t≤T. We begin by observing that,
∫R(∂xuε)6dx≤‖∂xuε(t,⋅)‖4L∞(R)‖∂xuε(t,⋅)‖2L2(R). | (2.18) |
Thanks to the Hölder inequality,
(∂xuε(t,x))2=2∫x−∞∂xuε∂2xuεdy≤2∫R|∂xuε||∂2xuε|dx≤2‖∂xuε(t,⋅)‖L2(R)‖∂2xuε(t,⋅)‖2L2(R). |
Hence,
‖u(t,⋅)‖4L∞(R)≤4‖∂xuε(t,⋅)‖2L2(R)‖∂2xuε(t,⋅)‖2L2(R). |
It follows from Eq (2.18) that
∫R(∂xuε)6dx≤4‖∂xuε(t,⋅)‖4L2(R)‖∂2xuε(t,⋅)‖2L2(R). |
Therefore, by Eq (2.5),
∫R(∂xuε)6dx≤C(T)‖∂2xuε(t,⋅)‖2L2(R). |
An integration on (0,t) and Eq (2.5) gives (2.17).
This section is devoted to the proof of Theorem 1.1.
We begin by proving the following result.
Lemma 3.1. Fix T>0. Then,
the family {uε}ε>0 is compact in L2loc((0,T)×R). | (3.1) |
Consequently, there exist a subsequence {uεk}k∈N and u∈L2loc((0,T)×R) such that
uεk→u in L2loc((0,T)×R) and a.e. in (0,T)×R. | (3.2) |
Moreover, u is a solution of Eq (1.1), satisfying Eq (1.8).
Proof. We begin by proving Eq (3.1). To prove Eq (3.1), we rely on the Aubin-Lions Lemma (see [5,21]). We recall that
H1loc(R)↪↪L2loc(R)↪H−1loc(R), |
where the first inclusion is compact and the second one is continuous. Owing to the Aubin-Lions Lemma [21], to prove Eq (3.1), it suffices to show that
{uε}ε>0 is uniformly bounded in L2(0,T;H1loc(R)), | (3.3) |
{∂tuε}ε>0 is uniformly bounded in L2(0,T;H−1loc(R)). | (3.4) |
We prove Eq (3.3). Thanks to Lemmas 2.1–2.3,
‖uε(t,⋅)‖2H1(R)=‖uε(t,⋅)‖2L2(R)+‖∂xuε(t,⋅)‖2L2(R)≤C(T). |
Therefore,
{uε}ε>0 is uniformly bounded in L∞(0,T;H1(R)), |
which gives Eq (3.3).
We prove Eq (3.4). Observe that, by Eq (2.1),
∂tuε=−∂x(G(uε))−f′(uε)∂xuε−κuε−γ2|uε|uε, |
where
G(uε)=β2∂xuε−δ∂2xuε−ε∂3xuε. | (3.5) |
Since 0<ε<1, thanks to Eq (2.5), we have that
β2‖∂xuε‖2L2((0,T)×R),δ2‖∂2xuε‖2L2((0,T)×R)≤C(T),ε2‖∂3xuε‖2L2((0,T)×R)≤C(T). | (3.6) |
Therefore, by Eqs (3.5) and (3.6), we have that
{∂x(G(uε))}ε>0 is bounded in L2(0,T;H−1(R)). | (3.7) |
We claim that
∫T0∫R(f′(uε))2(∂xuε)2dtdx≤C(T). | (3.8) |
Thanks to Eqs (2.4) and (2.5),
∫T0∫R(f′(uε))2(∂xuε)2dtdx≤‖f′‖2L∞(−C(T),C(T))∫T0‖∂xuε(t,⋅)‖2L2(R)dt≤C(T). |
Moreover, thanks to Eq (2.3),
|κ|∫T0∫R(uε)2dx≤C(T). | (3.9) |
We have that
γ2∫T0∫R(|uε|uε)2dsdx≤C(T). | (3.10) |
In fact, thanks to Eqs (2.3) and (2.4),
γ2∫T0∫R(|uε|uε)2dsdx≤γ2‖uε‖2L∞((0,T)×R)∫T0∫R(uε)2dsdx≤C(T)∫T0∫R(uε)2dsdx≤C(T). |
Therefore, Eq (3.4) follows from Eqs (3.7)–(3.10).
Thanks to the Aubin-Lions Lemma, Eqs (3.1) and (3.2) hold.
