In the control of the self-driving vehicles, PID controllers are widely used due to their simple structure and good stability. However, in complex self-driving scenarios such as curvature curves, car following, overtaking, etc., it is necessary to ensure the stable control accuracy of the vehicles. Some researchers used fuzzy PID to dynamically change the parameters of PID to ensure that the vehicle control remains in a stable state. It is difficult to ensure the control effect of the fuzzy controller when the size of the domain is not selected properly. This paper designs a variable-domain fuzzy PID intelligent control method based on Q-Learning to make the system robust and adaptable, which is dynamically changed the size of the domain to further ensure the control effect of the vehicle. The variable-domain fuzzy PID algorithm based on Q-Learning takes the error and the error rate of change as input and uses the Q-Learning method to learn the scaling factor online so as to achieve online PID parameters adjustment. The proposed method is verified on the Panosim simulation platform.The experiment shows that the accuracy is improved by 15% compared with the traditional fuzzy PID, which reflects the effectiveness of the algorithm.
Citation: Yongqiang Yao, Nan Ma, Cheng Wang, Zhixuan Wu, Cheng Xu, Jin Zhang. Research and implementation of variable-domain fuzzy PID intelligent control method based on Q-Learning for self-driving in complex scenarios[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 6016-6029. doi: 10.3934/mbe.2023260
[1] | Ailing Xiang, Liangchen Wang . Boundedness of a predator-prey model with density-dependent motilities and stage structure for the predator. Electronic Research Archive, 2022, 30(5): 1954-1972. doi: 10.3934/era.2022099 |
[2] | Jialu Tian, Ping Liu . Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis. Electronic Research Archive, 2022, 30(3): 929-942. doi: 10.3934/era.2022048 |
[3] | Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304 |
[4] | Xuemin Fan, Wenjie Zhang, Lu Xu . Global dynamics of a predator-prey model with prey-taxis and hunting cooperation. Electronic Research Archive, 2025, 33(3): 1610-1632. doi: 10.3934/era.2025076 |
[5] | Shuxia Pan . Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27(0): 89-99. doi: 10.3934/era.2019011 |
[6] | Yuan Tian, Yang Liu, Kaibiao Sun . Complex dynamics of a predator-prey fishery model: The impact of the Allee effect and bilateral intervention. Electronic Research Archive, 2024, 32(11): 6379-6404. doi: 10.3934/era.2024297 |
[7] | Érika Diz-Pita . Global dynamics of a predator-prey system with immigration in both species. Electronic Research Archive, 2024, 32(2): 762-778. doi: 10.3934/era.2024036 |
[8] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[9] | Pinglan Wan . Dynamic behavior of stochastic predator-prey system. Electronic Research Archive, 2023, 31(5): 2925-2939. doi: 10.3934/era.2023147 |
[10] | Ling Xue, Min Zhang, Kun Zhao, Xiaoming Zheng . Controlled dynamics of a chemotaxis model with logarithmic sensitivity by physical boundary conditions. Electronic Research Archive, 2022, 30(12): 4530-4552. doi: 10.3934/era.2022230 |
In the control of the self-driving vehicles, PID controllers are widely used due to their simple structure and good stability. However, in complex self-driving scenarios such as curvature curves, car following, overtaking, etc., it is necessary to ensure the stable control accuracy of the vehicles. Some researchers used fuzzy PID to dynamically change the parameters of PID to ensure that the vehicle control remains in a stable state. It is difficult to ensure the control effect of the fuzzy controller when the size of the domain is not selected properly. This paper designs a variable-domain fuzzy PID intelligent control method based on Q-Learning to make the system robust and adaptable, which is dynamically changed the size of the domain to further ensure the control effect of the vehicle. The variable-domain fuzzy PID algorithm based on Q-Learning takes the error and the error rate of change as input and uses the Q-Learning method to learn the scaling factor online so as to achieve online PID parameters adjustment. The proposed method is verified on the Panosim simulation platform.The experiment shows that the accuracy is improved by 15% compared with the traditional fuzzy PID, which reflects the effectiveness of the algorithm.
