
The direct yaw-moment control (DYC) system consisting of an upper controller and a lower controller is developed on the basis of sliding mode theory and adaptive control technique. First, the two-degree of freedom (2-DOF) model is utilized to calculate the ideal yaw rate. Then, the seven-degree of freedom (7-DOF) electric vehicle model is given to design the upper controller by employing first-order sliding mode (FOSM) method, which is constructed to guarantee the actual yaw rate to approach the ideal value and gain the additional yaw moment. On this basis, an adaptive first-order sliding mode (AFOSM) controller is designed to enhance the system robustness against probable modelling error and parametric uncertainties. In order to mitigate the chattering issue present in the FOSM controller, a novel adaptive super-twisting sliding mode (ASTSM) controller is proposed for the design of DYC. Furthermore, the lower controller converting the additional yaw moment into driving or braking torque acting on each wheel is also developed. Finally, The simulation results indicate that the proposed DYC system can improve the electric vehicle driving stability effectively.
Citation: Li Ma, Chang Cheng, Jianfeng Guo, Binhua Shi, Shihong Ding, Keqi Mei. Direct yaw-moment control of electric vehicles based on adaptive sliding mode[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 13334-13355. doi: 10.3934/mbe.2023594
[1] | Long Wen, Yan Dong, Liang Gao . A new ensemble residual convolutional neural network for remaining useful life estimation. Mathematical Biosciences and Engineering, 2019, 16(2): 862-880. doi: 10.3934/mbe.2019040 |
[2] | Long Wen, Liang Gao, Yan Dong, Zheng Zhu . A negative correlation ensemble transfer learning method for fault diagnosis based on convolutional neural network. Mathematical Biosciences and Engineering, 2019, 16(5): 3311-3330. doi: 10.3934/mbe.2019165 |
[3] | Chunmei He, Hongyu Kang, Tong Yao, Xiaorui Li . An effective classifier based on convolutional neural network and regularized extreme learning machine. Mathematical Biosciences and Engineering, 2019, 16(6): 8309-8321. doi: 10.3934/mbe.2019420 |
[4] | Jia-Gang Qiu, Yi Li, Hao-Qi Liu, Shuang Lin, Lei Pang, Gang Sun, Ying-Zhe Song . Research on motion recognition based on multi-dimensional sensing data and deep learning algorithms. Mathematical Biosciences and Engineering, 2023, 20(8): 14578-14595. doi: 10.3934/mbe.2023652 |
[5] | Wang Cai, Jianzhuang Wang, Longchao Cao, Gaoyang Mi, Leshi Shu, Qi Zhou, Ping Jiang . Predicting the weld width from high-speed successive images of the weld zone using different machine learning algorithms during laser welding. Mathematical Biosciences and Engineering, 2019, 16(5): 5595-5612. doi: 10.3934/mbe.2019278 |
[6] | Shuai Cao, Biao Song . Visual attentional-driven deep learning method for flower recognition. Mathematical Biosciences and Engineering, 2021, 18(3): 1981-1991. doi: 10.3934/mbe.2021103 |
[7] | Yufeng Li, Chengcheng Liu, Weiping Zhao, Yufeng Huang . Multi-spectral remote sensing images feature coverage classification based on improved convolutional neural network. Mathematical Biosciences and Engineering, 2020, 17(5): 4443-4456. doi: 10.3934/mbe.2020245 |
[8] | Giuseppe Ciaburro . Machine fault detection methods based on machine learning algorithms: A review. Mathematical Biosciences and Engineering, 2022, 19(11): 11453-11490. doi: 10.3934/mbe.2022534 |
[9] | Yu Lei, Zhi Su, Xiaotong He, Chao Cheng . Immersive virtual reality application for intelligent manufacturing: Applications and art design. Mathematical Biosciences and Engineering, 2023, 20(3): 4353-4387. doi: 10.3934/mbe.2023202 |
[10] | Zijian Wang, Yaqin Zhu, Haibo Shi, Yanting Zhang, Cairong Yan . A 3D multiscale view convolutional neural network with attention for mental disease diagnosis on MRI images. Mathematical Biosciences and Engineering, 2021, 18(5): 6978-6994. doi: 10.3934/mbe.2021347 |
The direct yaw-moment control (DYC) system consisting of an upper controller and a lower controller is developed on the basis of sliding mode theory and adaptive control technique. First, the two-degree of freedom (2-DOF) model is utilized to calculate the ideal yaw rate. Then, the seven-degree of freedom (7-DOF) electric vehicle model is given to design the upper controller by employing first-order sliding mode (FOSM) method, which is constructed to guarantee the actual yaw rate to approach the ideal value and gain the additional yaw moment. On this basis, an adaptive first-order sliding mode (AFOSM) controller is designed to enhance the system robustness against probable modelling error and parametric uncertainties. In order to mitigate the chattering issue present in the FOSM controller, a novel adaptive super-twisting sliding mode (ASTSM) controller is proposed for the design of DYC. Furthermore, the lower controller converting the additional yaw moment into driving or braking torque acting on each wheel is also developed. Finally, The simulation results indicate that the proposed DYC system can improve the electric vehicle driving stability effectively.
Magnetohydrodynamic (MHD) equations are composed of Euler (or Navier-Stokes) equations and Maxwells equations, which are mainly used to describe the complex interactions between conductive fluids and electromagnetic fields. They are widely applied in plasma [1], astrophysical research [2,3], controlled thermonuclear fusion [4], and new industrial technologies [5]. The study of exact solutions for magnetohydrodynamics systems can provide possible ideas for finding the global smooth solutions of the Navier-Stokes equation. However, compared with the Navier-Stokes equation, MHD equations contain additional nonlinear and coupling terms for velocity and magnetic fields, which makes their research more challenging.
The qualitative stability analysis of MHD systems has been widely studied. Qin et al. [6] investigated the exponential stability of the global solution of (1 + 1)-dimensional compressible MHD equations. Suo et al. [7] studied the well-posedness of (2 + 1)-dimensional incompressible MHD equations with horizontal dissipation. Wang et al. [8] proved the stability of the global weak solution of (3 + 1)-dimensional incompressible MHD equations when the norms of the initial data are bounded by the minimal value of the viscosity coefficients. Li et al. [9] studied the convergence stability of local solutions for (3 + 1)-dimensional compressible viscous MHD equations. Xu et al. [10] studied the stability of local solutions to (3 + 1)-dimensional barotropic compressible MHD equations with vacuum. In the quantitative analysis, the complex nonlinearity and strong coupling of MHD equations make it difficult to seek the analytical solutions by some classical methods, such as the bilinear method [11], Darboux transformation method [12,13], Backlund transformation method [14], Lie symmetry analysis method [15,16,17], non-local symmetry analysis method [18,19], and Riemann-Hilbert method [20,21]. The quantitative calculations on MHD equations mainly focused on constructing specific forms of exact solutions or numerical solutions. Nevertheless, analytical solutions can provide an accurate mathematical description and theoretical basis for analysis and regulation of MHD systems, which has aroused widespread research interest. Donato et al. [22] studied exact solutions of (1 + 1)-dimensional MHD equations by Lie group analysis. Dorodnitsyn et al. [23] explored symmetries of plane one-dimensional MHD flows in the mass Lagrangian coordinates. Liu et al. [24] derived exact solutions of (2 + 1)-dimensional incompressible and barotropic MHD equations by Lie symmetry analysis. Xia et al. [25] studied group invariant solutions of (2 + 1)-dimensional incompressible ideal MHD equations by Lie symmetry method. Picard et al. [26] obtained some exact solutions of (3 + 1)-dimensional ideal MHD equations based on Lie group theory. Considering the physical significance of MHD equations and importance of analytical calculation, more diverse forms of exact solutions of MHD equations deserve to be further studied.
As powerful tools for solving nonlinear equations, symmetry analysis [15,16,17,18,19] and the simplest equation methods [27] demonstrate special advantages in handling nonlinear terms in dynamical systems. For instance, Zhao et al. [15] studied the Heisenberg equation from the perspective of statistical physics by Lie symmetry analysis. Ali et al. [16] obtained new exact invariant solutions of (3 + 1)-dimensional variable coefficients Kudryashov-Sinelshchikov equation by Lie symmetry analysis. Adeyemo et al. [17] explored closed-form solutions of integrable (2 + 1)-dimensional Boussinesq equation by Lie symmetry reductions. Ren et al. [18] derived interaction solutions of modified Kadomtsev-Petviashvili equation by nonlocal symmetry reductions. Vitanov et al. [27] investigated the role of the simplest equations in obtaining exact and approximate solutions of nonlinear partial differential equations. The Lie symmetry analysis method simplifies problems by finding the invariance of differential equations, and transforms the original equations into a more easily solvable form through symmetry transformations. This method provides powerful tools for solving nonlinear problems with complex structures. The generalized Riccati equation is an important auxiliary equation with rich special solutions. This makes the generalized Riccati equation mapping method an effective direct method for constructing the solitary wave solutions, the periodic solutions and the rational solutions for MHD equations. In this paper, using the Lie symmetry analysis method and generalized Riccati equation expansion method, we obtain new solutions with various forms of MHD equations. The major contributions of this article are listed as follows:
(1) Based on symmetry analysis and generalized Riccati equation expansion methods, the complex nonlinear and strongly coupled terms in MHD equations are technically handled. Different forms of new solutions are derived, which can describe various wave behaviors for MHD flows. Some of the solutions can be reduced to exact solutions for Euler or Navier-Stokes equations when magnetic fields vanish, which may provide references for the research on global solutions for Navier-Stokes equations.
(2) The stability of solutions for MHD equations is analyzed from both qualitative and quantitative perspectives based on the obtained solutions.
(3) The new solutions, wave behaviors, and stability analysis provide accurate mathematical descriptions and theoretical basis for numerical analysis and regulation of MHD systems.
The rest of the paper is organized as follows: The transformations for MHD equations are given in Section 2. In Section 3, the exact solutions of inviscid and viscous (2 + 1)-dimensional MHD equations are obtained by the Lie symmetry analysis method and generalized Riccati equation expansion method. In Section 4, inviscid and viscous (3 + 1)-dimensional MHD equations are further studied. In Section 5, the stability of MHD equations is studied from qualitative and quantitative perspectives. Finally, some conclusions are drawn in Section 6.
The flow of conducting fluid in a magnetic field is governed by the following incompressible MHD equations [28], which are a combination of Euler (or Navier-Stokes) equations of fluid dynamics and Maxwell's equations of electromagnetism. The set of equations express the conservation of mass, momentum and the interaction of the flow with the magnetic field. Consider (2 + 1)- and (3 + 1)-dimensional incompressible MHD equations [28]
{Ut−νΔU+(U⋅∇)U+∇p+κB×curlB=0,Bt+ηcurlcurlB−curl(U×B)+∇r=0,divU=0, divB=0, | (2.1) |
where U is fluid velocity, p is hydrodynamic pressure, B is magnetic induction, r is magnetic pressure. The physical parameters ν, μ and σ represent kinematic viscosity, magnetic permeability and electric conductivity, respectively. η=1μσ, κ=1μ. Substituting equations
B×curlB=12∇(|B|2)−(B⋅∇)B, curlcurlB=−ΔB,curl(U×B)=(B⋅∇)U−(U⋅∇)B, |
into (2.1), the incompressible MHD equations (2.1) can be rewritten as
{Ut−νΔU+(U⋅∇)U+∇p+κ[12∇(|B|2)−(B⋅∇)B]=0,Bt−ηΔB−(B⋅∇)U+(U⋅∇)B+∇r=0,divU=0, divB=0. | (2.2) |
Denote x=(x,y), U=(u1(t,x),u2(t,x)), B=(b1(t,x),b2(t,x)) in (2.2). (2 + 1)-dimensional MHD equations can be given as
{u1t−ν(u1xx+u1yy)+(u1u1x+u2u1y)+κ(b2b2x−b2b1y)+px=0,u2t−ν(u2xx+u2yy)+(u1u2x+u2u2y)+κ(b1b1y−b1b2x)+py=0,b1t−η(b1xx+b1yy)−(b1u1x+b2u1y)+(u1b1x+u2b1y)+rx=0,b2t−η(b2xx+b2yy)−(b1u2x+b2u2y)+(u1b2x+u2b2y)+ry=0,u1x+u2y=0, b1x+b2y=0. | (3.1) |
The vector field of system (3.1) can be expressed as
V_=ζ1∂∂t+ζ2∂∂x+ζ3∂∂y+ϕ1∂∂u1+ϕ2∂∂u2+φ1∂∂b1+φ2∂∂b2+ψ1∂∂p+ψ2∂∂r, | (3.2) |
where ζi (i=1,2,3), ϕj, φj, ψj (j=1,2) are undetermined coefficients about t, x, U, B, p, r. It follows from second-order prolongation pr(2)V_(Δ)|Δ=0=0 that
ϕt1−ν(ϕxx1+ϕyy1)+ϕ1u1x+u1ϕx1+ϕ2u1y+u2ϕy1+κ(φ2b2x+b2φx2−φ2b1y−b2φy1)+ψx1=0,ϕt2−ν(ϕxx2+ϕyy2)+ϕ1u2x+u1ϕx2+ϕ2u2y+u2ϕy2+κ(φ1b1y+b1φy1−φ1b2x−b1φx2)+ψy1=0,φt1−η(φxx1+φyy1)−φ1u1x−b1ϕx1−φ2u1y−b2ϕy1+ϕ1b1x+u1φx1+ϕ2b1y+u2φy1+ψx2=0,φt2−η(φxx2+φyy2)−φ1u2x−b1ϕx2−φ2u2y−b2ϕy2+ϕ1b2x+u1φx2+ϕ2b2y+u2φy2+ψy2=0,ϕx1+ϕy2=0, φx1+φy2=0. | (3.3) |
Choosing ν=η=0 and κ=1 in Eq (3.1), the inviscid MHD equations can be obtained as
{u1t+(u1u1x+u2u1y)+(b2b2x−b2b1y)+px=0,u2t+(u1u2x+u2u2y)+(b1b1y−b1b2x)+py=0,b1t−(b1u1x+b2u1y)+(u1b1x+u2b1y)+rx=0,b2t−(b1u2x+b2u2y)+(u1b2x+u2b2y)+ry=0,u1x+u2y=0, b1x+b2y=0. | (3.4) |
Solving (3.3) with ν=η=0 and κ=1, the coefficient functions of vector field V_ can be obtained as
ζ1=2C1t+C2, ζ2=C0x−C12y+f1(t)+C3, ζ3=C12x+C0y+f2(t)+C4,ϕ1=(C0−2C1)u1−C12u2+f′1(t), ϕ2=C12u1+(C0−2C1)u2+f′2(t),φ1=(C0−2C1)b1−C12b2, φ2=C12b1+(C0−2C1)b2,ψ1=2(C0−2C1)p−xf′′1(t)−yf′′2(t)+α(t), ψ2=2(C0−2C1)r+β(t), | (3.5) |
where C0,C1,C2,C3,C4 and C12 are arbitrary constants. f1(t),f2(t),α(t) and β(t) are arbitrary functions related to t only. When C2=1, C3=ˉv1, C4=ˉv2, C0=C1=C12=f1(t)=f2(t)=0,
V_=(C2∂∂t+C3∂∂x+C4∂∂y)+α(t)∂∂p+β(t)∂∂r=∂∂t+ˉv1∂∂x+ˉv2∂∂y+α(t)∂∂p+β(t)∂∂r. | (3.6) |
The characteristic equation is
dt1=dxˉv1=dyˉv2=du10=du20=db10=db20=dpα(t)=drβ(t). | (3.7) |
It follows from (3.7) that corresponding invariants are
ˉζ1=x−ˉv1t, ˉζ2=y−ˉv2t, F1(ˉζ1,ˉζ2)=−u1, F2(ˉζ1,ˉζ2)=−u2, G1(ˉζ1,ˉζ2)=−b1,G2(ˉζ1,ˉζ2)=−b2, Q(ˉζ1,ˉζ2)=−p+∫α(t)dt, R(ˉζ1,ˉζ2)=−r+∫β(t)dt. | (3.8) |
Substituting (3.8) into (3.4), reduced equations can be obtained as
{ˉv1F1ˉζ1+ˉv2F1ˉζ2+F1F1ˉζ1+F2F1ˉζ2+G2G2ˉζ1−G2G1ˉζ2−Qˉζ1=0,ˉv1F2ˉζ1+ˉv2F2ˉζ2+F1F2ˉζ1+F2F2ˉζ2+G1G1ˉζ2−G1G2ˉζ1−Qˉζ2=0,ˉv1G1ˉζ1+ˉv2G1ˉζ2−G1F1ˉζ1−G2F1ˉζ2+F1G1ˉζ1+F2G1ˉζ2−Rˉζ1=0,ˉv1G2ˉζ1+ˉv2G2ˉζ2−G1F2ˉζ1−G2F2ˉζ2+F1G2ˉζ1+F2G2ˉζ2−Rˉζ2=0,F1ˉζ1+F2ˉζ2=0, G1ˉζ1+G2ˉζ2=0. | (3.9) |
It can be obtained that (3.10)–(3.12) are three kinds of solutions for (3.9).