Consequently, arguing as in [5, Theorem 1.1], u is solution of Eq (1.1) and, thanks to Lemmas 2.1–2.3 and Eqs (2.4), (1.8) holds.
Proof of Theorem 1.1. Lemma 3.1 gives the existence of a solution of Eq (1.1).
We prove Eq (1.9). Let u1 and u2 be two solutions of Eq (1.1), which verify Eq (1.8), that is,
{∂tui+∂xf(ui)−β2∂2xui+δ∂3xui+κui+γ2|ui|ui=0,0<t<T,x∈R,ui(0,x)=ui,0(x),x∈R,i=1,2. |
Then, the function
ω(t,x)=u1(t,x)−u2(t,x), | (3.11) |
is the solution of the following Cauchy problem:
{∂tω+∂x(f(u1)−f(u2))−β2∂2xω+δ∂2xω+κω+γ2(|u1|u1−|u2|u2)=0,0<t<T,x∈R,ω(0,x)=u1,0(x)−u2,0(x),x∈R. | (3.12) |
Fixed T>0, since u1,u2∈H1(R), for every 0≤t≤T, we have that
‖u1‖L∞((0,T)×R),‖u2‖L∞((0,T)×R)≤C(T). | (3.13) |
We define
g=f(u1)−f(u2)ω | (3.14) |
and observe that, by Eq (3.13), we have that
|g|≤‖f′‖L∞(−C(T),C(T))≤C(T). | (3.15) |
Moreover, by Eq (3.11) we have that
||u1|−|u2||≤|u1−u2|=|ω|. | (3.16) |
Observe that thanks to Eq (3.11),
|u1|u1−|u2|u2=|u1|u1−|u1|u2+|u1|u2−|u2|u2=|u1|ω+u2(|u1|−|u2|). | (3.17) |
Thanks to Eqs (3.14) and (3.17), Equation (3.12) is equivalent to the following one:
∂tω+∂x(gω)−β2∂2xω+δ∂3xω+κω+γ2|u1|ω+γ2u2(|u1|−|u2|)=0. | (3.18) |
Multiplying Eq (3.18) by 2ω, an integration on R gives
dtdt‖ω(t,⋅)‖2L2(R)=2∫Rω∂tω=−2∫Rω∂x(gω)dx+2β2∫Rω∂2xωdx−2δ∫Rω∂3xωdx−2κ‖ω(t,⋅)‖2L2(R)−2γ2∫R|u1|ω2dx−2γ2∫Ru2(|u1|−|u2|)ωdx=2∫Rgω∂xωdx−2β2‖∂xω(t,⋅)‖2L2(R)+2δ∫R∂xω∂2xωdx−2κ‖ω(t,⋅)‖2L2(R)−2γ2∫R|u1|ω2dx−2γ2∫Ru2(|u1|−|u2|)ωdx=2∫Rgω∂xωdx−2β2‖∂xω(t,⋅)‖2L2(R)−2κ‖ω(t,⋅)‖2L2(R)−2γ2∫R|u1|ω2dx−2γ2∫Ru2(|u1|−|u2|)ωdx. |
Therefore, we have that
‖ω(t,⋅)‖2L2(R)+2β2‖∂xω(t,⋅)‖2L2(R)+2γ2∫R|u1|ω2dx=2∫Rgω∂xωdx−κ‖ω(t,⋅)‖2L2(R)−2γ2∫Ru2(|u1|−|u2|)ωdx. | (3.19) |
Due to Eqs (3.13), (3.15) and (3.16) and the Young inequality,
2∫R|g||ω||∂xω|dx≤2C(T)∫R|ω||∂xω|dx=2∫R|C(T)ωβ||β∂xω|dx≤C(T)‖ω(t,⋅)‖2L2(R)+β2‖∂xω(t,⋅)‖2L2(R),2γ2∫R|u2||(|u1|−|u2|)||ω|dx≤2γ2‖u2‖L∞((0,T)×R)∫R|(|u1|−|u2|)||ω|dx≤C(T)‖ω(t,⋅)‖2L2(R). |
It follows from Eq (3.19) that
‖ω(t,⋅)‖2L2(R)+β2‖∂xω(t,⋅)‖2L2(R)+2γ2∫R|u1|ω2dx≤C(T)‖ω(t,⋅)‖2L2(R). |
The Gronwall Lemma and Eq (3.12) give
‖ω(t,⋅)‖2L2(R)+β2eC(T)t∫t0e−C(T)s‖∂xω(s,⋅)‖2L2(R)ds+2γ2eC(T)t∫t0∫Re−C(T)s|u1|ω2dsdx≤eC(T)t‖ω0‖2L2(R). | (3.20) |
Equation (1.9) follows from Eqs (3.11) and (3.20).