This paper is devoted to the existence of weak solutions to the Cauchy problem for the two-component Novikov equation [18]
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,nt+uvnx+(2uvx+vux)n=0,n=v−vxx. | (1) |
Note that this system reduces respectively to the Novikov equation [23]
mt+3uuxm+u2mx=0, | (2) |
when
mt+2uxm+umx=0, | (3) |
when
The CH equation was proposed as a nonlinear model describing the unidirectional propagation of the shallow water waves over a flat bottom [1]. Based on the Hamiltonian theory of integrable systems, it was found earlier by using the method of recursion operator due to Fuchssteiner and Fokas [10]. It can also be obtained by using the tri-Hamiltonian duality approach related to the bi-Hamiltonian representation of the Korteweg-de Vries (KdV) equation [9,25]. The CH equation exhibits several remarkable properties. One is the the existence of the multi-peaked solitons on the line
The Novikov equation (2) can be viewed as a cubic generalization of the CH equation, which was introduced by Novikov [23,24] in the classification for a class of equations while they possesses higher-order generalized symmetries. Eq. (2) was proved to be integrable since it enjoys Lax-pair and bi-Hamiltonian structure [14], and is equivalent to the first equation in the negative flow of the Sawada-Kotera hierarchy via Liouville transformation [16]. The Novikov equation (2) also admits peaked solitons over the line
As the two-component generalization of Novikov equation (2), the so-called Geng-Xue system [11]
mt+3vuxm+uvmx=0,nt+3uvxn+uvnx=0, | (4) |
has been studied extensively [11,13]. The integrability [11,19], dynamics and structure of the peaked solitons of (4) [21] were discussed. In [13], well-posedness and wave breaking phenomena of the Cauchy problem of (4) were discussed. The single peakons and multi-peakons of system (4) were constructed in [21] by using compatibility of Lax-pair, which are not the weak solutions in the sense of distribution. Furthermore, the Geng-Xue system does not have the
The main object in this work is to investigate the existence of weak solutions to system (1). It is of great interest to understand the effect from interactions among the two-components, nonlinear dispersion and various nonlinear terms. More specifically, we shall consider the Cauchy problem of (1) and aim to leverage ideas from previous works on CH and Novikov equations. The weak solution of the Cauchy problem associated with (1) is established in Theorem 3.1.
The remainder of this paper is organized as follows. In the next section 2, we review some basic results and lemmas as well as invariant properties of momentum densities
In this section, we recall the local well-posedness, some properties of strong and weak solutions to equation (1) and several approximation results.
First, we introduce some notations. Throughout the paper, we denote the convolution by
With
{mt+uvmx+(2vux+uvx)m=0,m=u−uxx,t>0,x∈R,nt+uvnx+(2uvx+vux)n=0,n=v−vxx,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (5) |
Note that if
{ut+uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx)=0,t>0,x∈R,vt+uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux)=0,u(0,x)=u0(x),v(0,x)=v0(x),x∈R. | (6) |
Next we recall the local well-posedness and the conservation laws.
Lemma 2.1. [12] Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
Moreover, the solution depends continuously on the initial data, i.e. the mapping
Lemma 2.2. [12] Let
∫R(u2(t,x)+u2x(t,x))dx=∫R(u20+u20x)dx,∫R(v2(t,x)+v2x(t,x))dx=∫R(v20+v20x)dx,∫R(u(t,x)v(t,x)+ux(t,x)vx(t,x))dx=∫R(u0v0+u0xv0x)dx. |
Moreover, we have
|u(t,x)|≤√22‖u0‖1,|v(t,x)|≤√22‖v0‖1. |
Note that equation (1) has the solitary waves with corner at their peaks. Obviously, such solitons are not strong solutions to equation (6). In order to provide a mathematical framework for the study of these solitons, we define the notion of weak solutions to equation (6). Let
Fu(u,v)=uvux+Px∗(12u2xv+uuxvx+u2v)+12P∗(u2xvx),Fv(u,v)=uvvx+Px∗(12v2xu+vvxux+v2u)+12P∗(v2xux). |
Then equation (6) can be written as
{ut+Fu(u,v)=0,vt+Fv(u,v)=0,u(0,x)=u0(x),v(0,x)=v0(x). | (7) |
Lemma 2.3. [22] Let
f,g∈L2((0,T);H1(R))anddfdt,dgdt∈L2((0,T);H−1(R)), |
then
⟨f(t),g(t)⟩−⟨f(s),g(s)⟩=∫ts⟨df(τ)dτ,g(τ)⟩dτ+∫ts⟨dg(τ)dτ,f(τ)⟩dτ |
for all
Throughout this paper, let
ρn=(∫Rρ(ξ)dξ)−1nρ(nx),x∈R,n≥1, |
where
ρ(x)={e1x2−1,for|x|<1,0,for|x|≥1. |
Next, we recall two crucial approximation results and two identities.
