
Changes in the functional connections between the cerebral cortex and muscles can evaluate motor function in stroke rehabilitation. To quantify changes in functional connections between the cerebral cortex and muscles, we combined corticomuscular coupling and graph theory to propose dynamic time warped (DTW) distances for electroencephalogram (EEG) and electromyography (EMG) signals as well as two new symmetry metrics. EEG and EMG data from 18 stroke patients and 16 healthy individuals, as well as Brunnstrom scores from stroke patients, were recorded in this paper. First, calculate DTW-EEG, DTW-EMG, BNDSI and CMCSI. Then, the random forest algorithm was used to calculate the feature importance of these biological indicators. Finally, based on the results of feature importance, different features were combined and validated for classification. The results showed that the feature importance was from high to low as CMCSI/BNDSI/DTW-EEG/DTW-EMG, while the feature combination with the highest accuracy was CMCSI+BNDSI+DTW-EEG. Compared to previous studies, combining the CMCSI+BNDSI+DTW-EEG features of EEG and EMG achieved better results in the prediction of motor function rehabilitation at different levels of stroke. Our work implies that the establishment of a symmetry index based on graph theory and cortical muscle coupling has great potential in predicting stroke recovery and promises to have an impact on clinical research applications.
Citation: Xian Hua, Jing Li, Ting Wang, Junhong Wang, Shaojun Pi, Hangcheng Li, Xugang Xi. Evaluation of movement functional rehabilitation after stroke: A study via graph theory and corticomuscular coupling as potential biomarker[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10530-10551. doi: 10.3934/mbe.2023465
[1] | Amira Khelifa, Yacine Halim . Global behavior of P-dimensional difference equations system. Electronic Research Archive, 2021, 29(5): 3121-3139. doi: 10.3934/era.2021029 |
[2] | Najmeddine Attia, Ahmed Ghezal . Global stability and co-balancing numbers in a system of rational difference equations. Electronic Research Archive, 2024, 32(3): 2137-2159. doi: 10.3934/era.2024097 |
[3] | Bin Wang . Random periodic sequence of globally mean-square exponentially stable discrete-time stochastic genetic regulatory networks with discrete spatial diffusions. Electronic Research Archive, 2023, 31(6): 3097-3122. doi: 10.3934/era.2023157 |
[4] | Tran Hong Thai, Nguyen Anh Dai, Pham Tuan Anh . Global dynamics of some system of second-order difference equations. Electronic Research Archive, 2021, 29(6): 4159-4175. doi: 10.3934/era.2021077 |
[5] | Wedad Albalawi, Fatemah Mofarreh, Osama Moaaz . Dynamics of a general model of nonlinear difference equations and its applications to LPA model. Electronic Research Archive, 2024, 32(11): 6072-6086. doi: 10.3934/era.2024281 |
[6] | Merve Kara . Investigation of the global dynamics of two exponential-form difference equations systems. Electronic Research Archive, 2023, 31(11): 6697-6724. doi: 10.3934/era.2023338 |
[7] | Qianhong Zhang, Shirui Zhang, Zhongni Zhang, Fubiao Lin . On three-dimensional system of rational difference equations with second-order. Electronic Research Archive, 2025, 33(4): 2352-2365. doi: 10.3934/era.2025104 |
[8] | Chang Hou, Hu Chen . Stability and pointwise-in-time convergence analysis of a finite difference scheme for a 2D nonlinear multi-term subdiffusion equation. Electronic Research Archive, 2025, 33(3): 1476-1489. doi: 10.3934/era.2025069 |
[9] | Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour . On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29(5): 2841-2876. doi: 10.3934/era.2021017 |
[10] | Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230 |
Changes in the functional connections between the cerebral cortex and muscles can evaluate motor function in stroke rehabilitation. To quantify changes in functional connections between the cerebral cortex and muscles, we combined corticomuscular coupling and graph theory to propose dynamic time warped (DTW) distances for electroencephalogram (EEG) and electromyography (EMG) signals as well as two new symmetry metrics. EEG and EMG data from 18 stroke patients and 16 healthy individuals, as well as Brunnstrom scores from stroke patients, were recorded in this paper. First, calculate DTW-EEG, DTW-EMG, BNDSI and CMCSI. Then, the random forest algorithm was used to calculate the feature importance of these biological indicators. Finally, based on the results of feature importance, different features were combined and validated for classification. The results showed that the feature importance was from high to low as CMCSI/BNDSI/DTW-EEG/DTW-EMG, while the feature combination with the highest accuracy was CMCSI+BNDSI+DTW-EEG. Compared to previous studies, combining the CMCSI+BNDSI+DTW-EEG features of EEG and EMG achieved better results in the prediction of motor function rehabilitation at different levels of stroke. Our work implies that the establishment of a symmetry index based on graph theory and cortical muscle coupling has great potential in predicting stroke recovery and promises to have an impact on clinical research applications.
Difference equations are the essentials required to understand even the simplest epidemiological model: the SIR-susceptible, infected, recovered-model. This model is a compartmental model, which results in the basic difference equation used to measure the actual reproduction number. It is this basic model that helps us determine whether a pathogen is going to die out or whether we end up having an epidemic. This is also the basis for more complex models, including the SVIR, which requires a vaccinated state, which helps us to estimate the probability of herd immunity.