Case 1. Sin/cos-type solution.
{F1(ˉζ1,ˉζ2)=−cos2(ˉζ1−ˉζ2)−ˉv1, F2(ˉζ1,ˉζ2)=−cos2(ˉζ1−ˉζ2)−ˉv2,G1(ˉζ1,ˉζ2)=−sin(ˉζ1−ˉζ2)cos(ˉζ1−ˉζ2)−ˉv1, G2(ˉζ1,ˉζ2)=−sin(ˉζ1−ˉζ2)cos(ˉζ1−ˉζ2)−ˉv1,Q(ˉζ1,ˉζ2)=−ˉv1sin(−2ˉζ1+2ˉζ2)−cos(−4ˉζ1+4ˉζ2)8+m, R(ˉζ1,ˉζ2)=n, | (3.10) |
where m and n are arbitrary constants.
Case 2. Sech-type solution.
{F1(ˉζ1,ˉζ2)=−sech2(ˉζ1−ˉζ2)−ˉv1, F2(ˉζ1,ˉζ2)=−sech2(ˉζ1−ˉζ2)−ˉv2,G1(ˉζ1,ˉζ2)=−c1, G2(ˉζ1,ˉζ2)=−c1, Q(ˉζ1,ˉζ2)=m, R(ˉζ1,ˉζ2)=n, | (3.11) |
where c1 is arbitrary constant.
Case 3. Rational solution.
{F1(ˉζ1,ˉζ2)=−c2ˉζ2ˉζ21+ˉζ22, F2(ˉζ1,ˉζ2)=c2ˉζ1ˉζ21+ˉζ22,G1(ˉζ1,ˉζ2)=−c3ˉζ2ˉζ21+ˉζ22, G2(ˉζ1,ˉζ2)=c3ˉζ1ˉζ21+ˉζ22,Q(ˉζ1,ˉζ2)=c2(2ˉζ1ˉv2−2ˉζ2ˉv1+c2)2(ˉζ21+ˉζ22)+m, R(ˉζ1,ˉζ2)=c3(ˉζ1ˉv2−ˉζ2ˉv1)ˉζ21+ˉζ22+n, | (3.12) |
where c2 and c3 are arbitrary constants. Substituting (3.8) into (3.10)–(3.12), respectively, we obtain that (3.13)–(3.15) are three kinds of solutions for (2+1)-dimensional MHD equations (3.4).
Case 1. Sin/cos-type solution.
u1=cos2[x−y−(ˉv1−ˉv2)t]+ˉv1, u2=cos2[x−y−(ˉv1−ˉv2)t]+ˉv2,b1=sin[x−y−(ˉv1−ˉv2)t]cos[x−y−(ˉv1−ˉv2)t]+ˉv1,b2=sin[x−y−(ˉv1−ˉv2)t]cos[x−y−(ˉv1−ˉv2)t]+ˉv1, r=−n+∫β(t)dt,p=ˉv1sin[(2ˉv1−2ˉv2)t−2x+2y]+cos[(4ˉv1−4ˉv2)t−4x+4y]8−m+∫α(t)dt. | (3.13) |
Setting ˉv1=3,ˉv2=4 and x=6 for u1 in (3.13), we obtain Figure 1 of periodic solution u1 as follows.
From solution (3.13) and Figure 1, it can be seen that the solution exhibits periodic characteristics over time and space. The physical significance of the solution mainly includes the following points:
(ⅰ) Periodic solution can be used to analyze the stability of MHD system. If the MHD system can reach periodic solutions, it usually means that the system can achieve stability under certain conditions.
(ⅱ) Periodic solution can describe oscillatory phenomena in the MHD system, such as periodic changes in magnetic fields, periodic fluctuations in fluid velocity, etc.
(ⅲ) In industry, such as magnetohydrodynamic power generation, periodic flow can improve power generation efficiency. By optimizing the periodic solution, more efficient power generation equipment can be designed.
Case 2. Sech-type solution.
u1=sech2[x−y−(ˉv1−ˉv2)t]+ˉv1, u2=sech2[x−y−(ˉv1−ˉv2)t]+ˉv2,b1=c1, b2=c1, p=−m+∫α(t)dt, r=−n+∫β(t)dt. | (3.14) |
Setting ˉv1=1 and ˉv2=2 for u1 in (3.14), we obtain Figure 2 of single soliton solution u1 as follows.
From Figure 2, it can be seen that the velocity is constant in certain domains of space. Moreover, the velocity is induced to a sudden rise until it reaches a maximum value. As a stable wave form, the characteristics of solitons emerge from the collective behavior of nonlinear media. Solitons play an important role in the study of MHD waves due to their unique properties and applications in various physical contexts. The importance of solitons in the main problem mostly includes the following points:
(ⅰ) As a special wave phenomenon, solitons can form stable wave structures in plasmas. In controlled thermonuclear fusion research, soliton waves can be used to describe some wave phenomena in plasma, which has potential application value for achieving and maintaining the stability of fusion plasma.
(ⅱ) Solitons can maintain their shape and amplitude is unchanged during propagation. This property is important for understanding and predicting some wave propagations in MHD flow.
(ⅲ) Solitons can help explain some phenomena in MHD flow, such as the localized structure of magnetic fields and the dynamic behavior of magnetic domain walls.
Case 3. Rational solution.
u1=c2(y−ˉv2t)(x−ˉv1t)2+(y−ˉv2t)2, u2=−c2(x−ˉv1t)(x−ˉv1t)2+(y−ˉv2t)2,b1=c3(y−ˉv2t)(x−ˉv1t)2+(y−ˉv2t)2, b2=−c3(x−ˉv1t)(x−ˉv1t)2+(y−ˉv2t)2,p=−c2[2(x−ˉv1t)ˉv2−2(y−ˉv2t)ˉv1+c2]2[(x−ˉv1t)2+(y−ˉv2t)2]−m+∫α(t)dt,r=−c3[(x−ˉv1t)ˉv2−(y−ˉv2t)ˉv1](x−ˉv1t)2+(y−ˉv2t)2−n+∫β(t)dt. | (3.15) |
Setting ˉv1=1,ˉv2=1,c2=1 and x=2 for u1 in (3.15), we obtain lump (c.f. Figure 3 for solution u1 as follows.
From Figure 3, it can be seen the flow have the characteristics of spatial and temporal localization. Lump solution corresponds to the emergent phenomenon of energy focusing in a specific region or time point. The amplitude of peak and valley is several times higher than the surrounding background height. The scale transformation of the lump has already been processed in mathematics. Actually, shock wave may be seen and local instability may occur in reality.
Remark 3.1. (1) If b1=b2=0 and r=0 in (3.14) and (3.15), then (3.14) and (3.15) reduce to exact solutions for (2 + 1)-dimensional Euler equation.
(2) Since ω=∂u2∂x−∂u1∂y≠0 in (3.13) and (3.14) and ω=∂u2∂x−∂u1∂y=0 in (3.15), it can be concluded that (3.13) and (3.14) correspond to rotational flow. Additionally, (3.15) corresponds to inrotational flow.
Without loss of generality, choosing ν=η=κ=1 in Eq (3.1), the viscous MHD equations can be obtained as
{u1t−(u1xx+u1yy)+(u1u1x+u2u1y)+(b2b2x−b2b1y)+px=0,u2t−(u2xx+u2yy)+(u1u2x+u2u2y)+(b1b1y−b1b2x)+py=0,b1t−(b1xx+b1yy)−(b1u1x+b2u1y)+(u1b1x+u2b1y)+rx=0,b2t−(b2xx+b2yy)−(b1u2x+b2u2y)+(u1b2x+u2b2y)+ry=0,u1x+u2y=0, b1x+b2y=0. | (3.16) |
Solving (3.3) with ν=η=κ=1, the coefficient functions of vector field V_ can be obtained as
ζ1=2C1t+C2, ζ2=C1x−C12y+f1(t)+C3, ζ3=C12x+C1y+f2(t)+C4,ϕ1=−C1u1−C12u2+f′1(t), ϕ2=C12u1−C1u2+f′2(t),φ1=−C1b1−C12b2, φ2=C12b1−C1b2,ψ1=−2C1p−xf′′1(t)−yf′′2(t)+α(t), ψ2=−2C1r+β(t). | (3.17) |
Case 1. When C1=C2=C3=C4=C12=f1(t)=f2(t)=0, V_=α(t)∂∂p+β(t)∂∂r.
The corresponding invariants are
ˉζ0=t, ˉζ1=x, ˉζ2=y, F1(ˉζ0,ˉζ2)=−u1, F2(ˉζ0,ˉζ1)=−u2,G1(ˉζ0, ˉζ2)=−b1, G2(ˉζ0,ˉζ1)=−b2. | (3.18) |
Substituting invariants (3.18) into (3.16), and solving the reduced equations,
u1=g1e−tcosy, u2=g2e−tcosx, b1=g3e−tcosy, b2=g4e−tcosx,p=[−cos(2y)g23g4+2g34sin2x+4g3(g22−g24)sinxsiny]e−2t4g4+m(t), r=n(t), | (3.19) |
is a sin/cos-type solution for MHD equations (3.16), where g1g4−g2g3=0. m(t) and n(t) are arbitrary functions related to t only. Setting g1=1 for u1 in (3.19), we obtain Figure 4 of solution u1 as follows.
From Figure 4, it can be seen that as time increases, the shape and direction of the velocity remain unchanged, but the amplitude decreases.
Case 2. When C2=1, Ci=C12=f1(t)=f2(t)=α(t)=β(t)=0 (i=0,1,3,4), V_=∂∂t.
The characteristic equation is
dt1=dx0=dy0=du10=du20=db10=db20=dp0=dr0. | (3.20) |
The corresponding invariants are
ˉζ1=x, ˉζ2=y, F1(ˉζ1,ˉζ2)=u1, F2(ˉζ1,ˉζ2)=u2,G1(ˉζ1,ˉζ2)=b1, G2(ˉζ1,ˉζ2)=b2, Q(ˉζ1,ˉζ2)=p, R(ˉζ1,ˉζ2)=r. | (3.21) |
Substituting invariants (3.21) into (3.16), and solving the reduced equations,
u1=sech2(x+iy), u2=isech2(x+iy),b1=sech2(x+iy), b2=isech2(x+iy), p=m, r=n, | (3.22) |
is a sech-type solution for MHD equations (3.16). Using symmetry
V_=t∂∂x+t∂∂y+∂∂u1+∂∂u2, |
solution (3.22) can further generate the following invariant solution
u1=sech2(x−εt+i(y−εt))+ε, u2=isech2(x−εt+i(y−εt))+ε,b1=sech2(x−εt+i(y−εt)), b2=isech2(x−εt+i(y−εt)), p=m(t), r=n(t), | (3.23) |
where ε is arbitrary constant.
Remark 3.2. (1) The lump solution (3.15) for inviscid MHD equations (3.4) also satisfies the viscous MHD equations (3.16).
(2) If b1=b2=0 and r=0 in (3.23), then (3.23) reduces to exact solutions for (2 + 1)-dimensional Navier-Stokes equation.
(3) Since ω=∂u2∂x−∂u1∂y≠0 in (3.19) and ω=∂u2∂x−∂u1∂y=0 in (3.23), it can be concluded that (3.19) corresponds to rotational flow. Moreover, (3.23) corresponds to inrotational flow.
As an important method of simplest equation methods, the generalized Riccati equation method [29,30] provides a powerful mathematical tool to deal with the complex nonlinear and strong coupling terms in MHD equations. Using traveling wave transformation,
ζ=k2x+k3y−k1t, | (3.24) |
equations (3.1) are transformed into following ordinary differential equations (ODEs) as
{−k1u1ζ−ν(k22u1ζζ+k23u1ζζ)+(k2u1u1ζ+k3u2u1ζ)+κ(k2b2b2ζ−k3b2b1ζ)+k2pζ=0,−k1u2ζ−ν(k22u2ζζ+k23u2ζζ)+(k2u1u2ζ+k3u2u2ζ)+κ(k3b1b1ζ−k2b1b2ζ)+k3pζ=0,−k1b1ζ−η(k22b1ζζ+k23b1ζζ)−(k2b1u1ζ+k3b2u1ζ)+k2u1b1ζ+k3u2b1ζ+k2rζ=0,−k1b2ζ−η(k22b2ζζ+k23b2ζζ)−(k2b1u2ζ+k3b2u2ζ)+k2u1b2ζ+k3u2b2ζ+k3rζ=0,k2u1ζ+k3u2ζ=0, k2b1ζ+k3b2ζ=0. | (3.25) |
Suppose that the solution of ODEs (3.25) can be expressed as a polynomial of ϕ(ζ) as
u1=N1∑i=0aiϕi(ζ), u2=N2∑i=0miϕi(ζ), b1=N3∑i=0niϕi(ζ),b2=N4∑i=0siϕi(ζ), p=N5∑i=0liϕi(ζ)+l(t), r=N6∑i=0qiϕi(ζ)+q(t), | (3.26) |
where ai,mi,ni,si,li,qi are undetermined constants and aN1,mN2,nN3,sN4≠0. l(t) and q(t) are arbitrary functions related to t only. ϕ(ζ) satisfies the generalized Riccati equation
ϕ′(ζ)=ξ0+ξ1ϕ(ζ)+ξ2ϕ2(ζ), | (3.27) |
where ξ0,ξ1 and ξ2 are arbitrary constants with ξ2≠0. We choose N1=N2=N3=N4=N5=N6=2 with can balance the highest order of the derivative and nonlinear terms in ODEs.
When ν=η=0 and κ=1 in ODEs (3.25), substituting (3.26) and (3.27) into (3.25), collecting the coefficients of ϕi(ζ) and setting them to be zeros, we obtain
a0=a0,a1=a1,a2=a2,k1=k1,k2=k2,k3=k3,l1=l1,l2=−n21(k22+k23)2k23,m0=−a0k2+k1k3,m1=−a1k2k3,m2=−k2a2k3,n0=−k23l1n1(k22+k23),n1=n1,n2=0,q1=0,q2=0,s0=k2k3l1n1(k22+k23),s1=−k2n1k3,s2=0. | (3.28) |
Substituting (3.28) and the general solutions of (3.27) (c.f. [29]) into (3.26), it can be obtained following four kinds of solutions for the (2 + 1)-dimensional inviscid MHD equations.