Lemma 2.4. [7] Let
[ρn∗(fμ)−(ρn∗f)(ρn∗μ)]→0,asn→∞inL1(R). |
Lemma 2.5. [7] Let
ρn∗(fg)−(ρn∗f)(ρn∗g)→0,asn→∞inL∞(R). |
Lemma 2.6. [7] Assume that
ddt∫R|ρn∗u|dx=∫R(ρn∗ut)sgn(ρn∗u)dx |
and
ddt∫R|ρn∗ux|dx=∫R(ρn∗uxt)sgn(ρn∗ux)dx. |
Consider the flow governed by
{dq(t,x)dt=(uv)(t,q),t>0,x∈R,q(0,x)=x,x∈R. | (8) |
Applying classical results in the theory of ODEs, one can obtain the following useful result on the above initial value problem.
Lemma 2.7. [12] Let
qx=exp(∫t0(uv)x(s,q(s,x))ds),∀(t,x)∈[0,T)×R. |
Furthermore, setting
m(t,q)=exp(−∫t0(2vux+uvx)(s,q(s,x))ds)m0,n(t,q)=exp(−∫t0(2uvx+vux)(s,q(s,x))ds)n0,∀(t,x)∈[0,T)×R. |
Theorem 2.8. Let
u,v∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)). |
Set
(i).m(t,⋅)≥0,n(t,⋅)≥0,u(t,⋅)≥0,v(t,⋅)≥0and|ux(t,⋅)|≤u(t,⋅),|vx(t,⋅)|≤v(t,⋅)onR;(ii).‖u(t,⋅)‖L1≤‖m(t,⋅)‖L1,‖u(t,⋅)‖L∞≤√22‖u(t,⋅)‖1=√22‖u0‖1,and‖v(t,⋅)‖L1≤‖n(t,⋅)‖L1,‖v(t,⋅)‖L∞≤√22‖v(t,⋅)‖1=√22‖v0‖1;(iii).‖ux(t,⋅)‖L1≤‖m(t,⋅)‖L1and‖vx(t,⋅)‖L1≤‖n(t,⋅)‖L1. |
Moreover, if
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1and‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
Proof. Let
u(t,x)=e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy, | (9) |
and
ux(t,x)=−e−x2∫x−∞eym(t,y)dy+ex2∫∞xe−ym(t,y)dy. | (10) |
From the above two relations and
|ux(t,x)|≤u(t,x)≤√22‖u(t,x)‖1. |
In view of Lemma 2.2, we obtain that
u(t,x)≤√22‖u0‖1,∀(t,x)∈R+×R. |
Since
((mn)13)t+((mn)13uv)x=0, |
it immediately follows that
ddt∫Rm(t,x)dx=−∫∞−∞(uvmx+(2vux+uvx)m)dx=∫∞−∞(vuxm−(uvm)x)dx≤‖u‖L∞‖v‖L∞∫∞−∞m(t,x)dx≤‖u0‖1‖v0‖1∫∞−∞m(t,x)dx. |
Since
‖m(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖m0‖L1. |
Similarly, we find
‖n(t,⋅)‖L1≤e‖u0‖1‖v0‖1t‖n0‖L1. |
This completes the proof of Theorem 2.8.