Giuseppe Maria Coclite and Lorenzo Di Ruvo equally contributed to the methodologies, typesetting, and the development of the paper.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Giuseppe Maria Coclite is an editorial boardmember for [Networks and Heterogeneous Media] and was not involved inthe editorial review or the decision to publish this article.
GMC is member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). GMC has been partially supported by the Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 -Call for tender No. 3138 of 16/12/2021 of Italian Ministry of University and Research funded by the European Union -NextGenerationEUoAward Number: CN000023, Concession Decree No. 1033 of 17/06/2022 adopted by the Italian Ministry of University and Research, CUP: D93C22000410001, Centro Nazionale per la Mobilità Sostenibile, the Italian Ministry of Education, University and Research under the Programme Department of Excellence Legge 232/2016 (Grant No. CUP - D93C23000100001), and the Research Project of National Relevance "Evolution problems involving interacting scales" granted by the Italian Ministry of Education, University and Research (MIUR Prin 2022, project code 2022M9BKBC, Grant No. CUP D53D23005880006). GMC expresses its gratitude to the HIAS - Hamburg Institute for Advanced Study for their warm hospitality.
The authors declare there is no conflict of interest.
[1] |
S. M. Alzanin, A. M. Azmi, Detecting rumors in social media: A survey, Procedia Comput. Sci., 142 (2018), 294–300. https://doi.org/10.1016/j.procs.2018.10.495 doi: 10.1016/j.procs.2018.10.495
![]() |
[2] |
S. Islam, T. Sarkar, S. H. Khan, A. Kamal, H. Seale, A. Kabir, et al., COVID-19-related infodemic and its impact on public health: A global social media analysis, Am. J. Trop. Med. Hyg., 103 (2020), 1–9. https://doi.org/10.1038/s41598-020-73510-5 doi: 10.1038/s41598-020-73510-5
![]() |
[3] | Z. W. Jin, J. Cao, G. Han, Y. D. Zhang, J. B. Luo, Multimodal fusion with recurrent neural networks for rumor detection on microblogs, in Proceedings of the 25th ACM International Conference on Multimedia, (2017), 759–816. https://doi.org/10.1145/3123266.3123454 |
[4] | D. Khattar, J. S. Goud, M. Gupta, V. Varma, MVAE: Multimodal variational autoencoder for fake news detection, in The World Wide Web Conference, (2019), 2915–2921. https://doi.org/10.1145/3308558.3313552 |
[5] | S. Singhal, A. Kabra, M. Sharma, R. R. Shah, P. Kumaraguru, SpotFake: A multi-modal framework for fake news detection, in 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), (2019), 39–47. https://doi.org/10.1109/BigMM.2019.00-44 |
[6] | Y. Q. Wang, F. L. Ma, Z. W. Jin, Y. Yuan, G. X. Xun, K. Jha, et al., EANN: Event adversarial neural networks for multi-modal fake news detection, in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2018), 849–857. https://doi.org/10.1145/3219819.3219903 |
[7] | H. W. Zhang, Q. Fang, S. S. Qian, C. S. Xv, Multi-modal knowledge-aware event memory network for social media rumor detection, in Proceedings of the 27th ACM International Conference on Multimedia, (2019), 1942–1951. https://doi.org/10.1145/3343031.3350850 |
[8] |
J. Cao, P. Qi, Q. Sheng, T. Y. Yang, Exploring the role of visual content in fake news detection, Disinf. Misinf. Fake News Social Media, 2020 (2020), 141–161. https://doi.org/10.1007/978-3-030-42699-6_8 doi: 10.1007/978-3-030-42699-6_8
![]() |
[9] | S. Singhal, A. Kabra, M. Sharma, R. Shah, P. Kumaraguru, SpotFake+: A multimodal framework for fake news detection via transfer learning (student abstract), in Proceedings of the AAAI Conference on Artificial Intelligence, 34 (2020), 13915–13916. https://doi.org/10.1609/aaai.v34i10.7230 |
[10] |
J. S. Liu, K. Feng, J. Z. Pan, J. Deng, L. Wang, MSRD: Multimodal web rumor detection method, J. Comput. Res. Dev., 11 (2020), 9. https://doi.org/10.21203/rs.3.rs-101168/v1 doi: 10.21203/rs.3.rs-101168/v1