Case 1. When ξ21−4ξ2ξ0>0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the tanh-type solution can be obtained as follows.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a2ξ1−a1ξ22ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+a2(ξ21−4ξ2ξ0)4ξ22tanh2(√ξ21−4ξ2ξ02ζ),u2=4ξ22(−a0k2+k1)+2a1k2ξ1ξ2−k2a2ξ214k3ξ22−k2a2(ξ12−4ξ2ξ0)4k3ξ22tanh2(√ξ21−4ξ2ξ02ζ)+k2(a1ξ2−a2ξ1)2k3ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ),b1=−2k23l1ξ2+n21(k22+k23)ξ12n1(k22+k23)ξ2−n1√ξ21−4ξ2ξ02ξ2tanh(√ξ21−4ξ2ξ02ζ),b2=2k2k23l1ξ2+k2n21(k22+k23)ξ12k3n1(k22+k23)ξ2+k2n1√ξ21−4ξ2ξ02k3ξ2tanh(√ξ21−4ξ2ξ02ζ), | (3.29) |
where ζ=k2x+k3y−k1t. Setting a0=−1,a1=−7,a2=1,k1=3,k2=1,k3=−1,ξ0=1,ξ1=3 and ξ2=1 for u1 in (3.29), we obtain Figure 5 of kink solution u1 as follows.
In particular, when ξ0=0 and ξ1ξ2≠0, the sinh-cosh-type solution can be obtained as follows
u1=a0−a1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+a2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,u2=−a0k2+k1k3+a1k2ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]k3ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]−k2a2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2k3ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,b1=−k23l1n1(k22+k23)−n1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C],b2=k2k3l1n1(k22+k23)+k2n1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]k3ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C], | (3.30) |
where C is arbitrary constant. Setting a0=4,a1=−10,a2=−8,k1=−4,k2=−16,k3=−2,ξ0=0, ξ1=1,ξ2=1,C=1 and x=1 for u1 in (3.30), we obtain Figure 6 of anti-kink-like solution u1 as follows.
The kink and kink-like solutions can be understood as a macroscopic stable structure generated from the field dynamics at the microscale. They manifest as a rapid change or discontinuity in some field at the macro level.
Case 2. When ξ21−4ξ2ξ0<0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the tan-type solution can be obtained as follows.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a1ξ2−a2ξ12ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+a2(4ξ2ξ0−ξ21)4ξ22tan2(√4ξ2ξ0−ξ212ζ),u2=4ξ22(−a0k2+k1)+2a1k2ξ1ξ2−k2a2ξ214k3ξ22−k2a2(4ξ2ξ0−ξ21)4k3ξ22tan2(√4ξ2ξ0−ξ212ζ)+k2(a2ξ1−a1ξ2)2k3ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ),b1=−2k23l1ξ2+n21(k22+k23)ξ12n1(k22+k23)ξ2+n1√4ξ2ξ0−ξ212ξ2tan(√4ξ2ξ0−ξ212ζ),b2=2k2k23l1ξ2+k2n21(k22+k23)ξ12k3n1(k22+k23)ξ2−k2n1√4ξ2ξ0−ξ212k3ξ2tan(√4ξ2ξ0−ξ212ζ). |
Case 3. When ξ1=ξ0=0 and ξ2≠0, the rational solution can be obtained as follows
u1=a0−a1ξ2ζ+C+a2(ξ2ζ+C)2, u2=−a0k2+k1k3+a1k2k3(ξ2ζ+C)−a2k2k3(ξ2ζ+C)2,b1=−k23l1n1(k22+k23)−n1ξ2ζ+C, b2=k2k3l1n1(k22+k23)+k2n1k3(ξ2ζ+C). | (3.31) |
When ν=η=κ=1 in ODEs (3.25), Substituting (3.26) and (3.27) into (3.25), we obtain
a0=a0,a1=a1,a2=a2,k1=k1,k2=k2,k3=−ik2,l1=((−a0+im0)k2+k1)a1k2,l2=((−a0+im0)k2+k1)a2k2,m0=m0,m1=−ia1,m2=−ia2,n0=n0,n1=n1,s2=0,n2=0,q1=((−a0+im0)n1−(is0−n0)a1)k2+n1k1k2,q2=−a2(is0−n0),s0=s0, s1=−in1. | (3.32) |
Substituting (3.32) and general solutions of (3.27) (c.f. [29]) into (3.26), it can be obtained that (3.33)–(3.40) are four kinds of solutions for (2 + 1)-dimensional viscous MHD equations.
Case 1. When ξ21−4ξ2ξ0>0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the following tanh-type solution can be obtained.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a2ξ1−a1ξ22ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+a2(ξ21−4ξ2ξ0)4ξ22tanh2(√ξ21−4ξ2ξ02ζ),u2=m0+i(2a1ξ1ξ2−a2ξ21)4ξ22+i(a1ξ2−a2ξ1)2ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)−ia2(ξ21−4ξ2ξ0)4ξ22tanh2(√ξ21−4ξ2ξ02ζ),b1=2n0ξ2−n1ξ12ξ2−n1√ξ21−4ξ2ξ02ξ2tanh(√ξ21−4ξ2ξ02ζ),b2=s0+in1ξ12ξ2+in1√ξ21−4ξ2ξ02ξ2tanh(√ξ21−4ξ2ξ02ζ). | (3.33) |
In particular, when ξ0=0 and ξ1ξ2≠0, the following sinh-cosh-type solution can be obtained.
u1=a0−a1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+a2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,u2=m0+ia1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]−ia2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,b1=n0−n1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C], b2=s0+in1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]. | (3.34) |
Setting a1=2,a2=−2,m0=−1,k1=1,k2=−1,ξ0=0,ξ1=−2,ξ2=−14,C=1 and x=1 for u2 in (3.34), we obtain breather (c.f. Figure 7) for solution u2 as follows.
From Figure 7, the breather appears to be localized in the t-axis direction, and periodic in the y-axis direction. It corresponds to a type of nonlinear wave where energy is concentrated in a local oscillation manner. The breather solutions can serve as a carrier of energy transfer during the propagation process, and the characteristics of this energy transfer are related to the macroscopic behavior in emergent phenomena.
Case 2. When ξ21−4ξ2ξ0<0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the following tan-type solution can be obtained.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a1ξ2−a2ξ12ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+a2(4ξ2ξ0−ξ21)4ξ22tan2(√4ξ2ξ0−ξ212ζ), | (3.35) |
u2=m0+i(2a1ξ1ξ2−a2ξ21)4ξ22+i(a2ξ1−a1ξ2)2ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)−ia2(4ξ2ξ0−ξ21)4ξ22tan2(√4ξ2ξ0−ξ212ζ), | (3.36) |
b1=2n0ξ2−n1ξ12ξ2+n1√4ξ2ξ0−ξ212ξ2tan(√4ξ2ξ0−ξ212ζ), | (3.37) |
b2=s0+in1ξ12ξ2−in1√4ξ2ξ0−ξ212ξ2tan(√4ξ2ξ0−ξ212ζ). | (3.38) |
Setting a1=−12,a2=2,m0=1,k1=−6,k2=1,ξ0=−2,ξ1=−2,ξ2=−1 and x=1 in (3.36), we obtain Figure 8 for breather solution u2 as follows.
From Figure 8, the breather appears to be localized in the y-axis direction, and periodic in the t-axis direction, which corresponds to a nonlinear local wave that oscillates periodically in time.
Case 3. When ξ1=ξ0=0 and ξ2≠0, the following rational solution can be obtained.
u1=a0−a1ξ2ζ+C+a2(ξ2ζ+C)2, u2=m0+ia1ξ2ζ+C−ia2(ξ2ζ+C)2, | (3.39) |
b1=n0−n1ξ2ζ+C, b2=s0+in1ξ2ζ+C. | (3.40) |
Denote x=(x,y,z), U=(u1(t,x),u2(t,x),u3(t,x)), B=(b1(t,x),b2(t,x),b3(t,x)) in (2.2), the component form of the (3 + 1)-dimensional MHD equations can be obtained as
{u1t−ν(u1xx+u1yy+u1zz)+(u1u1x+u2u1y+u3u1z)+κ(b2b2x+b3b3x−b2b1y−b3b1z)+px=0,u2t−ν(u2xx+u2yy+u2zz)+(u1u2x+u2u2y+u3u2z)+κ(b1b1y+b3b3y−b1b2x−b3b2z+py=0,u3t−ν(u3xx+u3yy+u3zz)+(u1u3x+u2u3y+u3u3z)+κ(b1b1z+b2b2z−b1b3x−b2b3y)+pz=0,b1t−η(b1xx+b1yy+b1zz)−(b1u1x+b2u1y+b3u1z)+(u1b1x+u2b1y+u3b1z)+rx=0,b2t−η(b2xx+b2yy+b2zz)−(b1u2x+b2u2y+b3u2z)+(u1b2x+u2b2y+u3b2z)+ry=0,b3t−η(b3xx+b3yy+b3zz)−(b1u3x+b2u3y+b3u3z)+(u1b3x+u2b3y+u3b3z)+rz=0,u1x+u2y+u3z=0, b1x+b2y+b3z=0. | (4.1) |
The vector field of the system (4.1) can be expressed as
V_=ζ1∂∂t+ζ2∂∂x+ζ3∂∂y+ζ4∂∂z+ϕ1∂∂u1+ϕ2∂∂u2+ϕ3∂∂u3+φ1∂∂b1+φ2∂∂b2+φ3∂∂b3+ψ1∂∂p+ψ2∂∂r, | (4.2) |
where ζi (i=1,2,3,4), ϕj, φj (j=1,2,3) and ψk (k=1,2) are undetermined coefficients about t, x, U, B, p and r. It follows from the second-order prolongation pr(2)V_(Δ)|Δ=0=0 that
ϕt1−ν(ϕxx1+ϕyy1+ϕzz1)+ϕ1u1x+u1ϕx1+ϕ2u1y+u2ϕy1+ϕ3u1z+u3ϕz1+κ(φ2b2x+b2φx2+φ3b3x+b3φx3−φ2b1y−b2φy1−φ3b1z−b3φz1)+ψx1=0, | (4.3) |
ϕt2−ν(ϕxx2+ϕyy2+ϕzz2)+ϕ1u2x+u1ϕx2+ϕ2u2y+u2ϕy2+ϕ3u2z+u3ϕz2+κ(φ1b1y+b1φy1+φ3b3y+b3φy3−φ1b2x−b1φx2−φ3b2z−b3φz2)+ψy1=0, | (4.4) |
ϕt3−ν(ϕxx3+ϕyy3+ϕzz3)+ϕ1u3x+u1ϕx3+ϕ2u3y+u2ϕy3+ϕ3u3z+u3ϕz3+κ(φ1b1z+b1φz1+φ2b2z+b2φz2−φ1b3x−b1φx3−φ2b3y−b2φy3)+ψz1=0, | (4.5) |
φt1−η(φxx1+φyy1+φzz1)−φ1u1x−b1ϕx1−φ2u1y−b2ϕy1−φ3u1z−b3ϕz1+ϕ1b1x+u1φx1+ϕ2b1y+u2φy1+ϕ3b1z+u3φz1+ψx2=0, | (4.6) |
φt2−η(φxx2+φyy2+φzz2)−φ1u2x−b1ϕx2−φ2u2y−b2ϕy2−φ3u2z−b3ϕz2+ϕ1b2x+u1φx2+ϕ2b2y+u2φy2+ϕ3b2z+u3φz2+ψy2=0, | (4.7) |
φt3−η(φxx3+φyy3+φzz3)−φ1u3x−b1ϕx3−φ2u3y−b2ϕy3−φ3u3z−b3ϕz3+ϕ1b3x+u1φx3+ϕ2b3y+u2φy3+ϕ3b3z+u3φz3+ψz2=0, | (4.8) |
ϕx1+ϕy2+ϕz3=0, φx1+φy2+φz3=0. | (4.9) |
Choosing ν=η=0 and κ=1 in equations (4.1), the inviscid MHD equations can be obtained as
{u1t+(u1u1x+u2u1y+u3u1z)+(b2b2x+b3b3x−b2b1y−b3b1z)+px=0,u2t+(u1u2x+u2u2y+u3u2z)+(b1b1y+b3b3y−b1b2x−b3b2z)+py=0,u3t+(u1u3x+u2u3y+u3u3z)+(b1b1z+b2b2z−b1b3x−b2b3y)+pz=0,b1t−(b1u1x+b2u1y+b3u1z)+(u1b1x+u2b1y+u3b1z)+rx=0,b2t−(b1u2x+b2u2y+b3u2z)+(u1b2x+u2b2y+u3b2z)+ry=0,b3t−(b1u3x+b2u3y+b3u3z)+(u1b3x+u2b3y+u3b3z)+rz=0,u1x+u2y+u3z=0, b1x+b2y+b3z=0. | (4.10) |
Solving (4.3)–(4.9) with ν=η=0 and κ=1, the coefficient functions of vector field V_ can be obtained as
ζ1=2C1t+C2, ζ2=C0x−C12y−C13z+f1(t)+C3,ζ3=C12x+C0y−C23z+f2(t)+C4, ζ4=C13x+C23y+C0z+f3(t)+C5,ϕ1=(C0−2C1)u1−C12u2−C13u3+f′1(t), ϕ2=C12u1+(C0−2C1)u2−C23u3+f′2(t),ϕ3=C13u1+C23u2+(C0−2C1)u3+f′3(t), φ1=(C0−2C1)b1−C12b2−C13b3,φ2=C12b1+(C0−2C1)b2−C23b3, φ3=C13b1+C23b2+(C0−2C1)b3,ψ1=2(C0−2C1)p−xf′′1(t)−yf′′2(t)−zf′′3(t)+α(t), ψ2=2(C0−2C1)r+β(t). |
When C2=1, C3=ˉv1, C4=ˉv2, C5=ˉv3, C0=C1=C12=C13=C23=0, f1(t)=f2(t)=0,
V_=(C2∂∂t+C3∂∂x+C4∂∂y+C5∂∂z)+α(t)∂∂p+β(t)∂∂r=∂∂t+ˉv1∂∂x+ˉv2∂∂y+ˉv3∂∂z+α(t)∂∂p+β(t)∂∂r. | (4.11) |
The characteristic equation is
dt1=dxˉv1=dyˉv2=dzˉv3=du10=du20=du30=db10=db20=db30=dpα(t)=drβ(t). | (4.12) |
It follows from (4.12) that corresponding invariants are
ˉζ1=x−ˉv1t, ˉζ2=y−ˉv2t, ˉζ3=z−ˉv3t, F1(ˉζ1,ˉζ2,ˉζ3)=−u1, F2(ˉζ1,ˉζ2,ˉζ3)=−u2,F3(ˉζ1,ˉζ2,ˉζ3)=−u3, G1(ˉζ1,ˉζ2,ˉζ3)=−b1, G2(ˉζ1,ˉζ2,ˉζ3)=−b2, G3(ˉζ1,ˉζ2,ˉζ3)=−b3,Q(ˉζ1,ˉζ2,ˉζ3)=−p+∫α(t)dt, R(ˉζ1,ˉζ2,ˉζ3)=−r+∫β(t)dt. | (4.13) |
Substituting (4.13) into (4.10), reduced equations can be obtained as
{ˉv1F1ˉζ1+ˉv2F1ˉζ2+ˉv3F1ˉζ3+F1F1ˉζ1+F2F1ˉζ2+F3F1ˉζ3+G2G2ˉζ1+G3G3ˉζ1−G2G1ˉζ2−G3G1ˉζ3−Qˉζ1=0,ˉv1F2ˉζ1+ˉv2F2ˉζ2+ˉv3F2ˉζ3+F1F2ˉζ1+F2F2ˉζ2+F3F2ˉζ3+G1G1ˉζ2+G3G3ˉζ2−G1G2ˉζ1−G3G2ˉζ3−Qˉζ2=0,ˉv1F3ˉζ1+ˉv2F3ˉζ2+ˉv3F3ˉζ3+F1F3ˉζ1+F2F3ˉζ2+F3F3ˉζ3+G1G1ˉζ3+G2G2ˉζ3−G1G3ˉζ1−G2G3ˉζ2−Qˉζ3=0,ˉv1G1ˉζ1+ˉv2G1ˉζ2+ˉv3G1ˉζ3−G1F1ˉζ1−G2F1ˉζ2−G3F1ˉζ3+F1G1ˉζ1+F2G1ˉζ2+F3G1ˉζ3−Rˉζ1=0,ˉv1G2ˉζ1+ˉv2G2ˉζ2+ˉv3G2ˉζ3−G1F2ˉζ1−G2F2ˉζ2−G3F2ˉζ3+F1G2ˉζ1+F2G2ˉζ2+F3G2ˉζ3−Rˉζ2=0,ˉv1G3ˉζ1+ˉv2G3ˉζ2+ˉv3G3ˉζ3−G1F3ˉζ1−G2F3ˉζ2−G3F3ˉζ3+F1G3ˉζ1+F2G3ˉζ2+F3G3ˉζ3−Rˉζ3=0,F1ˉζ1+F2ˉζ2+F3ˉζ3=0, G1ˉζ1+G2ˉζ2+G3ˉζ3=0. | (4.14) |
It can be obtained that (4.15)–(4.17) are three kinds of solutions for (4.14).