In this section, we will prove that there exists a unique global weak solution to equation (6), provided the initial data
Theorem 3.1. Let
u,v∈W1,∞(Rx×R)∩L∞(R+;H1(R)) |
with the initial data
Proof. First, we shall prove
‖u0‖L1=‖P∗m0‖L1=sup‖f‖L∞≤1∫Rf(x)(P∗m0)(x)dx=sup‖f‖L∞≤1∫Rf(x)∫RP(x−y)dm0(y)dx=sup‖f‖L∞≤1∫R(P∗f)(y)dm0(y)≤sup‖f‖L∞≤1‖P‖L1‖f‖L∞‖m0‖M(R)=‖m0‖M(R). | (11) |
Similarly, we have
‖v0‖L1≤‖n0‖M(R). | (12) |
We first prove that there exists a corresponding
Let us define
un0⟶u0H1(R),n→∞,vn0⟶v0H1(R),n→∞, | (13) |
and for all
‖un0‖1=‖ρn∗u0‖1≤‖u0‖1,‖vn0‖1≤‖v0‖1,‖un0‖L1=‖ρn∗u0‖L1≤‖u0‖L1,‖vn0‖L1≤‖v0‖L1, | (14) |
in view of Young's inequality. Note that for all
mn0=un0−un0,xx=ρn∗m0≥0,andnn0=vn0−vn0,xx=ρn∗v0≥0. |
Comparing with the proof of relation (11) and (12), we get
‖mn0‖L1≤‖m0‖M(R),and‖nn0‖L1≤‖n0‖M(R),n≥1. | (15) |
By Theorem 2.8, we obtain that there exists a global strong solution
un=un(⋅,un0),vn=vn(⋅,vn0)∈C([0,T);Hs(R))∩C1([0,T);Hs−1(R)) |
for every
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1=‖un0‖1≤‖u0‖1,‖vnx(t,⋅)‖L∞≤‖vn(t,⋅)‖L∞≤‖vn(t,⋅)‖1=‖vn0‖1≤‖v0‖1. | (16) |
By the above inequality, we have
‖un(t,⋅)vn(t,⋅)unx(t,⋅)‖L2≤‖un(t,⋅)‖L∞‖vn(t,⋅)‖L∞‖unx(t,⋅)‖L2≤‖un(t,⋅)‖21‖vn(t,⋅)‖1≤‖u0‖21‖v0‖1. | (17) |
Similarly, we have
‖vn(t,⋅)un(t,⋅)vnx(t,⋅)‖L2≤‖v0‖21‖u0‖1. | (18) |
By Young's inequality and (16), for all
‖Px∗(12(unx)2vn+ununxvnx+(un)2vn)+12P∗((unx)2vnx)‖L2≤‖Px‖L2‖12(unx)2vn+ununxvnx+(un)2vn‖L1+12‖P‖L2‖(unx)2vnx‖L1≤12‖unx‖2L2‖vn‖L∞+12‖un‖L∞‖unx‖L2‖vnx‖L2+‖un‖2L2‖vn‖L∞+12‖vnx‖L∞‖unx‖2L2≤52‖un‖21‖vn‖1≤52‖u0‖21‖v0‖1. | (19) |
Similarly, we get
‖Px∗(12(vnx)2un+vnunxvnx+(vn)2un)+12P∗((vnx)2unx)‖L2≤52‖v0‖21‖u0‖1. | (20) |
Combining (17)-(20) with equation (6) for all
‖ddtun(t,⋅)‖L2≤72‖u0‖21‖v0‖1,and‖ddtvn(t,⋅)‖L2≤72‖v0‖21‖u0‖1. | (21) |
For fixed
∫T0∫R([un(t,x)]2+[unx(t,x)]2+[unt(t,x)]2)dxdt≤(‖u0‖21+494‖u0‖41‖v0‖21)T,∫T0∫R([vn(t,x)]2+[vnx(t,x)]2+[vnt(t,x)]2)dxdt≤(‖v0‖21+494‖v0‖41‖u0‖21)T. | (22) |
It follows that the sequence
unk⇀uweaklyinH1(0,T)×R)fornk→∞ | (23) |
and
unk⟶u,a.e.on(0,T)×Rfornk→∞, | (24) |
for some
V[unkx(t,⋅)]=‖unkxx(t,⋅)‖L1≤‖unk(t,⋅)‖L1+‖mnk(t,⋅)‖L1≤2‖mnk(t,⋅)‖L1≤2e‖unk0‖1‖vnk0‖1t‖mnk0‖L1≤2e‖u0‖1‖v0‖1t‖m0‖M(R) |
and
‖unkx(t,⋅)‖L∞≤‖unk(t,⋅)‖1=‖unk0(t,⋅)‖1≤‖u0‖1. |
Applying Helly's theorem, we obtain that there exists a subsequence, denoted again by
V[ˆu(t,⋅)]≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
Since for almost all
unkx⟶uxa.e.on(0,T)×Rfornk→∞, | (25) |
and for a.e.