There has been some recent interest in studying the qualitative analysis of difference equations and system of difference equations. Since the beginning of nineties there has be considerable interest in studying systems of difference equations composed by two or three rational difference equations (see, e.g., [4,5,6,2,8,9,11,10,14,15,17,19,20] and the references therein). However, given the multiplicity of factors involved in any epidemic, it will be important to study systems of difference equations composed by many rational difference equations, which is what we will do in this paper.
In [2], Devault et al. studied the boundedness, global stability and periodic character of solutions of the difference equation
xn+1=p+xn−mxn | (1) |
where
In [20], Zhang et al. investigated the behavior of the following symmetrical system of difference equations
xn+1=A+yn−myn,yn+1=A+xn−mxn | (2) |
where the parameter
Complement of the work above, in [8], Gümüş studied the global asymptotic stability of positive equilibrium, the rate of convergence of positive solutions and he presented some results about the general behavior of solutions of system (2). Our aim in this paper is to generalize the results concerning equation (1) and system (2) to the system of
x(1)n+1=A+x(2)n−mx(2)n,x(2)n+1=A+x(3)n−mx(3)n,…,x(p)n+1=A+x(1)n−mx(1)n,n,m,p∈N0 | (3) |
where
The remainder of the paper is organized as follows. In Section (2), we introduce some definitions and notations that will be needed in the sequel. Moreover, we present, in Theorem (2.4), a result concerning the linearized stability that will be useful in the main part of the paper. Section (3) discuses the behavior of positive solutions of system (3) via semi-cycle analysis method. Furthermore, Section (4) is devoted to study the local stability of the equilibrium points and the asymptotic behavior of the solutions when
In this section we recall some definitions and results that will be useful in our investigation, for more details see [3,7,14,13].
Definition 2.1. (see, [14]) A 'string' of sequential terms
A 'string' of sequential terms
A 'string' of sequential terms
A 'string' of sequential terms
Definition 2.2. (see, [14]) A function
(x(i)μ−¯x(i))(x(i)μ−¯x(i))≤0,i=1,2,…,p. |
We say that a solution
Let
f(i):Ik+11×Ik+12×…×Ik+1p→Ik+1i,i=1,2,…,p, |
where
{x(1)n+1=f(1)(x(1)n,x(1)n−1,…,x(1)n−k,x(2)n,x(2)n−1,…,x(2)n−k,…,x(p)n,x(p)n−1,…,x(p)n−k)x(2)n+1=f(2)(x(1)n,x(1)n−1,…,x(1)n−k,x(2)n,x(2)n−1,…,x(2)n−k,…,x(p)n,x(p)n−1,…,x(p)n−k)⋮x(p)n+1=f(p)(x(1)n,x(1)n−1,…,x(1)n−k,x(2)n,x(2)n−1,…,x(2)n−k,…,x(p)n,x(p)n−1,…,x(p)n−k) | (4) |
where
Define the map
F:I(k+1)1×I(k+1)2×…×I(k+1)p⟶I(k+1)1×I(k+1)2×…×I(k+1)p |
by
F(W)=(f(1)0(W),f(1)1(W),…,f(1)k(W),f(2)0(W),f(2)1(W),…, |
…,f(2)k(W),…,f(p)0(W),f(p)1(W),…,f(p)k(W)), |
where
W=(u(1)0,u(1)1,…,u(1)k,u(2)0,u(2)1,…,u(2)k,…,u(p)0,u(p)1,…,u(p)k)T, |
f(i)0(W)=f(i)(W),f(i)1(W)=u(i)0,…,f(i)k(W)=u(i)k−1,i=1,2,…,p. |
Let
Wn=(x(1)n,x(1)n−1,…,x(1)n−k,x(2)n,x(2)n−1,…,x(2)n−k,…,x(p)n,x(p)n−1,…,x(p)n−k)T. |
Then, we can easily see that system (4) is equivalent to the following system written in vector form
Wn+1=F(Wn),n∈N0. | (5) |
Definition 2.3. (see, [13]) Let
Xn+1=F(Xn)=BXn |
where
Theorem 2.4. (see, [13])
1. If all the eigenvalues of the Jacobian matrix
2. If at least one eigenvalue of the Jacobian matrix
In this section, we discuss the behavior of positive solutions of system (3) via semi-cycle analysis method. It is easy to see that system (3) has a unique positive equilibrium point
Lemma 3.1. Let
Proof. Suppose that
x(j)n0<A+1≤x(j)n0+1 or x(j)n0+1<A+1≤x(j)n0,j=1,2,…,p. |
We suppose the first case, that is,
x(j)n0<A+1≤x(j)n0+m,j=1,2,…,p. |
So, we get from system (3)
x(j)n0+m+1=A+x(j+1)mod(p)n0x(j+1)mod(p)n0+m<A+1,j=1,2,…,p. |
The Lemma is proved.