Case 1. Sin-cos-type solution.
{F1(ˉζ1,ˉζ2,ˉζ3)=−cos2(2ˉζ1−ˉζ2−ˉζ3)−ˉv1,F2(ˉζ1,ˉζ2,ˉζ3)=−cos2(2ˉζ1−ˉζ2−ˉζ3)−ˉv2,F3(ˉζ1,ˉζ2,ˉζ3)=−cos2(2ˉζ1−ˉζ2−ˉζ3)−ˉv3,G1(ˉζ1,ˉζ2,ˉζ3)=−sin(2ˉζ1−ˉζ2−ˉζ3)cos(2ˉζ1−ˉζ2−ˉζ3)−ˉv1,G2(ˉζ1,ˉζ2,ˉζ3)=−sin(2ˉζ1−ˉζ2−ˉζ3)cos(2ˉζ1−ˉζ2−ˉζ3)−ˉv1,G3(ˉζ1,ˉζ2,ˉζ3)=−sin(2ˉζ1−ˉζ2−ˉζ3)cos(2ˉζ1−ˉζ2−ˉζ3)−ˉv1,Q(ˉζ1,ˉζ2,ˉζ3)=−3ˉv1sin(−4ˉζ1+2ˉζ2+2ˉζ3)2−3cos(−8ˉζ1+4ˉζ2+4ˉζ3)16+m, R(ˉζ1,ˉζ2,ˉζ3)=n, | (4.15) |
where m and n are arbitrary constants.
Case 2. Sech-type solution.
{F1(ˉζ1,ˉζ2,ˉζ3)=−sech2(2ˉζ1−ˉζ2−ˉζ3)−ˉv1, F2(ˉζ1,ˉζ2,ˉζ3)=−sech2(2ˉζ1−ˉζ2−ˉζ3)−ˉv2,F3(ˉζ1,ˉζ2,ˉζ3)=−sech2(2ˉζ1−ˉζ2−ˉζ3)−ˉv3, G1(ˉζ1,ˉζ2,ˉζ3)=−12(c1+c2),G2(ˉζ1,ˉζ2,ˉζ3)=−c1, G3(ˉζ1,ˉζ2,ˉζ3)=−c2, Q(ˉζ1,ˉζ2,ˉζ3)=m, R(ˉζ1,ˉζ2,ˉζ3)=n, | (4.16) |
where c1 and c2 are arbitrary constants.
Case 3. Rational solution.
{F1(ˉζ1,ˉζ2,ˉζ3)=−c3ˉζ2ˉζ21+ˉζ22, F2(ˉζ1,ˉζ2,ˉζ3)=c3ˉζ1ˉζ21+ˉζ22, F3(ˉζ1,ˉζ2,ˉζ3)=−c5,G1(ˉζ1,ˉζ2,ˉζ3)=−c4ˉζ2ˉζ21+ˉζ22, G2(ˉζ1,ˉζ2,ˉζ3)=c4ˉζ1ˉζ21+ˉζ22, G3(ˉζ1,ˉζ2,ˉζ3)=−c6,Q(ˉζ1,ˉζ2,ˉζ3)=c3(2ˉζ1ˉv2−2ˉζ2ˉv1+c3)2(ˉζ21+ˉζ22)+m, R(ˉζ1,ˉζ2,ˉζ3)=c4(ˉζ1ˉv2−ˉζ2ˉv1)ˉζ21+ˉζ22+n, | (4.17) |
where c3,c4,c5 and c6 are arbitrary constants. Substituting (4.13) into (4.15)–(4.17), respectively, we obtain that (4.18)–(4.20) are three kinds of solutions for (3 + 1)-dimensional MHD equations (4.10).
Case 1. Sin-cos-type solution.
u1=cos2[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv1,u2=cos2[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv2,u3=cos2[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv3,b1=sin[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]cos[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv1,b2=sin[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]cos[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv1,b3=sin[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]cos[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv1,p=3ˉv1sin[(4ˉv1−2ˉv2−2ˉv3)t−4x+2y+2z]2+3cos[(8ˉv1−4ˉv2−4ˉv3)t−8x+4y+4z]16−m+∫α(t)dt,r=−n+∫β(t)dt. | (4.18) |
Case 2. Sech-type solution.
u1=sech2[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv1,u2=sech2[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv2,u3=sech2[2x−y−z−(2ˉv1−ˉv2−ˉv3)t]+ˉv3,b1=12(c1+c2), b2=c1, b3=c2, p=−m+∫α(t)dt, r=−n+∫β(t)dt. | (4.19) |
Setting ˉv1=−2,ˉv2=−4,ˉv3=−1,y=−2 and x=2 for u1 in (4.19), we obtain Figure 9 of solution u1 as follows.
Case 3. Rational solution.
u1=c3(y−ˉv2t)(x−ˉv1t)2+(y−ˉv2t)2, u2=−c3(x−ˉv1t)(x−ˉv1t)2+(y−ˉv2t)2, u3=c5,b1=c4(y−ˉv2t)(x−ˉv1t)2+(y−ˉv2t)2, b2=−c4(x−ˉv1t)(x−ˉv1t)2+(y−ˉv2t)2, b3=c6,p=−c3[2(x−ˉv1t)ˉv2−2(y−ˉv2t)ˉv1+c3]2[(x−ˉv1t)2+(y−ˉv2t)2]−m+∫α(t)dt,r=−c4[(x−ˉv1t)ˉv2−(y−ˉv2t)ˉv1](x−ˉv1t)2+(y−ˉv2t)2−n+∫β(t)dt. | (4.20) |
Remark 4.1. (1) If b1=b2=b3=0 and r=0 in (4.19) and (4.20), then (4.19) and (4.20) reduce to exact solutions for (3 + 1)-dimensional Euler equation.
(2) Since ω=∇×U≠0 in (4.18) and (4.19) and ω=∇×U=0 in (4.20), it can be concluded that (4.18) and (4.19) correspond to rotational flow. Additionally, (4.20) corresponds to inrotational flow.
Without loss of generality, choosing ν=η=κ=1 in Eq (4.1), the viscous MHD equations can be obtained as
{u1t−(u1xx+u1yy+u1zz)+(u1u1x+u2u1y+u3u1z)+(b2b2x+b3b3x−b2b1y−b3b1z)+px=0,u2t−(u2xx+u2yy+u2zz)+(u1u2x+u2u2y+u3u2z)+(b1b1y+b3b3y−b1b2x−b3b2z)+py=0,u3t−(u3xx+u3yy+u3zz)+(u1u3x+u2u3y+u3u3z)+(b1b1z+b2b2z−b1b3x−b2b3y)+pz=0,b1t−(b1xx+b1yy+b1zz)−(b1u1x+b2u1y+b3u1z)+(u1b1x+u2b1y+u3b1z)+rx=0,b2t−(b2xx+b2yy+b2zz)−(b1u2x+b2u2y+b3u2z)+(u1b2x+u2b2y+u3b2z)+ry=0,b3t−(b3xx+b3yy+b3zz)−(b1u3x+b2u3y+b3u3z)+(u1b3x+u2b3y+u3b3z)+rz=0,u1x+u2y+u3z=0, b1x+b2y+b3z=0. | (4.21) |
Solving (4.3)–(4.9) with ν=η=κ=1, the coefficient functions of vector field V_ can be obtained as
ζ1=2C1t+C2, ζ2=C1x−C12y−C13z+f1(t)+C3,ζ3=C12x+C1y−C23z+f2(t)+C4, ζ4=C13x+C23y+C1z+f3(t)+C5,ϕ1=−C1u1−C12u2−C13u3+f′1(t), ϕ2=C12u1−C1u2−C23u3+f′2(t),ϕ3=C13u1+C23u2−C1u3+f′3(t), φ1=−C1b1−C12b2−C13b3,φ2=C12b1−C1b2−C23b3, φ3=C13b1+C23b2−C1b3,ψ1=−2C1p−xf′′1(t)−yf′′2(t)−zf′′3(t)+α(t), ψ2=−2C1r+β(t). | (4.22) |
Case 1. C1=C2=C3=C4=C5=C12=C13=C23=f1(t)=f2(t)=0, V_=α(t)∂∂p+β(t)∂∂r.
For invariants
ˉζ0=t, ˉζ1=x, ˉζ2=y, ˉζ3=z,F1(ˉζ0,ˉζ2)=−u1, F2(ˉζ0,ˉζ1)=−u2, F3(ˉζ0,ˉζ3)=−u3,G1(ˉζ0,ˉζ2)=−b1, G2(ˉζ0,ˉζ1)=−b2, G3(ˉζ0,ˉζ3)=−b3. | (4.23) |
Substituting invariants (4.23) into (4.21), and solving the reduced equations,
u1=g1e−tcosy, u2=g2e−tcosx, u3=c7,b1=g3e−tcosy, b2=g4e−tcosx, b3=c8,p=[−cos(2y)g23g4+2g34sin2x+4g3(g22−g24)sinxsiny]e−2t4g4+m(t), r=n(t), | (4.24) |
is a sin/cos-type solution for MHD equations (4.21), where g1g4−g2g3=0. c7 and c8 are arbitrary constants. m(t) and n(t) are arbitrary functions related to t only.
Case 2. C2=1, Ci=C12=C13=C23=fj(t)=α(t)=β(t)=0 (i=1,3,4,5,j=1,2,3), V_=∂∂t.
The corresponding invariants are
ˉζ1=x, ˉζ2=y, ˉζ3=z, Q(ˉζ1,ˉζ2,ˉζ3)=p, R(ˉζ1,ˉζ2,ˉζ3)=r,F1(ˉζ1,ˉζ2,ˉζ3)=u1, F2(ˉζ1,ˉζ2,ˉζ3)=u2, F3(ˉζ1,ˉζ2,ˉζ3)=u3,G1(ˉζ1,ˉζ2,ˉζ3)=b1, G2(ˉζ1,ˉζ2,ˉζ3)=b2, G3(ˉζ1,ˉζ2,ˉζ3)=b3. | (4.25) |
Substituting invariants (4.25) into (4.21), and solving the reduced equations,
u1=sech2(x+iy), u2=isech2(x+iy), u3=c9, p=m,b1=sech2(x+iy), b2=isech2(x+iy), b3=c10, r=n, | (4.26) |
is a sech-type solution for MHD equations (4.21), where c9 and c10 are arbitrary constants. Using symmetry V_=t∂∂x+t∂∂y+t∂∂z+∂∂u1+∂∂u2+∂∂u3, solution (4.26) can further generate the following invariant solution,
u1=sech2(x−εt+i(y−εt))+ε, u2=isech2(x−εt+i(y−εt))+ε,u3=c9+ε, b1=sech2(x−εt+i(y−εt)), b2=isech2(x−εt+i(y−εt)),b3=c10, p=m(t), r=n(t). | (4.27) |
Remark 4.2. (1) The lump solution (4.20) for inviscid MHD equations (4.10) also satisfies the viscous MHD equations (4.21).
(2) If b1=b2=b3=0 and r=0 in (4.27), then (4.27) reduces to exact solutions for (3 + 1)-dimensional Navier-Stokes equation.
(3) Since ω=∇×U≠0 in (4.24) and ω=∇×U=0 in (4.27), it can be concluded that (4.24) corresponds to rotational flow. Moreover, (4.27) corresponds to inrotational flow.
Using traveling wave transformation ζ=k2x+k3y+k4z−k1t, Eq (4.1) are transformed into following ODEs as
{−k1u1ζ−ν(k22u1ζζ+k23u1ζζ+k24u1ζζ)+k2u1u1ζ+k3u2u1ζ+k4u3u1ζ+κ(k2b2b2ζ+k2b3b3ζ−k3b2b1ζ−k4b3b1ζ)+k2pζ=0,−k1u2ζ−ν(k22u2ζζ+k23u2ζζ+k24u2ζζ)+k2u1u2ζ+k3u2u2ζ+k4u3u2ζ+κ(k3b1b1ζ+k3b3b3ζ−k2b1b2ζ−k4b3b2ζ)+k3pζ=0,−k1u3ζ−ν(k22u3ζζ+k23u3ζζ+k24u3ζζ)+k2u1u3ζ+k3u2u3ζ+k4u3u3ζ+κ(k4b1b1ζ+k4b2b2ζ−k2b1b3ζ−k3b2b3ζ)+k4pζ=0,−k1b1ζ−η(k22b1ζζ+k23b1ζζ+k24b1ζζ)−(k2b1u1ζ+k3b2u1ζ+k4b3u1ζ)+k2u1b1ζ+k3u2b1ζ+k4u3b1ζ+k2rζ=0,−k1b2ζ−η(k22b2ζζ+k23b2ζζ+k24b2ζζ)−(k2b1u2ζ+k3b2u2ζ+k4b3u2ζ)+k2u1b2ζ+k3u2b2ζ+k4u3b2ζ+k3rζ=0,−k1b3ζ−η(k22b3ζζ+k23b3ζζ+k24b3ζζ)−(k2b1u3ζ+k3b2u3ζ+k4b3u3ζ)+k2u1b3ζ+k3u2b3ζ+k4u3b3ζ+k4rζ=0,k2u1ζ+k3u2ζ+k4u3ζ=0, k2b1ζ+k3b2ζ+k4b3ζ=0. | (4.28) |
Suppose that the solution of ODEs (4.28) can be expressed as a polynomial of ϕ(ζ) as follows.
u1=N1∑i=0aiϕi(ζ), u2=N2∑i=0miϕi(ζ), u3=N3∑i=0diϕi(ζ), b1=N4∑i=0niϕi(ζ),b2=N5∑i=0siϕi(ζ), b3=N6∑i=0fiϕi(ζ), p=l(t)+N7∑i=0liϕi(ζ), r=q(t)+N8∑i=0qiϕi(ζ), | (4.29) |
where ai,mi,di,ni,si,fi,li,qi are undetermined constants and aN1, mN2, dN3, nN4, sN5, fN6≠0. l(t) and q(t) are arbitrary functions related to t only. ϕ(ζ) satisfies Eq (3.27). We choose N1=N2=N3=N4=N5=N6=N7=N8=2 with can balance the highest order of the derivative and nonlinear terms in ODEs.
When ν=η=0 and κ=1 in ODEs (4.28), substituting (4.29) and (3.27) into (4.28), we collect the coefficients of ϕi(ζ) and set them to be zeros, we obtain
a0=a0,a1=a1,a2=a2,d0=d0,d1=d1,d2=d2,f0=f0,f1=f1,f2=0,k1=k1,k2=k2,k3=k3,k4=k4,l1=(−k22−k23−k24)f0f1k22+k23,l2=−f21(k22+k23+k24)2(k22+k23),m0=−a0k2−k4d0+k1k3,m1=−a1k2−k4d1k3,m2=−k2a2−k4d2k3,n0=n0,n1=f1k2k4−k22−k23,n2=0,q1=0,q2=0,s0=−k4f0−k2n0k3,s1=f1k3k4−k22−k23,s2=0. |
Combined with the general solutions of (3.27) (c.f. [29]), it folllows from (4.29) that (4.30)–(4.38) are four kinds of solutions for (3 + 1)-dimensional inviscid MHD equations.