V[ux(t,⋅)]=‖uxx(t,⋅)‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R). |
We can analogously extract a subsequence of
vnk⟶va.e.on(0,T)×Rfornk→∞andvnkx⟶vxa.e.on(0,T)×Rfornk→∞. | (26) |
By Theorem 2.8
‖12(unx)2vn+ununxvnx+(un)2vn+12(unx)2vnx‖L1≤3‖u0‖21‖v0‖1. |
For fixed
Px∗[12(unx)2vn+ununxvnx+(un)2vn]+P∗(12(unx)2vnx)⟶Px∗[12u2xvn+uuxvx+u2v]+P∗(12u2xvx),asn→∞. | (27) |
We can analogously obtain that
Px∗[12(vnx)2un+vnvnxunx+(vn)2un]+P∗(12(vnx)2unx)⟶Px∗[12v2xun+vvxux+v2u]+P∗(12v2xux),asn→∞. | (28) |
Combining (24)-(26) with (27) and (28), we deduce that
Since
u∈Cw,loc(R+;H1(R)). |
For a.e.
‖u(t,⋅)‖L∞≤‖u(t,⋅)‖1≤lim infnk→∞‖un(t,⋅)‖1=lim infnk→∞‖unk0(t,⋅)‖1≤lim infnk→∞‖P‖1‖mnk0(t,⋅)‖L1≤‖m0‖M(R), | (29) |
for a.e.
u∈L∞(R+×R)∩L∞(R+;H1(R)). |
Note that by Theorem 2.8 and (15), we have
‖unx(t,⋅)‖L∞≤‖un(t,⋅)‖L∞≤‖un(t,⋅)‖1≤‖P‖1‖mn0(t,⋅)‖L1≤‖m0(t,⋅)‖M(R). | (30) |
Combining this with (25), we deduce that
ux∈L∞(R+×R). |
This shows that
u∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Taking the same way as
v∈W1,∞(R+×R)∩L∞(R+;H1(R)). |
Please note that we use the subsequence of
Now, by a regularization technique, we prove that
{ρn∗ut+ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+12ρn∗P∗(u2xvx)=0,ρn∗vt+ρn∗(uvvx)+ρn∗Px∗(12v2xv+vuxvx+v2u)+12ρn∗P∗(v2xux)=0. | (31) |
By differentiation of the first equation of (31), we obtain
ρn∗uxt+ρn∗(uvux)x+ρn∗Px∗(12u2xvx)+ρn∗Pxx∗(12u2xv+uuxvx+u2v)=0. | (32) |
Note that
ρn∗uxt+ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx)=0. | (33) |
Take these two equation (32) and (33) into the integration below, we obtain
12ddt∫R(ρn∗u)2+(ρn∗ux)2dx=∫R(ρn∗u)(ρn∗ut)+(ρn∗ux)(ρn∗uxt)dx=−∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (34) |
Note that
limn→∞‖ρn∗u−u‖L2=limn→∞‖ρn∗(uvux)−uvux‖L2=0. |
Therefore, by using H
∫R(ρn∗u)(ρn∗(uvux))dx⟶∫Ru2vuxdx,asn→∞. |
Similarly, for a.e.
