[1]
|
W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics–I. 1927, Bull. Math. Biol., 53 (1991), 33–55.
|
[2]
|
O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
|
[3]
|
D. Breda, F. Florian, J. Ripoll, R. Vermiglio, Efficient numerical computation of the basic reproduction number for structured populations, J. Comput. Appl. Math., 384 (2021), 113165. https://doi.org/10.1016/j.cam.2020.113165 doi: 10.1016/j.cam.2020.113165
|
[4]
|
H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, Springer, Singapore, 2017. https://doi.org/10.1007/978-981-10-0188-8
|
[5]
|
O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of Monkeypox virus: a mathematical modelling approach, Model. Earth Syst. Environ., 8 (2022), 3423–3434. https://doi.org/10.1007/s40808-021-01313-2 doi: 10.1007/s40808-021-01313-2
|
[6]
|
À. Calsina, J. Ripoll, Hopf bifurcation in a structured population model for the sexual phase of monogonont rotifers, J. Math. Biol., 45 (2002), 22–36. https://doi.org/10.1007/s002850200147 doi: 10.1007/s002850200147
|
[7]
|
H. W. Hethcote, S. A. Levin, Periodicity in epidemiological models, in Applied Mathematical Ecology, Springer, (1989), 193–211.
|
[8]
|
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
|
[9]
|
P. Manfredi, E. Salinelli, Population-induced oscillations in blended SI-SEI epidemiological models, IMA J. Math. Appl. Med. Biol., 19 (2002), 95–112. https://doi.org/10.1093/imammb/19.2.95 doi: 10.1093/imammb/19.2.95
|
[10]
|
A. d'Onofrio, P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases, J. Theoret. Biol., 256 (2009), 473–478. https://doi.org/10.1016/j.jtbi.2008.10.005 doi: 10.1016/j.jtbi.2008.10.005
|
[11]
|
K. Oshinubi, S. S. Buhamra, N. M. Al-Kandari, J. Waku, M. Rachdi, J. Demongeot, Age dependent epidemic modeling of COVID-19 outbreak in Kuwait, France, and Cameroon, Healthcare, 10 (2022), 482. https://doi.org/10.3390/healthcare10030482 doi: 10.3390/healthcare10030482
|
[12]
|
P. Magal, C. C. McCluskey, G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109–1140. https://doi.org/10.1080/00036810903208122 doi: 10.1080/00036810903208122
|
[13]
|
H. Inaba, Threshold and stability results for an age-structured epidemic model, J. Math. Biol., 28 (1990), 411–434. https://doi.org/10.1007/BF00178326 doi: 10.1007/BF00178326
|
[14]
|
T. Kuniya, J. Wang, H. Inaba, A multi-group SIR epidemic model with age structure, Disc. Cont. Dyn. Syst. Series B, 21 (2016), 3515–3550. https://doi.org/10.3934/dcdsb.2016109 doi: 10.3934/dcdsb.2016109
|
[15]
|
H. R. Thieme, Stability change of the endemic equilibrium in age-structured models for the spread of S-I-R type infectious diseases, in Differential Equations Models in Biology, Epidemiology and Ecology, Springer, (1991), 139–158.
|
[16]
|
V. Andreasen, Instability in an SIR-model with age-dependent susceptibility, in Mathematical Population Dynamics, Wuerz Publ., (1995), 3–14.
|
[17]
|
Y. Cha, M. Iannelli, F. Milner, Stability change of an epidemic model, Dynam. Syst. Appl., 9 (2000), 361–376.
|
[18]
|
A. Franceschetti, A. Pugliese, D. Breda, Multiple endemic states in age-structured SIR epidemic models, Math. Biosci. Eng., 9 (2012), 577–599. https://doi.org/10.3934/mbe.2012.9.577 doi: 10.3934/mbe.2012.9.577
|
[19]
|
E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1016/j.jde.2018.11.025 doi: 10.1016/j.jde.2018.11.025
|