Case 1. When ξ21−4ξ2ξ0>0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the following tanh-type solution can be obtained.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a2ξ1−a1ξ22ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+a2(ξ21−4ξ2ξ0)4ξ22tanh2(√ξ21−4ξ2ξ02ζ), | (4.30) |
u2=4ξ22(−a0k2−d0k4+k1)+2ξ1ξ2(k2a1+d1k4)−ξ21(k2a2+d2k4)4k3ξ22+ξ2(a1k2+d1k4)−ξ1(k2a2+d2k4)2k3ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)−k2a2+d2k44k3ξ22(ξ21−4ξ2ξ0)tanh2(√ξ21−4ξ2ξ02ζ), | (4.31) |
u3=4d0ξ22−2d1ξ1ξ2+d2ξ214ξ22+−d1ξ2+d2ξ12ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+d2(ξ21−4ξ2ξ0)4ξ22tanh2(√ξ21−4ξ2ξ02ζ), | (4.32) |
b1=2n0ξ2(k22+k23)+f1k2k4ξ12ξ2(k22+k23)+f1k2k4√ξ21−4ξ2ξ02ξ2(k22+k23)tanh(√ξ21−4ξ2ξ02ζ), | (4.33) |
b2=−2ξ2(k22+k23)(k4f0+k2n0)+k23f4f1ξ12k3ξ2(k22+k23)+k3f4f1√ξ21−4ξ2ξ02ξ2(k22+k23)tanh(√ξ21−4ξ2ξ02ζ), | (4.34) |
b3=2f0ξ2−f1ξ12ξ2−f1√ξ21−4ξ2ξ02ξ2tanh(√ξ21−4ξ2ξ02ζ), | (4.35) |
where ζ=k2x+k3y+k4z−k1t.
Setting a0=6,a1=6,a2=−2, d0=1,d1=−3,d2=−2,k1=2, k2=−4,k3=1,k4=1,ξ0=−1, ξ1=−2,ξ2=3,y=1 and t=5 in (4.31), we obtain Figure 10 of kink solution u2 as follows.
In particular, when ξ0=0 and ξ1ξ2≠0, the following sinh-cosh-type solution can be obtained.
u1=a0−a1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+a2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,u2=−a0k2−d0k4+k1k3+(a1k2+d1k4)ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]k3ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]−(k2a2+d2k4)ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2k3ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,u3=d0−d1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+d2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,b1=n0+f1k2k4ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)](k22+k23)ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C],b2=−k4f0−k2n0k3+k3k4f1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)](k22+k23)ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C], b3=f0−f1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]. | (4.36) |
Setting a0=2,a1=−2,a2=−127,d0=−10,d1=12,d2=3,k1=−14,k2=−7,k3=−2, k4=−2,ξ0=0,ξ1=1,ξ2=−12,y=1,C=1 and x=5 in u2 in (4.36), we obtain Figure 11 of kink-like solution u2 as follows.
Case 2. When ξ21−4ξ2ξ0<0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the following tan-type solution can be obtained.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a1ξ2−a2ξ12ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+a2(4ξ2ξ0−ξ21)4ξ22tan2(√4ξ2ξ0−ξ212ζ),u2=4ξ22(−a0k2−d0k4+k1)+2ξ1ξ2(a1k2+d1k4)−ξ21(k2a2+k4d2)4k3ξ22+−ξ2(a1k2+d1k4)+ξ1(k2a2+k4d2)2k3ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)−k2a2+k4d24k3ξ22(4ξ2ξ0−ξ21)tan2(√4ξ2ξ0−ξ212ζ),u3=4d0ξ22−2d1ξ1ξ2+d2ξ214ξ22+d1ξ2−d2ξ12ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+d2(4ξ2ξ0−ξ21)4ξ22tan2(√4ξ2ξ0−ξ212ζ),b1=2n0ξ2(k22+k23)+f1k2k4ξ12ξ2(k22+k23)−f1k2k4√4ξ2ξ0−ξ212ξ2(k22+k23)tan(√4ξ2ξ0−ξ212ζ),b2=−2ξ2(k22+k23)(k4f0+k2n0)+k23k4f1ξ12k3ξ2(k22+k23)−k3k4f1√4ξ2ξ0−ξ212ξ2(k22+k23)tan(√4ξ2ξ0−ξ212ζ),b3=2f0ξ2−f1ξ12ξ2+f1√4ξ2ξ0−ξ212ξ2tan(√4ξ2ξ0−ξ212ζ). | (4.37) |
Case 3. When ξ1=ξ0=0 and ξ2≠0, the following rational solution can be obtained.
u1=a0−a1ξ2ζ+C+a2(ξ2ζ+C)2, u2=−a0k2−d0k4+k1k3+a1k2+d1k4k3(ξ2ζ+C)−a2k2+d2k4k3(ξ2ζ+C)2,u3=d0−d1ξ2ζ+C+d2(ξ2ζ+C)2, b1=n0+f1k2k4(k22+k23)(ξ2ζ+C),b2=−k4f0−k2n0k3+k3k4f1(k22+k23)(ξ2ζ+C), b3=f0−f1ξ2ζ+C. | (4.38) |
When ν=η=κ=1 in ODEs (4.28), substituting (4.29) and (3.27) into (4.28), we obtain
a0=a0,a1=a1,a2=a2,d0=d0,d1=ia1√k22+k23k2,d2=ia2√k22+k23k2,f0=f0,f1=f1,f2=f2,k1=k1,k2=k2,k3=k3,k4=i√k22+k23,m0=m0,m1=a1k3k2,m2=a2k3k2,n0=n0,n1=f1k2i√k22+k23,n2=f2k2i√k22+k23,s0=s0,s1=f1k3i√k22+k23, |
s2=f2k3i√k22+k23,l1=a1(−a0k2−id0√k22+k23−m0k3+k1)k2,l2=−a2(i(a0k2+m0k3−k1)√k22+k23−d0(k22+k23))ik2√k22+k23,q1=−(−a1n0+f1d0)k2−k3s0a1k2+(a0f1+a1f0)k22−f1(−m0k3+k1)k2+f0a1k23ik2√k22+k23,q2=−(−a2n0+f2d0)k2−k3s0a2k2+(a0f2+a2f0)k22−f2(−m0k3+k1)k2+f0a2k23ik2√k22+k23. |
Combined with general solutions of (3.27) (c.f. [29]), it follows from (4.29) that (4.39)–(4.52) are four kinds of solutions for (3 + 1)-dimensional viscous MHD equations.
Case 1. When ξ21−4ξ2ξ0>0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the following tanh-type solution can be obtained.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a2ξ1−a1ξ22ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+a2(ξ21−4ξ2ξ0)4ξ22tanh2(√ξ21−4ξ2ξ02ζ), | (4.39) |
u2=4m0k2ξ22−2a1k3ξ1ξ2+a2k3ξ214k2ξ22+k3(−a1ξ2+a2ξ1)2k2ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+a2k3(ξ21−4ξ2ξ0)4k2ξ22tanh2(√ξ21−4ξ2ξ02ζ), | (4.40) |
u3=d0+i(−2a1ξ1ξ2+a2ξ21)√k22+k234k2ξ22+ia2(ξ21−4ξ2ξ0)√k22+k234k2ξ22tanh2(√ξ21−4ξ2ξ02ζ)+i(a2ξ1−a1ξ2)√k22+k232k2ξ22√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ), | (4.41) |
b1=n0+−2f1k2ξ1ξ2+f2k2ξ21i4ξ22√k22+k23+k2(−f1ξ2+f2ξ1)i2ξ22√k22+k23√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+f2k2(ξ21−4ξ2ξ0)i4ξ22√k22+k23tanh2(√ξ21−4ξ2ξ02ζ), | (4.42) |
b2=s0+−2f1k3ξ1ξ2+f2k3ξ21i4ξ22√k22+k23+k3(−f1ξ2+f2ξ1)i2ξ22√k22+k23√ξ21−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+f2k3(ξ21−4ξ2ξ0)i4ξ22√k22+k23tanh2(√ξ21−4ξ2ξ02ζ), | (4.43) |
b3=4f0ξ22−2f1ξ1ξ2+f2ξ214ξ22+−f1ξ2+f2ξ12ξ22√ξ12−4ξ2ξ0tanh(√ξ21−4ξ2ξ02ζ)+f2(ξ21−4ξ2ξ0)4ξ22tanh2(√ξ21−4ξ2ξ02ζ). | (4.44) |
Setting a1=−1,a2=2,d0=1,k1=1,k2=1,k3=1,ξ0=2,ξ1=−6,ξ2=3 and y=1 in (4.41), we obtain Figure 12 for solution u3 as follows.
In particular, when ξ0=0 and ξ1ξ2≠0, the following sinh-cosh-type solution can be obtained.
u1=a0−a1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+a2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,u2=m0−a1k3ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]k2ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+a2k3ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2k2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,u3=d0−ia1ξ1√k22+k23[sinh(ξ1ζ)+cosh(ξ1ζ)]k2ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+ia2ξ21√k22+k23[sinh(ξ1ζ)+cosh(ξ1ζ)]2k2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2, b1=n0−f1k2ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]iξ2√k22+k23[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+f2k2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2iξ22√k22+k23[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2,b2=s0−f1k3ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]iξ2√k22+k23[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+f2k3ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2iξ22√k22+k23[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2, b3=f0−f1ξ1[sinh(ξ1ζ)+cosh(ξ1ζ)]ξ2[sinh(ξ1ζ)+cosh(ξ1ζ)+C]+f2ξ21[sinh(ξ1ζ)+cosh(ξ1ζ)]2ξ22[sinh(ξ1ζ)+cosh(ξ1ζ)+C]2. | (4.45) |
Case 2. When ξ21−4ξ2ξ0<0 and ξ1ξ2≠0 (or ξ0ξ2≠0), the following tan-type solution can be obtained.
u1=4a0ξ22−2a1ξ1ξ2+a2ξ214ξ22+a1ξ2−a2ξ12ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+a2(4ξ2ξ0−ξ21)4ξ22tan2(√4ξ2ξ0−ξ212ζ), | (4.46) |
u2=4m0k2ξ22−2a1k3ξ1ξ2+a2k3ξ214k2ξ22+k3(a1ξ2−a2ξ1)2k2ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+a2k3(4ξ2ξ0−ξ21)4k2ξ22tan2(√4ξ2ξ0−ξ212ζ), | (4.47) |
u3=d0+i(−2a1ξ1ξ2+a2ξ21)√k22+k234k2ξ22+ia2(4ξ2ξ0−ξ21)√k22+k234k2ξ22tan2(√4ξ2ξ0−ξ212ζ)+i(a1ξ2−a2ξ1)√k22+k232k2ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ), | (4.48) |
b1=n0+k2(−2f1ξ1ξ2+f2ξ21)i4ξ22√k22+k23+k2(f1ξ2−f2ξ1)i2ξ22√k22+k23√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+f2k2(4ξ2ξ0−ξ21)i4ξ22√k22+k23tan2(√4ξ2ξ0−ξ212ζ), | (4.49) |
b2=s0+k3(−2f1ξ1ξ2+f2ξ21)i4ξ22√k22+k23+k3(f1ξ2−f2ξ1)i2ξ22√k22+k23√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+k3f2(4ξ2ξ0−ξ21)i4ξ22√k22+k23tan2(√4ξ2ξ0−ξ212ζ), | (4.50) |
b3=4f0ξ22−2f1ξ1ξ2+f2ξ214ξ22+f1ξ2−f2ξ12ξ22√4ξ2ξ0−ξ21tan(√4ξ2ξ0−ξ212ζ)+f2(4ξ2ξ0−ξ21)4ξ22tan2(√4ξ2ξ0−ξ212ζ). | (4.51) |
Case 3. When ξ1=ξ0=0 and ξ2≠0, the following rational solution can be obtained.
u1=a0−a1ξ2ζ+C+a2(ξ2ζ+C)2, b1=n0−f1k2i√k22+k23(ξ2ζ+C)+f2k2i√k22+k23(ξ2ζ+C)2,u3=d0−ia1√k22+k23k2(ξ2ζ+C)+ia2√k22+k23k2(ξ2ζ+C)2, u2=m0−a1k3k2(ξ2ζ+C)+a2k3k2(ξ2ζ+C)2, b2=s0−f1k3i√k22+k23(ξ2ζ+C)+f2k3i√k22+k23(ξ2ζ+C)2, b3=f0−f1ξ2ζ+C+f2(ξ2ζ+C)2. | (4.52) |
Setting a1=2i,a2=i,d0=−2,k1=3,k2=−2,k3=−2,ξ0=0,ξ1=0,ξ2=−1,C=1,z=2 and x=−15 for u3 in (4.52), we obtain Figure 13 for bright–dark soliton solution u3 as follows.
We analyze the continuous dependence of solution for MHD equations (2.2) on initial data, or namely the stability of MHD equations (2.2) from a qualitative perspective.
Lemma 5.1. [31] For q∈[2,∞), there exists C>0 such that for f∈H1(R2),
‖ | (5.1) |
Lemma 5.2. [32] For p \in [2, 6] , there exists C > 0 such that for g\in H^{1}(\mathbb{R}^3) ,
\begin{equation} \left\| {g} \right\|_{L^{p}(\mathbb{R}^3 )}^{p}\le C\left\| {{g}} \right\|_{{{L}^{2}(\mathbb{R}^3 )}}^{{(6-p)}/{2}\;}\left\| {\nabla{{{g}}}} \right\|_{{{L}^{2}(\mathbb{R}^3 )}}^{{(3p-6)}/{2}\;}. \end{equation} | (5.2) |
Theorem 5.3. For n = 2, 3 , if the initial data {\mathbf{U}_{0}}, {\mathbf{B}_{0}}\in {{({{L}^{2}}({{\mathbb{R}}^{n}}))}^{n}} , then the solutions (\mathbf{U}, \mathbf{B}) for the (2 + 1)- and (3 + 1)-dimensional MHD equations (2.2) with periodic boundary condition at infinity depend on the initial data continuously in {{({{L}^{2}}({{\mathbb{R}}^{n}}))}^{n}} .
Proof. Let ({\mathbf{U}_{1}}, {\mathbf{B}_{1}}) and ({\mathbf{U}_{2}}, {\mathbf{B}_{2}}) be two solutions to MHD equations (2.2) with initial data {\mathbf{U}_{0}}, {\mathbf{B}_{0}}\in {{({{L}^{2}}({{\mathbb{R}}^{n}}))}^{n}} . Set \tilde{\mathbf{U}} = {\mathbf{U}_{1}}-{\mathbf{U}_{2}} , \tilde{\mathbf{B}} = {\mathbf{B}_{1}}-{\mathbf{B}_{2}} , \tilde{p} = {{p}_{1}}-{{p}_{2}} , \tilde{r} = {{r}_{1}}-{{r}_{2}} , then (\tilde{\mathbf{U}}, \tilde{\mathbf{B}}) is the solution to the following system,
\left\{\begin{array}{l} \tilde{\mathbf{U}}_t-\nu \Delta \tilde{\mathbf{U}}+((\tilde{\mathbf{U}}\cdot \nabla) {\mathbf{U}_{1}}+({\mathbf{U}_{2}}\cdot \nabla) \tilde{\mathbf{U}})\kappa((\tilde{\mathbf{B}}\cdot \nabla) {\mathbf{B}_{1}}+({\mathbf{B}_{2}}\cdot \nabla) \tilde{\mathbf{B}})+\nabla \tilde{p}\\ +\frac{1}{2}\kappa\nabla(\vert\mathbf{B}_1{{\vert}^{2}}-\vert\mathbf{B}_2{{\vert}^{2}}) = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(5.3)\\ \tilde{\mathbf{B}}_t-\eta \Delta \tilde{\mathbf{B}}+((\tilde{\mathbf{U}}\cdot \nabla) {\mathbf{B}_{1}}+({\mathbf{U}_{2}}\cdot \nabla) \tilde{\mathbf{B}})-((\tilde{\mathbf{B}}\cdot \nabla) {\mathbf{U}_{1}}+({\mathbf{B}_{2}}\cdot \nabla) \tilde{\mathbf{U}})+\nabla\tilde{r} = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(5.4)\\ \operatorname{div}\ \tilde{\mathbf{U}} = 0, \ \operatorname{div}\ \tilde{\mathbf{B}} = 0. \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(5.5) \end{array}\right. |
Case 1. n = 2 .