∫R(ρn∗u)(ρn∗Px∗(12u2xv+uuxvx+u2v))dx⟶∫RuPx∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗u)(ρn∗P∗(12u2xvx))dx⟶∫RuP∗(12u2xvx)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗P∗(12u2xv+uuxvx+u2v))dx⟶∫RuxP∗(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗(12u2xv+uuxvx+u2v))dx⟶∫Rux(12u2xv+uuxvx+u2v)dx,asn→∞, |
∫R(ρn∗ux)(ρn∗Px∗(12u2xvx))dx⟶∫RuxPx∗(12u2xvx)dx,asn→∞, |
as
∫R(ρn∗ux)(ρnx∗(uvux))dx=−∫R(ρn,xx∗u)(ρ∗(uvux))dx+∫R(ρn,xx∗u)(ρn∗uv)(ρn∗ux)dx+12∫R(ρn∗ux)2(ρn∗(uv)x)dx. | (35) |
Observe that
∫R(ρn∗ux)2(ρn∗(uv)x)dx⟶∫Ru2x(uv)xdx,asn→∞. |
On the other hand
‖ρnxx∗u‖L1≤‖uxx‖M(R)≤2e‖u0‖1‖v0‖1t‖m0‖M(R),∀t∈[0,T). |
As
‖(ρn∗uv)(ρn∗ux)−(ρn∗(uvux))‖L∞→0,n→∞. |
Therefore,
∫R(ρn,xx∗u)((ρn∗uv)(ρn∗ux)−ρn∗(uvux))dx→0,n→∞. |
In view of the above relations and (35), we obtain
∫R(ρn∗ux)(ρnx∗(uvux))dx→12∫Ru2x(uv)xdx,n→∞. | (36) |
Let us define
Eun(t)=∫R(ρn∗u)2+(ρn∗ux)2dx, | (37) |
and
Gun(t)=−2∫R(ρn∗u)(ρn∗(uvux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−2∫R(ρn∗ux)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. |
We have proved that for fixed
{ddtEun(t)=Gun(t),n≥1,Gun(t)→0,n→∞. | (38) |
Therefore, we get
Eun(t)−Eun(0)=∫t0Gun(s)ds,t∈[0,T),n≥1. | (39) |
By Young's inequality and H
|Gun(t)|≤Ku(T),n≥1. |
In view of (38) and (39), an application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞(Eun(t)−Eun(0))=0. |
By (24) and the above relation, for fixed
Eu(u)=limn→∞Eun(t)=limn→∞Eun(0)=Eu(u0). |
By Theorem 2.8, we infer that for all fixed
Next, we prove that
By differentiation of the second equation of (31), we obtain this relation:
ρn∗vxt+ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux)=0. | (40) |
In view of (31), (33) and (40), we obtain
ddt∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx=∫R(ρn∗u)(ρn∗vt)+(ρn∗ux)(ρn∗vxt)+(ρn∗ut)(ρn∗v)+(ρn∗uxt)(ρn∗vx)dx=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u) |
+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (41) |
We can analogously get the similar convergence like the case
It is nature to define
Hn(t)=∫R(ρn∗u)(ρn∗v)+(ρn∗ux)(ρn∗vx)dx, | (42) |
and
Gu,vn(t)=−∫R(ρn∗u)(ρn∗(uvvx)+ρn∗Px∗(12v2xu+vuxvx+v2u)+ρn∗P∗(12v2xux))dx−∫R(ρn∗ux)(ρnx∗(uvvx)+ρn∗P∗(12v2xu+vuxvx+v2u)−ρn∗(12v2xu+vuxvx+v2u)+ρn∗Px∗(12v2xux))dx−∫R(ρn∗v)(ρn∗(vuux)+ρn∗Px∗(12u2xv+uuxvx+u2v)+ρn∗P∗(12u2xvx))dx−∫R(ρn∗vx)(ρnx∗(uvux)+ρn∗P∗(12u2xv+uuxvx+u2v)−ρn∗(12u2xv+uuxvx+u2v)+ρn∗Px∗(12u2xvx))dx. | (43) |
And it is easy to get
Hn(t)−Hn(0)=∫t0Gu,vn(s)ds,t∈[0,T),n≥1. | (44) |
Similarly, we get this estimate by using Young's inequality and Holder's inequality:
|Gu,vn(t)|≤Ku,v(T),n≥1. |
An application of Lebesgue's dominated convergence theorem yields that for fixed a.e.