Lemma 3.2. Let
Proof. Assume that there exists
x(j)n0,x(j)n0+2,…,x(j)n0+m−1<A+1≤x(j)n0+1,x(j)n0+3,…,x(j)n0+m,j=1,2,…,p, | (6) |
or
x(j)n0+1,x(j)n0+3,…,x(j)n0+m<A+1≤x(j)n0,x(j)n0+2,…,x(j)n0+m−1,j=1,2,…,p. | (7) |
We will prove the case (6). The case (7) Is identical and will not be included. According to system (3) we obtain
x(j)n0+m+1=A+x(j+1)mod(p)n0x(j+1)mod(p)n0+m<A+1,j=1,2,…,p, |
and
x(j)n0+m+2=A+x(j+1)mod(p)n0+1x(j+1)mod(p)n0+m+1>A+1,j=1,2,…,p, |
The result proceeds by induction. Thus, the proof is completed.
Lemma 3.3. System (3) has no nontrivial periodic solutions of (not necessarily prime) period
Proof. Suppose that
(α(1)1,α(2)1,…,α(p)1),(α(1)2,α(2)2,…,α(p)2),…,(α(1)m,α(2)m,…,α(p)m),(α(1)1,α(2)1,…,α(p)1),… |
is a
(x(1)n−m,x(2)n−m,…,x(p)n−m)=(x(1)n,x(2)n,…,x(p)n),n≥0. |
So, the equilibrium solution
Lemma 3.4. All non-oscillatory solutions of system (3) converge to the equilibrium
Proof. We assume there exists non-oscillatory solutions of system (3). We will prove this lemma for the case of a single positive semi-cycle, the situation is identical for a single negative semi-cycle, so it will be omitted. Assume that
x(j)n+1=A+x(j+1)mod(p)n−mx(j+1)mod(p)n≥A+1,j=1,2,…,p, |
So, we get
A+1≤x(j)n≤x(j)n−m,n≥0,j=1,2,…,p | (8) |
From (8), there exists
limn→+∞x(j)nm+i=δ(j)i. |
Hence,
(δ(1)0,δ(2)0,…,δ(p)0),(δ(1)1,δ(2)1,…,δ(p)1),…,(δ(1)m−1,δ(2)m−1,…,δ(p)m−1) |
is a periodic solution of (not necessarily prime period) period
Theorem 4.1. Suppose
ⅰ): If
limn→+∞x(j)2n=+∞,limn→+∞x(j)2n+1=A. |
ⅱ): If
limn→+∞x(j)2n=A,limn→+∞x(j)2n+1=+∞. |
Proof. (ⅰ): From (3), for
x(i)1=A+x(i+1)mod(p)−mx(i+1)mod(p)0<A+1x(i+1)mod(p)0<A+(1−A)=1,x(i)2=A+x(i+1)mod(p)1−mx(i+1)mod(p)1>A+x(i+1)mod(p)1−m>x(i+1)mod(p)1−m>11−A. |
By induction, for n
x(i)2n−1<1,x(i)2n>11−A. | (9) |
So, from (3) and (9), we have
x(i)2n=A+x(i+1)mod(p)2n−1−mx(i+1)mod(p)2n−1>A+x(i+1)mod(p)2n−1−m>2A+x(i+1)mod(p)2n−3−m>3A+x(i+1)mod(p)2n−5−m>⋯ |
So
x(i)2n>nA+x(i+1)mod(p)0. | (10) |
By limiting the inequality (10), we get
limn→∞x(i)2n=∞. | (11) |
On the other hand, from(3), (9) and (11), we get
limn→∞x(i)2n+1=limn→∞(A+x(i+1)mod(p)2n−mx(i+1)mod(p)2n)=A. |
(ⅱ): The proof is similar to the proof of (ⅰ).