It follows from H \ddot{\text{o}} lder inequality and Lemma 5.1 that
\begin{equation} -((\tilde{\mathbf{U}}\cdot \nabla) {\mathbf{U}_{1}}, \tilde{\mathbf{U}})\le {{\left\| \nabla {\mathbf{U}_{1}} \right\|}_{{{L}^{2}}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{4}}}^{2}\le C_0{{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{2}}}^{{}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}^{{}}, \end{equation} | (5.6) |
\begin{equation} ((\tilde{\mathbf{B}}\cdot \nabla) {\mathbf{U}_{1}}, \tilde{\mathbf{B}})\le {{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{4}}}^{2}\le C_0{{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{2}}}^{{}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}^{{}}, \end{equation} | (5.7) |
\begin{equation} ((\tilde{\mathbf{B}}\cdot \nabla) {\mathbf{B}_{1}}, \tilde{\mathbf{U}})\le {{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}{{\| {\tilde{\mathbf{B}}} \|}_{{{L}^{4}}}}{{\| {\tilde{\mathbf{U}}} \|}_{{{L}^{4}}}}\le C_0{{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}^{\frac{1}{2}}, \end{equation} | (5.8) |
\begin{equation} -((\tilde{\mathbf{U}}\cdot \nabla) {\mathbf{B}_{1}}, \tilde{\mathbf{B}})\le {{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}{{\| {\tilde{\mathbf{U}}} \|}_{{{L}^{4}}}}{{\| {\tilde{\mathbf{B}}} \|}_{{{L}^{4}}}}\le C_0{{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}^{\frac{1}{2}}. \end{equation} | (5.9) |
Take L^{2} inner product of (5.3) with {\tilde{\mathbf{U}}} and (5.4) with {\tilde{\mathbf{B}}} , respectively. Without loss of generality, choose \nu = \eta = \kappa = 1 in (5.3) and (5.4). Since
\begin{equation} (({\mathbf{U}_{2}}\cdot \nabla) \tilde{\mathbf{U}}, \tilde{\mathbf{U}}) = 0, \ \ (({\mathbf{U}_{2}}\cdot \nabla) \tilde{\mathbf{B}}, \tilde{\mathbf{B}}) = 0, \ \ (({\mathbf{B}_{2}}\cdot \nabla )\tilde{\mathbf{B}}, \tilde{\mathbf{U}})+(({\mathbf{B}_{2}}\cdot \nabla) \tilde{\mathbf{U}}, \tilde{\mathbf{B}}) = 0, \end{equation} | (5.10) |
and
\begin{equation} (\nabla (\tilde{p}+\frac{1}{2}\kappa(\vert\mathbf{B}_1{{\vert}^{2}}-\vert\mathbf{B}_2{{\vert}^{2}})), \tilde{\mathbf{U}}) = 0, \ \ (\nabla \tilde{r} , \tilde{\mathbf{B}}) = 0, \end{equation} | (5.11) |
using (5.6)–(5.11), we have
\begin{equation} \begin{aligned} & \frac{d}{dt}(\left\| \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+\left\| \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2})+2\left\| \nabla \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+2\left\| \nabla \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2} \\ \le & C{{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{2}}}^{{}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}^{{}}+C {{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{2}}}^{{}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}^{{}}\\ +&2C{{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}^{\frac{1}{2}}. \end{aligned} \end{equation} | (5.12) |
where C = 2{{C}_{0}} . It follows from Young inequality and (5.12) that
\begin{equation} \begin{aligned} & \frac{d}{dt}(\left\| \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+\left\| \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2})+2\left\| \nabla \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+2\left\| \nabla \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2} \\ \le & \frac{{{C}^{2}}}{2}\left( \left\| \nabla {\mathbf{U}_{1}} \right\|_{{{L}^{2}}}^{2}+\left\| \nabla {\mathbf{B}_{1}} \right\|_{{{L}^{2}}}^{2} \right)\left( \left\| {\tilde{\mathbf{U}}} \right\|_{{{L}^{2}}}^{2}+\left\| {\tilde{\mathbf{B}}} \right\|_{{{L}^{2}}}^{2} \right)+\left(\left\| \nabla \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+\left\| \nabla \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2}\right). \end{aligned} \end{equation} | (5.13) |
Using Gr \ddot{\text{o}} nwall's inequality, \left\| {\tilde{\mathbf{U}}} \right\|_{{{L}^{2}}}^{2}+\left\| {\tilde{\mathbf{B}}} \right\|_{{{L}^{2}}}^{2}\le M{{ (\left\| {\tilde{\mathbf{U}}} \right\|_{{{L}^{2}}}^{2}+\left\| {\tilde{\mathbf{B}}} \right\|_{{{L}^{2}}}^{2}) \vert }_{t = {{t}_{0}}}}. Then, solution (\mathbf{U}, \mathbf{B}) for (2 + 1)-dimensional MHD equations (2.2) with periodic boundary condition at infinity depends on the initial data continuously in {{({{L}^{2}}({{\mathbb{R}}^{2}}))}^{2}} .
Case 2. n = 3 .
It follows from H \ddot{\text{o}} lder inequality and Lemma 5.2 that
\begin{equation} -((\tilde{\mathbf{U}}\cdot \nabla) {\mathbf{U}_{1}}, \tilde{\mathbf{U}})\le {{\left\| \nabla {\mathbf{\mathbf{U}}_{1}} \right\|}_{{{L}^{2}}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{3}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{6}}}\le C_0{{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{2}}}^{{\frac{1}{2}}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}^{{\frac{3}{2}}}, \end{equation} | (5.14) |
\begin{equation} ((\tilde{\mathbf{B}}\cdot \nabla ){\mathbf{U}_{1}}, \tilde{\mathbf{B}})\le {{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{3}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{6}}}\le C_0{{\| \nabla {\mathbf{U}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}^{\frac{3}{2}}. \end{equation} | (5.15) |
\begin{equation} ((\tilde{\mathbf{B}}\cdot \nabla) {\mathbf{B}_{1}}, \tilde{\mathbf{U}})\le {{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}{{\| {\tilde{\mathbf{B}}} \|}_{{{L}^{3}}}}{{\| {\tilde{\mathbf{U}}} \|}_{{{L}^{6}}}}\le C_0{{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{B}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}, \end{equation} | (5.16) |
\begin{equation} -((\tilde{\mathbf{U}}\cdot \nabla) {\mathbf{B}_{1}}, \tilde{\mathbf{B}})\le {{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}{{\| {\tilde{\mathbf{U}}} \|}_{{{L}^{3}}}}{{\| {\tilde{\mathbf{B}}} \|}_{{{L}^{6}}}}\le C_0{{\| \nabla {\mathbf{B}_{1}} \|}_{{{L}^{2}}}}\| {\tilde{\mathbf{U}}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{U}} \|_{{{L}^{2}}}^{\frac{1}{2}}\| \nabla \tilde{\mathbf{B}} \|_{{{L}^{2}}}. \end{equation} | (5.17) |
Using Young inequality with \varepsilon , without loss of generality, choosing \nu = \eta = \kappa = 1 in (5.3) and (5.4), there exists \varepsilon < \frac{2}{3} such that
\begin{aligned} &\frac{d}{dt}( \left\| \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+\left\| \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2})+2\left\| \nabla \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+2\left\| \nabla \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2} \\ \le & C(\varepsilon )(\left\| \nabla {\mathbf{U}_{1}} \right\|_{{{L}^{2}}}^{4}+\left\| \nabla {\mathbf{B}_{1}} \right\|_{{{L}^{2}}}^{4})(\left\| {\tilde{\mathbf{U}}} \right\|_{{{L}^{2}}}^{2}+\left\| {\tilde{\mathbf{B}}} \right\|_{{{L}^{2}}}^{2})+3 \varepsilon (\left\| \nabla \tilde{\mathbf{U}} \right\|_{{{L}^{2}}}^{2}+\left\| \nabla \tilde{\mathbf{B}} \right\|_{{{L}^{2}}}^{2}). \end{aligned} |
Similarly, using Gr \ddot{\text{o}} nwall's inequality, it can be obtained that solution (\mathbf{U}, \mathbf{B}) for (3 + 1)-dimensional MHD equations (2.2) with periodic boundary condition at infinity depends on the initial data continuously in {{({{L}^{2}}({{\mathbb{R}}^{3}}))}^{3}} .
Next, we further analyze the stability of MHD equations (2.2) combining with the exact solutions obtained above from a quantitative perspective, which provide an accurate mathematical description for the stability of MHD systems. Denote {\bar{\mathbf{U}}} = \mathbf{U}+\mathbf{U}' , \bar{\mathbf{B}} = \mathbf{B}+\mathbf{B}' , where \mathbf{U}', \mathbf{B}' are disturbances to the velocity and magnetic field, respectively. (\mathbf{U}, \mathbf{B}) and (\bar{\mathbf{U}}, \bar{\mathbf{B}}) are solutions before and after being affected by disturbances, respectively. Therefore \mathbf{U}', \mathbf{B}' satisfy the following system
\left\{\begin{array}{l} {\mathbf{U}'_t}-\nu \Delta {\mathbf{U}'}+(({\mathbf{U}'}\cdot \nabla) {\mathbf{U}}+(({\mathbf{U}+\mathbf{U}'})\cdot \nabla) {\mathbf{U}'})-\kappa(({\mathbf{B}'}\cdot \nabla) {\mathbf{B}}+(({\mathbf{B}+\mathbf{B}'})\cdot \nabla) {\mathbf{B}'})\\ +\nabla {p}'+\frac{1}{2}\kappa\nabla(-\vert\mathbf{B}{{\vert}^{2}}+\vert\mathbf{B}+\mathbf{B}'{{\vert}^{2}}) = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(5.18)\\ {\mathbf{B}'_t}-\eta \Delta {\mathbf{B}'}+(({\mathbf{U}'}\cdot \nabla) {\mathbf{B}}+(({\mathbf{U}+\mathbf{U}'})\cdot \nabla) {\mathbf{B}'})-(({\mathbf{B}'}\cdot \nabla) {\mathbf{U}}+(({\mathbf{B}+\mathbf{B}'})\cdot \nabla) {\mathbf{U}'})\\ +\nabla{r}' = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(5.19)\\ \operatorname{div}{\mathbf{U}'} = 0, \ \operatorname{div}{\mathbf{B}'} = 0. \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(5.20) \end{array}\right. |
We select several obtained exact solutions of MHD system to study the impact of disturbances on stability of the system.
Case 1. Harmonic disturbance.
The initial disturbance is
{{{u}'_{1}}}({{t}_{0}}, x, y) = A_1\cos (\frac{2\pi }{w_1}(x-y-({{\bar{v}}_{1}}-{{\bar{v}}_{2}}){{t}_{0}})), \ \ {{{u}'_{2}}}({{t}_{0}}, x, y) = A_2\cos (\frac{2\pi }{w_2}(x-y-({{\bar{v}}_{1}}-{{\bar{v}}_{2}}){{t}_{0}})), |
where A_1, \ A_2 are amplitude of disturbance waves. We analyze the behavior of u_1 , u_2 in (3.13) after being affected by disturbances {{{u}'_{1}}}({{t}}, x, y) , {{{u}'_{2}}}({{t}}, x, y) . Set A_i = 0.1, w_i = 5\ (i = 1, 2) , the evolution of u_1+{u'_{1}} can be displayed intuitively as following Figure 14 ( u_2+{u'_{2}} is similar).
From Figure 14, it can be seen that with the evolution of time, the amplitude of \mathbf{U} under the influence of the harmonic disturbance is limited. The solutions (\mathbf{U}, \mathbf{B}) for the (2 + 1)-dimensional MHD equations (2.2) depend on the initial data continuously in {{({{L}^{2}}({{\mathbb{R}}^{2}}))}^{2}} , which is also consistent with the conclusion of qualitative analysis.
Case 2. Bell shaped solitary wave disturbance.
The initial disturbance is
{{{u}'_{1}}}({{t}_{0}}, x, y) = A_1\operatorname{sech} (\frac{2\pi }{w_1}(x-y-({{\bar{v}}_{1}}-{{\bar{v}}_{2}}){{t}_{0}})), \ \ {{{u}'_{2}}}({{t}_{0}}, x, y) = A_2\operatorname{sech} (\frac{2\pi }{w_2}(x-y-({{\bar{v}}_{1}}-{{\bar{v}}_{2}}){{t}_{0}})), |
where A_1, \ A_2 are amplitude of disturbance waves. We analyze the behavior of u_1 , u_2 in (3.14) after being affected by disturbances {{{u}'_{1}}}({{t}}, x, y) , {{{u}'_{2}}}({{t}}, x, y) . Set A_i = 0.1, w_i = 5(i = 1, 2) , the evolution of u_1+{u'_{1}} can be displayed intuitively as following Figure 15 ( u_2+{u'_{2}} is similar).
From Figure 15, it can be seen that the amplitude of \mathbf{U} under the influence of the Bell shaped solitary wave disturbance has increased but is limited. The velocity \mathbf{U} under the influence of Bell shaped solitary wave disturbance is stable.
In this paper, several novel classes of solutions and stability analysis are presented for MHD flows. When the magnetic field vanishes, some of the exact solutions can be reduced to solutions of Euler or Navier-Stokes equation. Through Lie symmetry analysis and the generalized Riccati equation expansion method, the MHD system achieves order reduction and dimensionality reduction, and the complex nonlinear and strongly coupled terms in fluid dynamics systems are handled technically. The Lie group of transformations and the similarity reductions of (2 + 1)- and (3 + 1)-dimensional inviscid and viscous MHD equations are studied. The exact solutions with rich forms are obtained, which can describe certain solition-like surface waves, such as periodic solution, single soliton solution, and lump solution. The mechanisms of rotational and irrotational fluids are analyzed. Furthermore, using the generalized Riccati equation expansion method, we obtain miscellaneous traveling wave solutions, including kink, kink-like, anti-kink-like, breather, and interaction solutions. In addition, the continuous dependence of solutions for MHD equations for initial values is studied from qualitative and quantitative perspectives.
Compared with the related work, the novelty of this paper lies in that we consider the problem from multiple perspectives and obtain new exact solutions. For instance, Dorodnitsyn et al. [23] studied (1 + 1)-dimensional inviscid MHD flows in the mass Lagrangian coordinates, while we studied from the perspective of both inviscid and viscous of (2 + 1)- and (3 + 1)-dimensional MHD equations. Liu et al. [24] obtained analytical solutions of (2 + 1) -dimensional inviscid incompressible MHD equations by Lie symmetry analysis. Picard et al. [26] obtained some exact solutions of (3 + 1)-dimensional inviscid MHD equations by the symmetry reduction method. We used Lie symmetry analysis as well as generalized Riccati equation expansion methods to study both inviscid and viscous of (2 + 1)- and (3 + 1)-dimensional MHD equations. Moreover, based on the study, we obtain new exact solutions with richer forms. Xia et al. [25] used the Lie symmetry method to obtain some exact solutions of (2 + 1)-dimensional incompressible ideal MHD equations. Cheung et al. [33] obtained bounded soliton solutions of (2 + 1)-dimensional incompressible MHD equations. However, we obtain some new exact solutions for both inviscid and viscous of (2 + 1)- and (3 + 1)-dimensional MHD equations, such as lump solutions, kink solutions, kink-like solution, breather solutions, and interaction solution between anti-kink and solition. Ayub et al. [34] studied solitary wave solutions for two-dimensional viscous incompressible MHD flow regarding space evolution, while we studied from the perspective of both inviscid and viscous of (2 + 1)- and (3 + 1)-dimensional MHD flows, which consider both time and space evolution.