![]() |
[11] |
T. Jin, H. X. Xia, Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type, J. Ambient Intell. Hum. Comput., 2021 (2021), 1–14. https://doi.org/10.1007/s12652-021-03516-y doi: 10.1007/s12652-021-03516-y
![]() |
[12] | K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, preprint, arXiv: 1409.1556. |
[13] | D. Jia, D. Wei, R. Socher, L. J. Li, L. Kai, F. F. Li, ImageNet: A large-scale Hierarchical Image Database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, (2009), 248–255. https://doi.org/10.1109/CVPR.2009.5206848 |
[14] | K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.org/10.1109/CVPR.2016.90 |
[15] | Y. Wang, F. Ma, H. Wang, K. Jha, J. Gao, Multimodal emergent fake news detection via meta neural process networks, in Proceedings of the 27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2021), 3708–3716. https://doi.org/10.1145/3447548.3467153 |
[16] | D. Khattar, J. S. Goud, M. Gupta, V. Varma, MVAE: Multimodal variational autoencoder for fake news detection, in the World Wide Web Conference, (2019), 2915–2921. https://doi.org/10.1145/3308558.3313552 |
[17] | Z. Jin, J. Cao, G. Han, Y. Zhang, J. Luo, Multimodal fusion with recurrent neural networks for rumor detection on microblogs, in Proceedings of the 25th ACM International Conference on Multimedia, (2017), 795–816. https://doi.org/10.1145/3123266.3123454 |
[18] |
M. Liu, Z. W. Quan, J. M. Wu, Y. Liu, M. Han, Embedding temporal networks inductively via mining neighborhood and community influences, Appl. Intell., 2022 (2022), 1–20. https://doi.org/10.1007/s10489-021-03102-x doi: 10.1007/s10489-021-03102-x
![]() |
[19] | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, in Proceedings of the 31st International Conference on Neural Information Processing Systems, (2017), 6000–6010. https://doi.org/10.5555/3295222.3295349 |
[20] | J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K. Wong, et al., Detecting rumors from microblogs with recurrent neural networks, in Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, (2016), 3818–3824. |
[21] | F. Feng, Q. Liu, S. Wu, L. Wang, T. Tan, A convolutional approach for misinformation identification, in Twenty-Sixth International Joint Conference on Artificial Intelligence, (2017), 3901–3907. https://doi.org/10.5555/3172077.3172434 |
[22] | J. Ma, W. Gao, K. F. Wong, Detect rumor and stance jointly by neural multi-task learning, in Companion Proceedings of the Web Conference 2018, (2018), 585–593. https://doi.org/10.1145/3184558.3188729 |
[23] | J. Ma, W. Gao, K. F. Wong, Detect rumors on twitter by promoting information campaigns with generative adversarial learning, in The World Wide Web Conference, (2019), 3049–3055. https://doi.org/10.1145/3308558.3313741 |
[24] | V. Vaibhav, R. Mandyam, E. Hovy, Do sentence interactions matter? leveraging sentence level representations for fake news classification, in Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing, (2019), 134–139. https://doi.org/10.18653/v1/d19-5316 |
[25] | M. X. Cheng, S. Nazarian, P. Bogdan, VRoC: Variational autoencoder-aided multi-task rumor classifier based on text, in Proceedings of the Web Conference 2020, (2020), 2892–2898. https://doi.org/10.1145/3366423.3380054 |
[26] |
C. G. Song, K. Shu, B. Wu, Temporally evolving graph neural network for fake news detection, Inf. Process. Manage., 58 (2021), 102712. https://doi.org/10.1016/j.ipm.2021.102712 doi: 10.1016/j.ipm.2021.102712
![]() |
[27] | M. Liu, K. Liang, B. Xiao, S. H. Zhou, W. X. Tu, Y. Liu, et al., Self-supervised temporal graph learning with temporal and structural intensity alignment, preprint, arXiv: 2302.07491. https://doi.org/10.48550/arXiv.2302.07491 |