Open Problem. Investigate the asymptotic behavior of the system (3) when
Lemma 4.2. Suppose
Proof. Let
x(j)i∈[L,LL−1],i=1,2,…,m+1,j=1,2,…,p, |
where
L=min{α,ββ−1}>1,α=min1≤j≤m+1{x(1)j,x(2)j,…,x(p)j}, |
β=max1≤j≤m+1{x(1)j,x(2)j,…,x(p)ji}. |
So, we get
L=1+LL/(L−1)≤x(j)m+2=1+x(j+1)mod(p)1x(j+1)mod(p)m+1≤LL−1, |
thus, the following is obtained
L≤x(j)m≤LL−1. |
By induction, we get
x(j)i∈[L,LL−1],j=1,2,…,p,i=1,2,… | (12) |
Theorem 4.3. Suppose
lim infn→+∞x(i)n=lim infn→+∞x(j)n,i,j=1,2,…,p,lim supn→+∞x(i)n=lim supn→+∞x(j)n,i,j=1,2,…,p. |
Proof. From (12), we can set
Li=limn→∞supx(i)n,mi=limn→∞infx(i)n,i=1,2,…,p. | (13) |
We first prove the theorem for
L1≤1+L2m2,L2≤1+L1m1,m1≥1+m2L2,m2≥1+m2L2, |
which implies
L1m2≤m2+L2≤m1L2≤m1+L1≤m2L1 |
thus, the following equalities are obtained
m2+L2=m1+L1,L1m2=m1L2. |
So, we get that
Li=Lj,mi=mj,i,j=1,2,…,p−1, |
From system (3), we have
Lp−1≤1+Lpmp,Lp≤1+Lp−1mp−1,mp−1≥1+mpLp,mp≥1+mpLp, |
hence, we get
Lp−1mp≤mp+Lp≤mp−1Lp≤mp−1+Lp−1≤mpLp−1, |
consequently, the following equalities are obtained
mp+Lp=mp−1+Lp−1,Lp−1mp=mp−1Lp. |
So, we get that
Theorem 4.4. Assume that
Proof. The linearized equation of system (3) about the equilibrium point
Xn+1=BXn |
where
B=(JAOO…OOOJAO…OOOOJA…OO⋮⋮⋮⋮⋮⋮OOOO…JAAOOO…OJ) |
where
J=(00…0010…00⋮⋮⋱⋮⋮00…10),O=(00…0000…00⋮⋮⋱⋮⋮00…00), | (14) |
A=(−1A+10…01A+100…00⋮⋱…⋮⋮00…00). | (15) |
Let
D=diag(d1,d2,…,dpm+p) |
be a diagonal matrix where
0<ε<A−1(m+1)(A+1). | (16) |
It is obvious that
DBD−1=(J(1)A(1)OO…OOOJ(2)A(2)O…OOOOJ(3)A(3)…OO⋮⋮⋮⋮⋮⋮OOOO…J(p−1)A(p−1)A(p)OOO…OJ(p)), |
where
J(j)=(00…00d(j−1)m+j+1d(j−1)m+j0…00⋮⋮⋱⋮⋮00…d(j−1)m+m+jd(j−1)m+m+j−10),j=0,1,…,p, |
A(j)=(−1A+1djdjm+j+10…01A+1djdjm+j+100…00⋮⋱…⋮⋮00…00),j=0,1,…,p−1, |
and
A(p)=(−1A+1d(p−1)m+pd10…01A+1d(p−1)m+pdm+100…00⋮⋱…⋮⋮00…00). |
From
A(p)=(−1A+1d(p−1)m+pd10…01A+1d(p−1)m+pdm+100…00⋮⋱…⋮⋮00…00). |
Moreover, from
1A+1+1(1−(m+1)ε)(A+1)<1(1−(m+1)ε)(A+1)+1(1−(m+1)ε)(A+1)<2(1−(m+1)ε)(A+1)<1. |
It is common knowledge that
1A+1+1(1−(m+1)ε)(A+1)<1(1−(m+1)ε)(A+1)+1(1−(m+1)ε)(A+1)<2(1−(m+1)ε)(A+1)<1. |
We have that all eigenvalues of
To prove the global stability of the positive equilibrium, we need the following lemma.
Lemma 4.5. Suppose
Proof. Let
x(j)i∈[L,LL−A],i=1,2,…,m+1,j=1,2,…,p, |
where
L=min{α,ββ−1}>1,α=min1≤j≤m+1{x(1)j,x(2)j,…,x(p)j}, |
β=max1≤j≤m+1{x(1)j,x(2)j,…,x(p)ji}. |
So, we get
L=A+LL/(L−A)≤x(j)m+2=A+x(j+1)mod(p)1x(j+1)mod(p)m+1≤LL−1, |
thus, the following is obtained
L≤x(j)m≤LL−1. |
By induction, we get
x(j)i∈[L,LL−1],j=1,2,…,p,i=1,2,… | (17) |
Theorem 4.6. Assume that
Proof. Let
limn→∞(x(1)n,x(2)n,…,x(p)n)=(A+1,A+1,…,A+1). |
To do this, we prove that for
limn→∞x(i)n=A+1. |
From Lemma (4.5), we can set
Li=limn→∞supx(i)n,mi=limn→∞infx(i)n,i=1,2,…,p. | (18) |
So, from (3) and (13), we have
Li≤A+L(i+1)mod(p)m(i+1)mod(p),mi≥A+m(i+1)mod(p)L(i+1)mod(p). | (19) |
We first prove the theorem for
AL1+m1≤L1m2≤Am2+L2,AL2+m2≤L2m1≤Am1+L1. |
So,
AL1+m1−(Am1+L1)≤Am2+L2−(AL2+m2), |
hence
(A−1)(L1−m1+L2−m2)≤0, |
since
L1−m1+L2−m2=0, |
we know that
ALp+mp≤Lpm1≤Am1+L1,AL1+m1≤L1mp≤Amp+Lp. |
So,
ALp+mp−(Amp+Lp)≤Am1+L1−(AL1+m1), |
Thus, the following inequality is obtained
(A−1)(Lp−mp+L1−m1)≤0, |
since
Li=mi,=1,2,…,p. |
Therefore every positive solution
In this section, we estimate the rate of convergence of a solution that converges to the equilibrium point
Xn+1=(A+Bn)Xn | (20) |
where
‖Bn‖→0, when n→∞ | (21) |
where
Theorem 5.1. (Perron's first Theorem, see [16]) Suppose that condition (21) holds. If