The exact solutions we obtain can correspond to different physical behaviors for MHD flows. For instance, solitons can maintain their shape and thier amplitude is unchanged during propagation. This property is important for understanding and predicting some wave propagations in MHD flow. Soliton waves can be used to describe some wave phenomena in plasma, which has potential application value for achieving and maintaining the stability of fusion plasma. Periodic solutions can describe some periodic oscillation phenomena in MHD flow. Lump solution can correspond to waves that are localized in time and space, while the amplitude of peak and valley is several times higher than the surrounding background height. Breather solutions can explain MHD flow that exhibits periodicity in certain direction and locality in other directions. The kink and kink-like solutions can manifest as a rapid change or discontinuity in some fields at the macro level. Considering the physical significance and the importance of studying analytical solutions of MHD equations, compressible case and MHD systems with other factors such as time-dependent density and Coriolis force deserve to be further studied.
Shengfang Yang worked on conceptualization, writing-original draft, formal analysis, software. Huanhe Dong worked on conceptualization, resources, validation, supervision. Mingshuo Liu worked on methodology, writing-review & editing, formal analysis, validation.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the National Natural Science Foundation of China (Nos. 12105161, 12305003).
The authors declare there is no conflict of interest.
[1] |
L. Ma, K. Mei, S. Ding, T. Pan, Design of adaptive fuzzy fixed-time HOSM controller subject to asymmetric output constraints, IEEE Trans. Fuzzy Syst., 2023 (2023). https://doi.org/10.1109/TFUZZ.2023.3241147 doi: 10.1109/TFUZZ.2023.3241147
![]() |
[2] |
Y. Tang, X. Wu, P. Shi, F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 113 (2020), 108766. https://doi.org/10.1016/j.automatica.2019.108766 doi: 10.1016/j.automatica.2019.108766
![]() |
[3] |
B. Xu, Q. Jiang, W. Ji, S. Ding, An improved three-vector-based model predictive current control method for surface-mounted PMSM drives, IEEE Trans. Transp. Electrif., 8 (2022), 4418–4430. https://doi.org/10.1109/TTE.2022.3169515 doi: 10.1109/TTE.2022.3169515
![]() |
[4] |
Q. K. Hou, S. H. Ding, X. H. Yu, Composite super-twisting sliding mode control design for PMSM speed regulation problem based on a novel disturbance observer, IEEE Trans. Energy Convers., 36 (2021), 2591–2599. https://doi.org/10.1109/tec.2020.2985054 doi: 10.1109/tec.2020.2985054
![]() |
[5] | Y. Wu, L. F. Wang, J. Z. Zhang, F. Li, Robust vehicle yaw stability controlby active front steering with active disturbance rejection controller, in Proceedings of the Institution of Mechanical Engineers Part Ⅰ Journal of Systems and Control Engineering, (2018). https://doi.org/10.1177/0959651818813515 |
[6] |
J. Zhang, H. Wang, M. Ma, M. Yu, A. Yazdani, Active front steering-based electronic stability control for steer-by-wire vehicles via terminal sliding mode and extreme learning machine, IEEE Trans. Veh. Technol., 69 (2020), 14713–14726. https://doi.org/10.1109/TVT.2020.3036400 doi: 10.1109/TVT.2020.3036400
![]() |
[7] |
Y. C. Zhu, L. Ma, Composite chattering-free discrete-time sliding mode controller design for active front steering system of electric vehicles, Nonlinear Dyn., 105 (2021), 301–313. https://doi.org/10.1007/s11071-021-06465-5 doi: 10.1007/s11071-021-06465-5
![]() |
[8] |
A. Aksjonov, K. Augsburg, V. Vodovozov, Design and Simulation of the Robust ABS and ESP Fuzzy Logic Controller on the Complex Braking Maneuvers, Appl. Sci., 6 (2016). https://doi.org/10.3390/app6120382 doi: 10.3390/app6120382
![]() |
[9] |
J. H. Guo, Y. G. Luo, C. Hu, C. Tao, K. Q. Li, Robust combined lane keeping and direct yaw moment control for intelligent electric vehicles with time delay, Int. J. Autom. Technol., 20 (2019), 289–296. https://doi.org/10.1007/s12239-019-0028-5 doi: 10.1007/s12239-019-0028-5
![]() |
[10] |
S. H. Ding, J. L. Sun, Direct yaw-moment control for 4WID electric vehicle via finite-time control technique, Nonlinear Dyn., 88 (2016), 239–254. https://doi.org/10.1007/s11071-016-3240-0 doi: 10.1007/s11071-016-3240-0
![]() |
[11] |
B. Xu, X. Cui, W. Ji, H. Yuan, J. Wang, Apple grading method design and implementation for automatic grader based on improved YOLOv5, Agriculture, 13 (2023), 124. https://doi.org/10.3390/agriculture13010124 doi: 10.3390/agriculture13010124
![]() |
[12] |
B. Xu, L. Zhang, W. Ji, Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives, IEEE Trans. Transp. Electrification, 7 (2021), 2753–2762. https://doi.org/10.1109/TTE.2021.3083925 doi: 10.1109/TTE.2021.3083925
![]() |
[13] |
J. Sun, J. Yi, Z. Pu, Fixed-time adaptive fuzzy control for uncertain nonstrict-feedback systems with time-varying constraints and input saturations, IEEE Trans. Fuzzy Syst., 30 (2022), 1114–1128. https://doi.org/10.1109/TFUZZ.2021.3052610 doi: 10.1109/TFUZZ.2021.3052610
![]() |
[14] |
X. Li, D. W. C. Ho, J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361–368. https://doi.org/10.1016/j.automatica.2018.10.024 doi: 10.1016/j.automatica.2018.10.024
![]() |
[15] |
K. Mei, C. Qian, S. Ding, Design of adaptive SOSM controller subject to disturbances with unknown magnitudes, IEEE Trans. Circuits Syst. Ⅰ, 70 (2023), 2133–2142. https://doi.org/10.1109/TCSI.2023.3241291 doi: 10.1109/TCSI.2023.3241291
![]() |
[16] |
K. Mei, S. Ding, X. Yu, A generalized supertwisting algorithm, IEEE Trans. Cybern., 2022 (2022). https://doi.org/10.1109/TCYB.2022.3188877 doi: 10.1109/TCYB.2022.3188877
![]() |
[17] |
S. Ding, B. Zhang, K. Mei, J. Park, Adaptive fuzzy SOSM controller design with output constraints, IEEE Trans. Fuzzy Syst., 30 (2022), 2300–2311. https://doi.org/10.1109/TFUZZ.2021.3079506. doi: 10.1109/TFUZZ.2021.3079506
![]() |
[18] |
X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. https://doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
![]() |
[19] |
X. Li, X. Yan, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. https://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
![]() |
[20] |
J. H. Guo, J. Y. Wang, Y. G. Luo, K. Q. Li, Takagi–Sugeno fuzzy-based robust H_{\infty} integrated lane-keeping and direct yaw moment controller of unmanned electric vehicles, IEEE/ASME Trans. Mech., 26 (2020), 2151–2162. https://doi.org/10.1109/TMECH.2020.3032998 doi: 10.1109/TMECH.2020.3032998
![]() |
[21] |
K. Mei, S. Ding, W. X. Zheng, Fuzzy adaptive SOSM based control of a type of nonlinear systems, IEEE Trans. Circuits Syst. Ⅱ, 69 (2022), 1342–1346. https://doi.org/10.1109/TCSII.2021.3116812 doi: 10.1109/TCSII.2021.3116812
![]() |
[22] |
X. K. He, K. M. Yang, Y. L. Liu, X. W. Ji, A novel direct yaw moment control system for autonomous vehicle, SAE Tech. Paper, 2018 (2018). https://doi.org/10.4271/2018-01-1594 doi: 10.4271/2018-01-1594
![]() |
[23] |
S. Ding, Q. Hou, H. Wang, Disturbance-observer-based second-order sliding mode controller for speed control of PMSM drives, IEEE Trans. Energy Convers., 38 (2023), 100–110. https://doi.org/10.1109/TEC.2022.3188630 doi: 10.1109/TEC.2022.3188630
![]() |
[24] |
L. Hind, D. Moustapha, T. Reine, C. Ali, Yaw moment Lyapunov based control for in-wheel-motor-drive electric vehicle, IFAC-PapersOnLine, 50 (2017), 13828–13833. https://doi.org/10.1016/j.ifacol.2017.08.2189 doi: 10.1016/j.ifacol.2017.08.2189
![]() |
[25] |
J. Song, W. X. Zheng, Y. G. Niu, Self-triggered sliding mode control for networked PMSM speed regulation system: A PSO-optimized super-twisting algorithm, IEEE Trans. Ind. Electron., 69 (2021), 763–773. https://doi.org/10.1109/TIE.2021.3050348 doi: 10.1109/TIE.2021.3050348
![]() |
[26] |
S. H. Ding, B. B. Zhang, K. Q. Mei, J. H. Park, Adaptive fuzzy SOSM controller design with output constraints, IEEE Trans. Fuzzy Syst., 30 (2021), 2300–2311. https://doi.org/10.1109/TFUZZ.2021.3079506 doi: 10.1109/TFUZZ.2021.3079506
![]() |
[27] |
S. H. Ding, K. Q. Mei, X. H. Yu, Adaptive second-order sliding mode control: A Lyapunov approach, IEEE Trans. Autom. Control, 67 (2021), 5392–5399. https://doi.org/10.1109/TAC.2021.3115447 doi: 10.1109/TAC.2021.3115447
![]() |
[28] |
S. H. Ding, L. Liu, W. X. Zheng, Sliding mode direct yaw-moment control design for in-wheel electric vehicles, IEEE Trans. Ind. Electron., 64 (2017), 6752–6762. https://doi.org/10.1109/tie.2017.2682024 doi: 10.1109/tie.2017.2682024
![]() |
[29] |
B. Lenzo, M. Zanchetta, A. Sorniotti, P. Gruber, W. D. Nijs, Yaw rate and sideslip angle control through single input single output direct yaw moment control, IEEE Trans. Control Syst. Technol., 29 (2021), 124–139. https://doi.org/10.1109/TCST.2019.2949539 doi: 10.1109/TCST.2019.2949539
![]() |
[30] |
C. Y. Fu, H. Reza, K. N. Li, M. H. Hu, A novel adaptive sliding mode control approach for electric vehicle direct yaw-moment control, Adv. Mech. Eng., 10 (2018), 1–12. https://doi.org/10.1177/1687814018803179 doi: 10.1177/1687814018803179
![]() |
[31] |
W. Qi, H. Su, A Cybertwin based multimodal network for ECG patterns monitoring using deep learning, IEEE Trans. Ind. Inf., 18 (2022), 6663–6670. https://doi.org/10.1109/TII.2022.3159583 doi: 10.1109/TII.2022.3159583
![]() |
[32] |
Y. Shi, L. Li, J. Yang, Y. Wang, S. Hao, Center-based transfer feature learning with classifier adaptation for surface defect recognition, Mech. Syst. Signal Process., 188 (2023), 110001. https://doi.org/10.1016/j.ymssp.2022.110001 doi: 10.1016/j.ymssp.2022.110001
![]() |
[33] |
S. Roy, S. Baldi, L. M. Fridman, On adaptive sliding mode control without a priori bounded uncertainty, Automatica, 111 (2020), 108650. https://doi.org/10.1016/j.automatica.2019.108650 doi: 10.1016/j.automatica.2019.108650
![]() |
[34] |
Z. Lv, Y. Wu, X. Sun, Q. Wang, Fixed-time control for a quadrotor with a cable-suspended load, IEEE Trans. Intell. Trans. Syst., 23 (2022), 21932–21943. https://doi.org/10.1109/TITS.2022.3180733 doi: 10.1109/TITS.2022.3180733
![]() |
[35] |
Q. Hou, S. Ding, GPIO based super-twisting sliding mode control for PMSM, IEEE Trans. Circuits Syst. Ⅱ, 68 (2021), 747–751. https://doi.org/10.1109/TCSII.2020.3008188 doi: 10.1109/TCSII.2020.3008188
![]() |
[36] |
Z. Lv, Q. Zhao, S. Li, Y. Wu, Finite-time control design for a quadrotor transporting a slung load, Control Eng. Prac., 122 (2022), 105082. https://doi.org/10.1016/j.conengprac.2022.105082 doi: 10.1016/j.conengprac.2022.105082
![]() |
[37] |
Y. Tang, X. Jin, Y. Shi, W. Du, Event-triggered attitude synchronization of multiple rigid body systems with velocity-free measurements, Automatica, 143 (2022), 110460. https://doi.org/10.1016/j.automatica.2022.110460 doi: 10.1016/j.automatica.2022.110460
![]() |
[38] |
Y. Tang, D. Zhang, P. Shi, W. Zhang, F. Qian, Event-based formation control for nonlinear multiagent systems under DoS attacks, IEEE Trans. Autom. Control, 66 (2021), 452–459. https://doi.org/10.1109/TAC.2020.2979936 doi: 10.1109/TAC.2020.2979936
![]() |
[39] |
W. W. Chen, X. T. Liang, Q. D. Wang, L. F. Zhao, X. Wang, Extension coordinated control of four wheel independent drive electric vehicles by AFS and DYC, Control Eng. Prac., 101 (2020), 1242–1258. https://doi.org/10.1016/j.conengprac.2020.104504 doi: 10.1016/j.conengprac.2020.104504
![]() |
[40] |
S. B. Zheng, H. J. Tang, J. Hou, Z. Z. Han, Y. Zhang, Controller design for vehicle stability enhancement, Control Eng. Prac., 14 (2006), 1413–1421. https://doi.org/10.1016/j.conengprac.2005.10.005 doi: 10.1016/j.conengprac.2005.10.005
![]() |
[41] | R. Rajesh, Vehicle Dynamics and Control, Springer Science & Business Media, 2011. |
[42] |
L. Arie, Sliding order and sliding accuracy in sliding mode control, Int. J. Control, 58 (1993), 1247–1263. https://doi.org/10.1080/00207179308923053 doi: 10.1080/00207179308923053
![]() |
[43] |
D. L. Liang, J. Li, R. H. Qu, W. B. Kong, Adaptive second-order sliding-mode observer for PMSM sensorless control considering VSI nonlinearity, IEEE Trans. Power Electron., 33 (2017), 8994–9004. https://doi.org/10.1109/TPEL.2017.2783920 doi: 10.1109/TPEL.2017.2783920
![]() |
[44] |
Q. K Hou, S. H. Ding, X. H. Yu, K. Q. Mei, A super-twisting-like fractional controller for SPMSM drive system, IEEE Trans. Ind. Electron., 69 (2021), 9376–9384. https://doi.org/10.1109/TIE.2021.3116585 doi: 10.1109/TIE.2021.3116585
![]() |
[45] |
K. Q. Mei, S. H. Ding, C. C. Chen, Fixed-time stabilization for a class of output-constrained nonlinear systems, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 6498–6510. https://doi.org/10.1109/tsmc.2022.3146011 doi: 10.1109/tsmc.2022.3146011
![]() |
[46] |