[28] | Y. Q. Jin, X. T. Wang, R. C. Yang, Y. Z. Sun, W. Wang, H. Liao, et al., Towards fine-grained reasoning for fake news detection, in Proceedings of the AAAI Conference on Artificial Intelligence, 36 (2022), 5746–5754. https://doi.org/10.48550/arXiv.2110.15064 |
[29] |
M. X. Cheng, S. Nazarian, P. Bogdan, Fake news detection on social media: A data mining perspective, ACM SIGKDD Explor. Newsl., 19 (2017), 22-36. https://doi.org/10.1145/3137597.3137600 doi: 10.1145/3137597.3137600
![]() |
[30] |
Z. W. Jin, J. Cao, Y. D. Zhang, J. S. Zhou, Q. Tian, Novel visual and statistical image features for microblogs news verification, IEEE Trans. Multimedia, 19 (2019), 598–608. https://doi.org/10.1109/TMM.2016.2617078 doi: 10.1109/TMM.2016.2617078
![]() |
[31] | P. Qi, J. Cao, T. Y. Yang, J. B. Guo, J. T. Li, Exploiting multi-domain visual information for fake news detection, in 2019 IEEE International Conference on Data Mining, (2019), 518–527. https://doi.org/10.1109/ICDM.2019.00062 |
[32] |
J. Xue, Y. Wang, Y. Tian, Y. Li, L. Wei, Detecting fake news by exploring the consistency of multimodal data, Inf. Process. Manage., 58 (2021), 102610. https://10.1016/j.ipm.2021.102610 doi: 10.1016/j.ipm.2021.102610
![]() |
[33] | X. Zhou, J. Wu, R. Zafarani, SAFE: Similarity-aware multi-modal fake news detection, preprint, arXiv: 2003.04981. |
[34] | H. Zhang, Q. Fang, S. Qian, C. Xu, Multi-modal knowledge-aware event memory network for social media rumor detection, in the 27th ACM International Conference, (2019), 1942–1951. https://doi.org/10.1145/3343031.3350850 |
[35] | Y. Wu, P. Zhan, Y. Zhang, L. Wang, Z. Xu, Multimodal fusion with co-attention networks for fake news detection, in Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, (2021), 2560–2569. https://doi.org/10.18653/v1/2021.findings-acl.226 |
[36] | W. Zhang, L. Gui, Y. He, Supervised contrastive learning for multimodal unreliable news detection in COVID-19 pandemic, in the 30th ACM International Conference on Information and Knowledge Management, (2021), 3637–3641. https://doi.org/10.1145/3459637.3482196 |
[37] |
J. H. Hua, X. D. Cui, X. H. Li, K. K. Tang, P. C. Zhu, Multimodal fake news detection through data augmentation-based contrastive learning, Appl. Soft Comput., 136 (2023), 1568–4946. https://doi.org/10.1016/j.asoc.2023.110125 doi: 10.1016/j.asoc.2023.110125
![]() |
[38] | Y. X. Chen, D. S. Li, P. Zhang, J. Sui, Q. Lv, L. Tun, et al., Crossmodal ambiguity learning for multimodal fake news detection, in Proceedings of the ACM Web Conference 2022, (2022), 2897–2905. https://doi.org/10.1145/3485447.3511968 |
[39] | A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. H. Zhai, T. Unterthiner, An image is worth 16x16 words: Transformers for image recognition at scale, in International Conference on Learning Representations, 2021. https://doi.org/10.48550/arXiv.2010.11929 |
[40] |
C. Boididou, S. Papadopoulos, M. Zampoglou, L. Apostolidis, Y. Kompatsiaris, Detection and visualization of misleading content on Twitter, Int. J. Multimedia Inf. Retr., 7 (2017), 71–86. https://doi.org/10.1007/s13735-017-0143-x doi: 10.1007/s13735-017-0143-x
![]() |
[41] |
Y. Lecun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, et al., Backpropagation applied to handwritten zip code recognition, Neural Comput., 1 (1989), 541–551. https://doi.org/10.1162/neco.1989.1.4.541 doi: 10.1162/neco.1989.1.4.541
![]() |
[42] | P. Zhou, W. Shi, J. Tian, Z. Y. Qi, B. C. Li, H. W. Hao, et al., Attention-based bidirectional long short-term memory networks for relation classification, in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, 2 (2016), 207–212. https://doi.org/10.18653/v1/P16-2034 |
[43] | Z. Jin, J. Cao, G. Han, Y. D. Zhang, J. B. Luo, Multimodal fusion with recurrent neural networks for rumor detection on microblogs, in Proceedings of the 25th ACM International Conference on Multimedia, (2017), 795–816. https://doi.org/10.1145/3123266.3123454 |