ρ=limn→+∞‖Xn+1‖‖Xn‖ |
exists and is equal to the modulus of one of the eigenvalues of matrix
Theorem 5.2. (Perron's second Theorem, see [16]) Suppose that condition (21) holds. If
ρ=limn→+∞(‖Xn‖)1n |
exists and is equal to the modulus of one of the eigenvalues of matrix
Theorem 5.3. Assume that a solution
en=(e(1)ne(1)n−1⋮e(1)n−m⋮e(p)ne(p)n−1⋮e(p)n−m)=(x(1)n−¯x(1)x(1)n−1−¯x(1)⋮x(1)n−m−¯x(1)⋮x(p)n−¯x(p)x(p)n−1−¯x(p)⋮x(p)n−m−¯x(p)) |
of every solution of system (3) satisfies both of the following asymptotic relations:
limn→+∞‖en+1‖‖en‖=|λiJF((¯x(1),¯x(2),…,¯x(p)))|,i=1,2,…,m |
limn→+∞(‖en‖)1n=|λiJF((¯x(1),¯x(2),…,¯x(p)))|,i=1,2,…,m |
where
Proof. First, we will find a system that satisfies the error terms. The error terms are given as
x(j)n+1−¯x(j)=m∑i=0(j)A(1)i(x(1)n−i−¯x(1))+m∑i=0(j)A(2)i(x(2)n−i−¯x(2))+⋯+m∑i=0(j)A(1)i(x(p)n−i−¯x(p)), | (22) |
for
e(j)n=x(j)n−¯x(j),j=1,2,…,p |
Then, system (22) can be written as
e(j)n+1=m∑i=0(j)A(1)ie(1)n−i+m∑i=0(j)A(2)ie(2)n−i+⋯+m∑i=0(j)A(1)ie(p)n−i |
where
e(j)n+1=m∑i=0(j)A(1)ie(1)n−i+m∑i=0(j)A(2)ie(2)n−i+⋯+m∑i=0(j)A(1)ie(p)n−i |
and the others parameters
If we consider the limiting case, It is obvious then that
e(j)n+1=m∑i=0(j)A(1)ie(1)n−i+m∑i=0(j)A(2)ie(2)n−i+⋯+m∑i=0(j)A(1)ie(p)n−i |
That is
e(j)n+1=m∑i=0(j)A(1)ie(1)n−i+m∑i=0(j)A(2)ie(2)n−i+⋯+m∑i=0(j)A(1)ie(p)n−i |
where
en+1=(A+Bn)en |
where
A=JF((¯x(1),¯x(2),…,¯x(p)))=(JA(1)nOO…OOOJA(2)nO…OOOOJA(3)n…OO⋮⋮⋮⋮⋮⋮OOOO…JA(p−1)nA(p)nOOO…OJ) |
Bn=(JAOO…OOOJAO…OOOOJA…OO⋮⋮⋮⋮⋮⋮OOOO…JAAOOO…OJ) |
where
A(j)n=(α(j)n0…0β(j)n00…00⋮⋱…⋮⋮00…00),j=1,2,…,p. |
and
en+1=(JAOO…OOOJAO…OOOOJA…OO⋮⋮⋮⋮⋮⋮OOOO…JAAOOO…OJ)(e(1)ne(1)n−1⋮e(1)n−m⋮e(p)ne(p)n−1⋮e(p)n−m) |
and
In this section we will consider several interesting numerical examples to verify our theoretical results. These examples shows different types of qualitative behavior of solutions of the system (3). All plots in this section are drawn with Matlab.
Exemple 6.1. Let
x(1)n+1=1.2+x(2)n−1x(2)n,x(2)n+1=A+x(3)n−1x(3)n,…,x(10)n+1=1.2+x(1)n−1x(1)n,n∈N0 | (23) |
with
Exemple 6.2. Consider the system (23) with
Exemple 6.3. Consider the system (23) with
Exemple 6.4. Let
x(1)n+1=A+x(2)n−5x(2)n,x(2)n+1=A+x(3)n−5x(3)n,x(3)n+1=A+x(4)n−5x(4)n,x(4)n+1=A+x(1)n−5x(1)n,n∈N0 | (24) |
with
Exemple 6.5. Consider the system (24) with
Exemple 6.6. Consider the system (24) with
In the paper, we studied the global behavior of solutions of system (3) composed by
The findings suggest that this approach could also be useful for extended to a system with arbitrary constant different parameters, or to a system with a nonautonomous parameter, or to a system with different parameters and arbitrary powers. So, we will give the following some important open problems for difference equations theory researchers.
Open Problem 1. study the dynamical behaviors of the system of difference equations
x(1)n+1=A1+x(2)n−mx(2)n,x(2)n+1=A2+x(3)n−mx(3)n,…,x(p)n+1=Ap+x(1)n−mx(1)n,n,m,p∈N0 |
where
Open Problem 2. study the dynamical behaviors of the system of difference equations
x(1)n+1=αn+x(2)n−mx(2)n,x(2)n+1=αn+x(3)n−mx(3)n,…,x(p)n+1=αn+x(1)n−mx(1)n,n,m,p∈N0 |
where
Open Problem 3. study the dynamical behaviors of the system of difference equations
x(1)n+1=A1+(x(2)n−m)p1(x(2)n)q1,x(2)n+1=A2+(x(3)n−m)p2(x(3)n)q2,…,x(p)n+1=Ap+(x(1)n−m)pp(x(1)n)qp, |
where
This work was supported by Directorate General for Scientific Research and Technological Development (DGRSDT), Algeria.