G. Gandikota, D. K. Das, Terminal sliding mode disturbance observer based adaptive super twisting sliding mode controller design for a class of nonlinear system, Eur. J. Control, 57 (2021), 232–241. https://doi.org/10.1016/j.ejcon.2020.05.004 doi: 10.1016/j.ejcon.2020.05.004
![]() |
[47] |
B. B. Yan, P. Dai, R. F. Liu, M. Z. Xing, S. X. Liu, Adaptive super-twisting sliding mode control of variable sweep morphing aircraft, Aerosp. Sci. Technol., 92 (2019), 198–210. https://doi.org/10.1016/j.ast.2019.05.063 doi: 10.1016/j.ast.2019.05.063
![]() |
[48] |
S. Yuri, T. Mohammed, P. Franck, A novel adaptive-gain supertwisting sliding mode controller: Methodology and application, Automatica, 48 (2012), 759–769. https://doi.org/10.1016/j.automatica.2012.02.024 doi: 10.1016/j.automatica.2012.02.024
![]() |
[49] |
L. Zhai, T. M. Sun, J. Wang, Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle, IEEE Trans. Veh. Technol., 65 (2016), 4726–4739. https://doi.org/10.1109/TVT.2016.2526663 doi: 10.1109/TVT.2016.2526663
![]() |
1. | Lequn Chen, Xiling Yao, Peng Xu, Seung Ki Moon, Guijun Bi, Rapid surface defect identification for additive manufacturing with in-situ point cloud processing and machine learning, 2021, 16, 1745-2759, 50, 10.1080/17452759.2020.1832695 | |
2. | Pin-Chuan Chen, Ching Chan Chou, Chung Hsuan Chiang, Systematically Studying Dissolution Process of 3D Printed Acrylonitrile Butadiene Styrene (ABS) Mold for Creation of Complex and Fully Transparent Polydimethylsiloxane (PDMS) Fluidic Devices, 2021, 1976-0280, 10.1007/s13206-021-00009-0 | |
3. | Yanzhou Fu, Austin Downey, Lang Yuan, Avery Pratt, Yunusa Balogun, In situ monitoring for fused filament fabrication process: A review, 2021, 38, 22148604, 101749, 10.1016/j.addma.2020.101749 | |
4. | Jingchao Jiang, Yongsheng Ma, Path Planning Strategies to Optimize Accuracy, Quality, Build Time and Material Use in Additive Manufacturing: A Review, 2020, 11, 2072-666X, 633, 10.3390/mi11070633 | |
5. | George Papazetis, George-Christopher Vosniakos, Improving deposition quality at higher rates in material extrusion additive manufacturing, 2020, 111, 0268-3768, 1221, 10.1007/s00170-020-06182-0 | |
6. | Jingchao Jiang, Yun-Fei Fu, A short survey of sustainable material extrusion additive manufacturing, 2020, 1448-4846, 1, 10.1080/14484846.2020.1825045 | |
7. | Jingchao Jiang, Stephen T. Newman, Ray Y. Zhong, A review of multiple degrees of freedom for additive manufacturing machines, 2021, 34, 0951-192X, 195, 10.1080/0951192X.2020.1858510 | |
8. | JC Jiang, Xinghua Xu, Wanzhi Rui, Zhengrong Jia, Zuowei Ping, O.P. Malik, Line Width Mathematical Model in Fused Deposition Modelling for Precision Manufacturing, 2021, 231, 2267-1242, 03003, 10.1051/e3sconf/202123103003 | |
9. | A. Equbal, S. Akhter, Md. A. Equbal, A. K. Sood, 2021, Chapter 23, 978-3-030-68023-7, 445, 10.1007/978-3-030-68024-4_23 | |
10. | Huiying He, Jun Lu, Yi Zhang, Jing Han, Zhuang Zhao, Quantitative prediction of additive manufacturing deposited layer offset based on passive visual imaging and deep residual network, 2021, 72, 15266125, 195, 10.1016/j.jmapro.2021.09.049 | |
11. | Yuhang Yang, Varun A. Kelkar, Hemangg S. Rajput, Adriana C. Salazar Coariti, Kimani C. Toussaint, Chenhui Shao, Machine-learning-enabled geometric compliance improvement in two-photon lithography without hardware modifications, 2022, 76, 15266125, 841, 10.1016/j.jmapro.2022.02.046 | |
12. | Tariku Sinshaw Tamir, Gang Xiong, Qihang Fang, Xisong Dong, Zhen Shen, Fei-Yue Wang, A feedback-based print quality improving strategy for FDM 3D printing: an optimal design approach, 2022, 120, 0268-3768, 2777, 10.1007/s00170-021-08332-4 | |
13. | Sandeep Suresh Babu, Abdel-Hamid I. Mourad, Khalifa H. Harib, 2022, Unauthorized usage and cybersecurity risks in additively manufactured composites: Toolpath reconstruction using imaging and machine learning techniques, 978-1-6654-1801-0, 1, 10.1109/ASET53988.2022.9734313 | |
14. | Xiaoyu Li, Mengna Zhang, Mingxia Zhou, Jing Wang, Weixin Zhu, Chuan Wu, Xiao Zhang, Qualify assessment for extrusion-based additive manufacturing with 3D scan and machine learning, 2023, 90, 15266125, 274, 10.1016/j.jmapro.2023.01.025 | |
15. | Kyudong Kim, Heena Noh, Kijung Park, Hyun Woo Jeon, Sunghoon Lim, Characterization of power demand and energy consumption for fused filament fabrication using CFR-PEEK, 2022, 28, 1355-2546, 1394, 10.1108/RPJ-07-2021-0188 | |
16. | Nectarios Vidakis, Markos Petousis, Nikolaos Mountakis, Emmanuel Maravelakis, Stefanos Zaoutsos, John D. Kechagias, Mechanical response assessment of antibacterial PA12/TiO2 3D printed parts: parameters optimization through artificial neural networks modeling, 2022, 121, 0268-3768, 785, 10.1007/s00170-022-09376-w | |
17. | Jingjing Yan, Zhiling Yuan, Qiang Liu, Guoliang Liu, Lei Li, Printing Ready Topology Optimization for Material Extrusion Polymer Additive Manufacturing, 2021, 2329-7662, 10.1089/3dp.2021.0189 | |
18. | Zhuo Wang, Wenhua Yang, Qingyang Liu, Yingjie Zhao, Pengwei Liu, Dazhong Wu, Mihaela Banu, Lei Chen, Data-driven modeling of process, structure and property in additive manufacturing: A review and future directions, 2022, 77, 15266125, 13, 10.1016/j.jmapro.2022.02.053 | |
19. | Dongxiao Wang, Haolei Wang, Yuqing Wang, 2021, Continuity Path Planning for 3D Printed Lightweight Infill Structures, 978-1-6654-2498-1, 959, 10.1109/TOCS53301.2021.9688877 | |
20. | Jingchao Jiang, A survey of machine learning in additive manufacturing technologies, 2023, 0951-192X, 1, 10.1080/0951192X.2023.2177740 | |
21. | Di Wu, Wanying Zhang, Heming Jia, Xin Leng, Simultaneous Feature Selection and Support Vector Machine Optimization Using an Enhanced Chimp Optimization Algorithm, 2021, 14, 1999-4893, 282, 10.3390/a14100282 | |
22. | Sandeep Suresh Babu, Abdel-Hamid I. Mourad, Khalifa H. Harib, Sanjairaj Vijayavenkataraman, Recent developments in the application of machine-learning towards accelerated predictive multiscale design and additive manufacturing, 2023, 18, 1745-2759, 10.1080/17452759.2022.2141653 | |
23. | Jingchang Li, Xiaoge Zhang, Qi Zhou, Felix T.S. Chan, Zhen Hu, A feature-level multi-sensor fusion approach for in-situ quality monitoring of selective laser melting, 2022, 84, 15266125, 913, 10.1016/j.jmapro.2022.10.050 | |
24. | Ying Zhang, Mutahar Safdar, Jiarui Xie, Jinghao Li, Manuel Sage, Yaoyao Fiona Zhao, A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management, 2022, 0956-5515, 10.1007/s10845-022-02017-9 | |
25. | Chenxi Tian, Tianjiao Li, Jenniffer Bustillos, Shonak Bhattacharya, Talia Turnham, Jingjie Yeo, Atieh Moridi, Data‐Driven Approaches Toward Smarter Additive Manufacturing, 2021, 3, 2640-4567, 2100014, 10.1002/aisy.202100014 | |
26. | Tariku Sinshaw Tamir, Gang Xiong, Qihang Fang, Yong Yang, Zhen Shen, MengChu Zhou, Jingchao Jiang, Machine-learning-based monitoring and optimization of processing parameters in 3D printing, 2022, 0951-192X, 1, 10.1080/0951192X.2022.2145019 | |
27. | Jian Qin, Fu Hu, Ying Liu, Paul Witherell, Charlie C.L. Wang, David W. Rosen, Timothy W. Simpson, Yan Lu, Qian Tang, Research and application of machine learning for additive manufacturing, 2022, 52, 22148604, 102691, 10.1016/j.addma.2022.102691 | |
28. | Reem Ashima, Abid Haleem, Mohd Javaid, Shanay Rab, Understanding the role and capabilities of Internet of Things-enabled Additive Manufacturing through its application areas, 2022, 5, 25425048, 137, 10.1016/j.aiepr.2021.12.001 | |
29. | Nectarios Vidakis, Constantine David, Markos Petousis, Dimitrios Sagris, Nikolaos Mountakis, Amalia Moutsopoulou, The effect of six key process control parameters on the surface roughness, dimensional accuracy, and porosity in material extrusion 3D printing of polylactic acid: Prediction models and optimization supported by robust design analysis, 2022, 5, 26669129, 100104, 10.1016/j.aime.2022.100104 | |
30. | William Jordan Wright, Joshua Darville, Nurcin Celik, Hilmar Koerner, Emrah Celik, In-situ optimization of thermoset composite additive manufacturing via deep learning and computer vision, 2022, 58, 22148604, 102985, 10.1016/j.addma.2022.102985 | |
31. | Rita Drissi-Daoudi, Vigneashwara Pandiyan, Roland Logé, Sergey Shevchik, Giulio Masinelli, Hossein Ghasemi-Tabasi, Annapaola Parrilli, Kilian Wasmer, Differentiation of materials and laser powder bed fusion processing regimes from airborne acoustic emission combined with machine learning, 2022, 17, 1745-2759, 181, 10.1080/17452759.2022.2028380 | |
32. | 2021, 10.54718/NEAF9531 | |
33. | Keshav Lalit Ameta, Vijendra Singh Solanki, Vineeta Singh, Ahanthem Priyanca Devi, R.S. Chundawat, Shafiul Haque, Critical appraisal and systematic review of 3D & 4D printing in sustainable and environment-friendly smart manufacturing technologies, 2022, 34, 22149937, e00481, 10.1016/j.susmat.2022.e00481 | |
34. | Xiao-Yu Li, Fu-Long Liu, Meng-Na Zhang, Ming-Xia Zhou, Chuan Wu, Xiao Zhang, Pawel Malinowski, A Combination of Vision- and Sensor-Based Defect Classifications in Extrusion-Based Additive Manufacturing, 2023, 2023, 1687-7268, 1, 10.1155/2023/1441936 | |
35. | Victor Beloshenko, Yan Beygelzimer, Vyacheslav Chishko, Bogdan Savchenko, Nadiya Sova, Dmytro Verbylo, Iurii Vozniak, Mechanical Properties of Thermoplastic Polyurethane-Based Three-Dimensional-Printed Lattice Structures: Role of Build Orientation, Loading Direction, and Filler, 2021, 2329-7662, 10.1089/3dp.2021.0031 | |
36. | Thang Q. Tran, Feng Lin Ng, Justin Tan Yu Kai, Stefanie Feih, Mui Ling Sharon Nai, Tensile Strength Enhancement of Fused Filament Fabrication Printed Parts: A Review of Process Improvement Approaches and Respective Impact, 2022, 54, 22148604, 102724, 10.1016/j.addma.2022.102724 | |
37. | Zifan Geng, Peipei Wu, Hao Pan, Qi Zheng, Wenqiang Zuo, Wenhua Zhang, Wei She, Robust layer interface in cement additive manufacturing via silicate penetration and precipitation, 2022, 214, 02641275, 110380, 10.1016/j.matdes.2022.110380 | |
38. | Yaozhong Wu, Jianguang Fang, Chi Wu, Cunyi Li, Guangyong Sun, Qing Li, Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption, 2023, 246, 00207403, 108102, 10.1016/j.ijmecsci.2023.108102 | |
39. | Mutahar Safdar, Guy Lamouche, Padma Polash Paul, Gentry Wood, Yaoyao Fiona Zhao, 2023, Chapter 3, 978-3-031-32153-5, 45, 10.1007/978-3-031-32154-2_3 | |
40. | Mandar Golvaskar, Sammy A. Ojo, Manigandan Kannan, Recent Advancements in Material Waste Recycling: Conventional, Direct Conversion, and Additive Manufacturing Techniques, 2024, 9, 2313-4321, 43, 10.3390/recycling9030043 | |
41. | Yingxin Ma, Yuan Yao, Jinxiu Yang, Hang Zhang, Beishui Liao, Global Continuous Toolpath Planning with Controllable Local Directions, 2023, 164, 00104485, 103593, 10.1016/j.cad.2023.103593 | |
42. | B. K. Sivaraj, R. Nitheesh Kumar, V. Karthik, 2024, 9781394197910, 49, 10.1002/9781394198085.ch3 | |
43. | Ziadia Abdelhamid, Habibi Mohamed, Sousso Kelouwani, The use of machine learning in process–structure–property modeling for material extrusion additive manufacturing: a state-of-the-art review, 2024, 46, 1678-5878, 10.1007/s40430-023-04637-5 | |
44. | Baris Ördek, Yuri Borgianni, Eric Coatanea, Machine learning-supported manufacturing: a review and directions for future research, 2024, 12, 2169-3277, 10.1080/21693277.2024.2326526 | |
45. | Md. Asif Equbal, Azhar Equbal, Zahid A. Khan, Irfan Anjum Badruddin, Machine learning in Additive Manufacturing: A Comprehensive insight, 2024, 25888404, 10.1016/j.ijlmm.2024.10.002 | |
46. | Jiarui Xie, Chonghui Zhang, Manuel Sage, Mutahar Safdar, Yaoyao Fiona Zhao, A sequential cross-product knowledge accumulation, extraction and transfer framework for machine learning-based production process modelling, 2024, 62, 0020-7543, 4181, 10.1080/00207543.2023.2254854 | |
47. | Nandita Dasgupta, Vineeta Singh, Shivendu Ranjan, Taijshee Mishra, Bhartendu Nath Mishra, 2024, 9780128203019, 1, 10.1016/B978-0-12-820301-9.00002-1 | |
48. | Avinash Selot, R. K. Dwivedi, Machine learning and sensor-based approach for defect detection in MEX additive manufacturing process- A Review, 2023, 45, 1678-5878, 10.1007/s40430-023-04425-1 | |
49. | Beyza Gavcar, 2024, Chapter 8, 978-3-031-70934-0, 101, 10.1007/978-3-031-70935-7_8 | |
50. | Izabela Rojek, Dariusz Mikołajewski, Marcin Kempiński, Krzysztof Galas, Adrianna Piszcz, Emerging Applications of Machine Learning in 3D Printing, 2025, 15, 2076-3417, 1781, 10.3390/app15041781 | |
51. | Onuchukwu Godwin Chike, Yee Jian Chin, Norhayati Ahmad, Wan Fahmin Faiz Wan Ali, Impact of Machine/Deep Learning on Additive Manufacturing: Publication Trends, Bibliometric Analysis, and Literature Review (2013–2022), 2025, 6, 2662-2556, 10.1007/s43069-025-00440-1 | |
52. | Swapnil Deokar, Narendra Kumar, Ravi Pratap Singh, A comprehensive review on smart manufacturing using machine learning applicable to fused deposition modeling, 2025, 25901230, 104941, 10.1016/j.rineng.2025.104941 |