[1] |
K. Mira, L. Andreas, Global Burden of Stroke, Semin. Neurol., 38 (2018), 208–211. https://doi.org/10.1055/s-0038-1649503 doi: 10.1055/s-0038-1649503
![]() |
[2] |
P. B. Gorelick, The global burden of stroke: Persistent and disabling, Lancet Neurol., 18 (2019), 417–418. https://doi.org/10.1016/S1474-4422(19)30030-4 doi: 10.1016/S1474-4422(19)30030-4
![]() |
[3] |
C. Stinear, Prediction of recovery of motor function after stroke, Lancet Neurol., 9 (2010), 1228–1232. https://doi.org/10.1016/S1474-4422(10)70247-7 doi: 10.1016/S1474-4422(10)70247-7
![]() |
[4] |
P. M. Rossini, C. Altamura, A. Ferretti, F. Vernieri, F. Zappasodi, M. Caulo, et al., Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics?, Brain, 127 (2004), 99–110. https://doi.org/10.1093/brain/awh012 doi: 10.1093/brain/awh012
![]() |
[5] |
B. A. Cohen, E. J. Bravo-Fernandez, A. Sances, Quantification of computer analyzed serial EEGs from stroke patients, Electr. Clin. Neurophysiol., 41 (1976), 379–386. https://doi.org/10.1016/0013-4694(76)90100-0 doi: 10.1016/0013-4694(76)90100-0
![]() |
[6] |
L. Murri, S. Gori, R. Massetani, E. Bonanni, F. Marcella, S. Milani, Evaluation of acute ischemic stroke using quantitative EEG: A comparison with conventional EEG and CT scan, Neurophysiol. Clin./Clin. Neurophysiol., 28 (1998), 249–257. https://doi.org/10.1016/S0987-7053(98)80115-9 doi: 10.1016/S0987-7053(98)80115-9
![]() |
[7] |
S. P. Finnigan, M. Walsh, S. E. Rose, J. B. Chalk, Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes, Clin. Neurophysiol., 118 (2007), 2525–2532. https://doi.org/10.1016/j.clinph.2007.07.021 doi: 10.1016/j.clinph.2007.07.021
![]() |
[8] |
S. Finnigan, M. J. A. M. van Putten, EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management, Clin. Neurophysiol., 124 (2013), 10–19. https://doi.org/10.1016/j.clinph.2012.07.003 doi: 10.1016/j.clinph.2012.07.003
![]() |
[9] |
S. Graziadio, L. Tomasevic, G. Assenza, F. Tecchio, J. A. Eyre, The myth of the 'unaffected' side after unilateral stroke: Is reorganisation of the non-infarcted corticospinal system to re-establish balance the price for recovery?, Exp. Neurol., 238 (2012), 168–175. https://doi.org/10.1016/j.expneurol.2012.08.031 doi: 10.1016/j.expneurol.2012.08.031
![]() |
[10] |
P. Manganotti, S. Patuzzo, F. Cortese, A. Palermo, N. Smania, A. Fiaschi, Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke, Clin. Neurophysiol., 113 (2002), 936–43. https://doi.org/10.1016/S1388-2457(02)00062-7 doi: 10.1016/S1388-2457(02)00062-7
![]() |
[11] |
C. Bentes, A. R. Peralta, P. Viana, H. Martins, C. Morgado, C. Casimiro, et al., Quantitative EEG and functional outcome following acute ischemic stroke, Clin. Neurophysiol., 129 (2018), 1680–1687. https://doi.org/10.1016/j.clinph.2018.05.021 doi: 10.1016/j.clinph.2018.05.021
![]() |
[12] |
M. S. Romagosa, E. Udina, R. Ortner, J. Dinarès-Ferran, W. Cho, N. Murovec, et al., EEG biomarkers related with the functional state of stroke patients, Front. Neurosci., 16 (2022), 1032959. https://doi.org/10.3389/fnins.2022.1032959 doi: 10.3389/fnins.2022.1032959
![]() |
[13] |
M. Saes, C.G.M. Meskers, A. Daffertshofer, J.C. de Munck, G. Kwakkel, E. E. H. van Wegen, How does upper extremity Fugl-Meyer motor score relate to resting-state EEG in chronic stroke? A power spectral density analysis, Clin. Neurophysiol., 130 (2019), 856–862. https://doi.org/10.1016/j.clinph.2019.01.007 doi: 10.1016/j.clinph.2019.01.007
![]() |
[14] | B. A. Conway, D. M. Halliday, U. Shahani, P. Maas, A. I. Weir, J. R. Rosenberg, et al., Common frequency components identified from correlations between magnetic recordings of cortical activity and the electromyogram in man, J. Physiol. London, 483 (1995), 35. |
[15] |
T. Mima, K. Toma, B. Koshy, M. Hallett, Coherence between cortical and muscular activities after subcortical stroke, Stroke, 32 (2001), 2597–601. https://doi.org/10.1161/hs1101.098764 doi: 10.1161/hs1101.098764
![]() |
[16] |
S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268–76. https://doi.org/10.1038/35065725 doi: 10.1038/35065725
![]() |
[17] |
M. Y. Wang, F. M. Lu, Z. H. Hu, J. Zhang, Z. Yuan, Optical mapping of prefrontal brain connectivity and activation during emotion anticipation, Behav. Brain Res., 350 (2018), 122–128. https://doi.org/10.1016/j.bbr.2018.04.051 doi: 10.1016/j.bbr.2018.04.051
![]() |
[18] |
J. M. Sheffield, S. Kandala, C. A. Tamminga, G. D. Pearlson, M. S. Keshavan, J. A. Sweeney, et al., Transdiagnostic associations between functional brain network integrity and cognition, JAMA Psychiatry, 74 (2017), 605–613. https://doi.org/10.1001/jamapsychiatry.2017.0669 doi: 10.1001/jamapsychiatry.2017.0669
![]() |
[19] |
A. K. Andrea, B. Misic, O. Sporns, Communication dynamics in complex brain networks, Nat. Rev. Neurosci., 19 (2017), 17–33. https://doi.org/10.1038/nrn.2017.149 doi: 10.1038/nrn.2017.149
![]() |
[20] |
F. D. V. Fallani, F. Pichiorri, G. Morone, M. Molinari, F. Babiloni, F. Cincotti, et al., Multiscale topological properties of functional brain networks during motor imagery after stroke, Neuroimage, 83 (2013), 438–49. https://doi.org/10.1016/j.neuroimage.2013.06.039 doi: 10.1016/j.neuroimage.2013.06.039
![]() |
[21] |
F. Vecchio, C. Tomino, F. Miraglia, F. Iodice, C. Erra, I. R. Di, et al., Cortical connectivity from EEG data in acute stroke: A study via graph theory as a potential biomarker for functional recovery, Int. J. Psychophysiol., 146 (2019), 133–138. https://doi.org/10.1016/j.ijpsycho.2019.09.012 doi: 10.1016/j.ijpsycho.2019.09.012
![]() |
[22] |
X. L. Chen, P. Xie, Y. Y. Zhang, Y. L. Chen, S. G. Cheng, L. T. Zhang, Abnormal functional corticomuscular coupling after stroke, Neuroimage Clin., 19 (2018), 147–159. https://doi.org/10.1016/j.nicl.2018.04.004 doi: 10.1016/j.nicl.2018.04.004
![]() |
[23] |
A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods, 134 (2004), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 doi: 10.1016/j.jneumeth.2003.10.009
![]() |
[24] | T. Mullen, NITRC: CleanLine: Tool/Resource Info, (2012). |
[25] |
R. Mahajan, B. I.Morshed, Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA, IEEE J. Biomed. Health Inf., 19 (2015), 158–65. https://doi.org/10.1109/JBHI.2014.2333010 doi: 10.1109/JBHI.2014.2333010
![]() |
[26] |
Z. Y. Sun, X. G. Xi, C. M. Yuan, Y. Yang, X. Hua, Surface electromyography signal denoising via EEMD and improved wavelet thresholds, Math. Biosci. Eng., 17 (2020), 6945–6962. https://doi.org/10.3934/mbe.2020359 doi: 10.3934/mbe.2020359
![]() |
[27] |
H. Liu, W. Wang, C. Xiang, L. Han, H. Nie, A de-noising method using the improved wavelet threshold function based on noise variance estimation, Mech. Syst. Signal Process., 99 (2018), 30–46. https://doi.org/10.1016/j.ymssp.2017.05.034 doi: 10.1016/j.ymssp.2017.05.034
![]() |
[28] |
D. L. Donoho, I. Johnstone, G. Kerkyacharian, D. Picard, Density estimation by wavelet thresholding, Ann. Stat., 24 (1996), 508–539. https://doi.org/10.1214/aos/1032894451 doi: 10.1214/aos/1032894451
![]() |
[29] |
K. Robert, L. Enochson, Digital Time Series Analysis, J. Dyn. Sys. Meas. Control, 95 (1973), 442. https://doi.org/10.1115/1.3426753 doi: 10.1115/1.3426753
![]() |
[30] |
M. J. A. M. van Putten, D. L. J. Tavy, Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index, Stroke, 35 (2004), 2489–92. https://doi.org/10.1161/01.STR.0000144649.49861.1d doi: 10.1161/01.STR.0000144649.49861.1d
![]() |
[31] |
M. Molnár, R. Csuhaj, S. Horváth, L. Vastsgh, Z. A. Gaál, B. Czigler, Spectral and complexity features of the EEG changed by visual input in a case of subcortical stroke compared to healthy controls, Clin. Neurophysiol., 117 (2006), 771–780. https://doi.org/10.1016/j.clinph.2005.12.022 doi: 10.1016/j.clinph.2005.12.022
![]() |
[32] |
B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich, et al., A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data, BMC Bioinf., 10 (2009), 213. https://doi.org/10.1186/1471-2105-10-213 doi: 10.1186/1471-2105-10-213
![]() |
[33] |
C. Cortes, V. Vapnik, Support vector machine, Mach. Learn., 20 (1995), 273–297. https://doi.org/10.1007/BF00994018 doi: 10.1007/BF00994018
![]() |
[34] | E. W. Guntari, E. C. Djamal, F. Nugraha, S. L. L. Liem, Classification of post-stroke EEG signal using genetic algorithm and recurrent neural networks, in 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), IEEE, 12 (2020), 156–161. https://doi.org/10.23919/EECSI50503.2020.9251296 |
[35] |
N. Vivaldi, M. Caiola, K. Solarana, M. Ye, Evaluating Performance of EEG data-driven machine learning for traumatic brain injury classification, IEEE Trans. Biomed. Eng., 68 (2021), 3205–3216. https://doi.org/10.1109/TBME.2021.3062502 doi: 10.1109/TBME.2021.3062502
![]() |
[36] | A. U. Fadiyah, E. C. Djamal, Classification of motor imagery and synchronization of post-stroke patient EEG signal, in 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), IEEE, 3 (2019), 28–33. https://doi.org/10.23919/EECSI48112.2019.8977076 |
[37] |
X. G. Xi, S. J. Pi, Y. B. Zhao, H. J. Wang, Z. Z. Luo, Effect of muscle fatigue on the cortical-muscle network: A combined electroencephalogram and electromyogram study, Brain Res., 1752 (2021), 147221. https://doi.org/10.1016/j.brainres.2020.147221 doi: 10.1016/j.brainres.2020.147221
![]() |
[38] |
S. Angelova, S. Ribagin, R. Raikova, I. Veneva, Power frequency spectrum analysis of surface EMG signals of upper limb muscles during elbow flexion–A comparison between healthy subjects and stroke survivors, J. Electromyogr. Kinesiology, 38 (2018), 7–16. https://doi.org/10.1016/j.jelekin.2017.10.013 doi: 10.1016/j.jelekin.2017.10.013
![]() |
[39] |
R. Kawashima, K. Yamada, S. Kinomura, T. Yamaguchi, H. Matsui, S. Yoshioka, et al., Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement, Brain Res., 623 (1993), 33–40. https://doi.org/10.1016/0006-8993(93)90006-9 doi: 10.1016/0006-8993(93)90006-9
![]() |
[40] |
A. A. Agius, O. Falzon, K. Camilleri, M. Vella, R. Muscat, Brain symmetry index in healthy and stroke patients for assessment and prognosis, Stroke Res. Treat., 2017 (2017), 9. https://doi.org/10.1155/2017/8276136 doi: 10.1155/2017/8276136
![]() |
[41] |
L. L. H. Pan, W. W. Yang, C. L. Kao, M. W. Tsai, S. H. Wei, F. Fregni, et al., Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke, Sci. Rep., 8 (2018), 9217. https://doi.org/10.1038/s41598-018-27553-4 doi: 10.1038/s41598-018-27553-4
![]() |
[42] |
V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, B. P. Feuston, Random forest: A classification and regression tool for compound classification and QSAR modeling, J. Chem. Inf. Comput. Sci., 43 (2003), 1947–58. https://doi.org/10.1021/ci034160g doi: 10.1021/ci034160g
![]() |
[43] |
J. Rogers, S. Middleton, P. H. Wilson, S. J. Johnstone, Predicting functional outcomes after stroke: An observational study of acute single-channel EEG, Top. Stroke Rehabil., 27 (2020), 161–172. https://doi.org/10.1080/10749357.2019.1673576 doi: 10.1080/10749357.2019.1673576
![]() |
[44] |
R. J. Zhou, H. M. Hondori, M. Khademi, J. M. Cassidy, K. M. Wu, D. Z. Yang, et al., Predicting gains with visuospatial training after stroke using an EEG measure of frontoparietal circuit function, Front. Neurol., 9 (2018), 597. https://doi.org/10.3389/fneur.2018.00597 doi: 10.3389/fneur.2018.00597
![]() |
[45] |
Y. Celik, S. Stuart, W. L. Woo, E. Sejdic, A. Godfrey, Multi-modal gait: A wearable, algorithm and data fusion approach for clinical and free-living assessment, Inf. Fusion, 78 (2022), 57–70. https://doi.org/10.1016/j.inffus.2021.09.016 doi: 10.1016/j.inffus.2021.09.016
![]() |
[46] |
S. Qiu, H. Zhao, N. Jiang, Z. Wang, L. Liu, Y. An, et al., Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges, Inf. Fusion, 80 (2022), 241–265. https://doi.org/10.1016/j.inffus.2021.11.006 doi: 10.1016/j.inffus.2021.11.006
![]() |
[47] |
A. Talitckii, E. Kovalenko, A. Shcherbak, A. Anikina, E. Bril, O. Zimniakova, et al., Comparative study of wearable sensors, video, and handwriting to detect Parkinson's disease, IEEE Trans. Instrumentation Measurement, 71 (2022), 1–10. https://doi.org/10.1109/TIM.2022.3176898 doi: 10.1109/TIM.2022.3176898
![]() |