limn→∞[Hn(t)−Hn(0)]=0. |
By these convergence above, for fixed
H(u,v)=limn→∞Hn(t)=limn→∞Hn(0)=H(u0,v0), |
which indicates that
Since
\begin{eqnarray*} \begin{aligned} \|m(t, \cdot)\|\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|m_0\|_{{\mathcal {M}}(\mathbb R)}. \end{aligned} \end{eqnarray*} |
For any fixed
\begin{eqnarray*} \begin{aligned} (u(t, \cdot)-u_{xx}(t, \cdot))\in {\mathcal {M}}(\mathbb R). \end{aligned} \end{eqnarray*} |
Therefore, in view of (24) and (25), we obtain that for all
\begin{eqnarray*} \begin{aligned} u^{n_k}(t, \cdot)-u^{n_k}_{xx}(t, \cdot)\rightarrow u(t, \cdot)-u_{xx}(t, \cdot)\quad {\rm in} \quad D'(\mathbb R). \end{aligned} \end{eqnarray*} |
Since
\begin{eqnarray*} \begin{aligned} u(t, \cdot)-u_{xx}(t, \cdot) \in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*} |
Similarly, we arrive at the conclusion:
\begin{eqnarray*} \begin{aligned} v(t, \cdot)-v_{xx}(t, \cdot)\in {\mathcal {M}}^+(\mathbb R). \end{aligned} \end{eqnarray*} |
Finally, we show the uniqueness of the weak solutions of equation (6). Let
\begin{eqnarray*} \begin{aligned} (f, g)\in W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R))\times W^{1, \infty}({\mathbb R}_+\times \mathbb R)\cap L^\infty({\mathbb R}_+;H^1(\mathbb R)) \end{aligned} \end{eqnarray*} |
Note that
\begin{eqnarray*} \begin{aligned} &\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|m_0\|_{{\mathcal {M}}(\mathbb R)}, \\ &\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\leq 3e^{\|u_0\|_1\|v_0\|_1t}\|n_0\|_{{\mathcal {M}}(\mathbb R)}\quad {\rm for} \quad{\rm a.e.}\quad t\in[0, T). \end{aligned} \end{eqnarray*} |
Define
\begin{eqnarray*} \begin{aligned} M(T) = \sup\limits_{t\in[0, T)}&\left\{\|u(t, \cdot)-u_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|v(t, \cdot)-v_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right.\\ &\qquad\qquad\qquad\left.+\|\bar{u}(t, \cdot)-\bar{u}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}+\|\bar{v}(t, \cdot)-\bar{v}_{xx}(t, \cdot)\|_{{\mathcal {M}}(\mathbb R)}\right\}. \end{aligned} \end{eqnarray*} |
Then for fixed
\begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^1}\leq \|P\|_{L^1}M(T) = M(T), \\ &\|u_x(t, \cdot)\|_{L^1}\leq \|P_x\|_{L^1}M(T) = M(T), \\ &\|v(t, \cdot)\|_{L^1}, \|v_x(t, \cdot)\|_{L^1}, \|\bar{u}(t, \cdot)\|_{L^1}, \|\bar{u}_x(t, \cdot)\|_{L^1}, \|\bar{v}(t, \cdot)\|_{L^1}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^1}\leq M(T). \end{aligned} \end{eqnarray} | (45) |
On the other hand, from (29) and (30), we have
\begin{eqnarray} \begin{aligned} &\|u(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|u_x(t, \cdot)\|_{L^\infty}\leq \|m_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|v(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \qquad \|v_x(t, \cdot)\|_{L^\infty}\leq \|n_0\|_{{\mathcal {M}}(\mathbb R)}\leq N, \\ &\|\bar{u}(t, \cdot)\|_{L^\infty}, \|\bar{u}_x(t, \cdot)\|_{L^\infty}, \|\bar{v}(t, \cdot)\|_{L^\infty}\, {\rm{and}}\, \|\bar{v}_x(t, \cdot)\|_{L^\infty}\leq N. \end{aligned} \end{eqnarray} | (46) |
Let us define
\begin{eqnarray*} \begin{aligned} \hat{u}(t, x) = u(t, x)-\bar{u}(t, x)\quad {\rm{and}}\quad \hat{v}(t, x) = v(t, x)-\bar{v}(t, x), \quad (t, x)\in[0, T)\times\mathbb R. \end{aligned} \end{eqnarray*} |
Convoluting equation (6) for
\begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_t{\rm{sgn}}(\rho_n\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx\\ & -\int_{\mathbb R}\rho_n\ast P_{xx}{\rm{*}}({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ &-\int_{\mathbb R}\rho_n\ast{\frac 12}P\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_n\ast\hat{u})dx. \end{aligned} \end{eqnarray} | (47) |
Using (46) and Young's inequality, we infer that for a.e.
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (48) |
where
\begin{eqnarray} \begin{aligned} {\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx = &\int_{\mathbb R}\rho_n\ast\hat{u}_{xt}{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &-\int_{\mathbb R}\rho_n\ast\left(\hat{u}vu_x+\bar{u}u_x\hat{v}+\bar{u}\bar{v}\hat{u}_x\right)_x{\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\\ &\qquad\qquad+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ = &I_1+I_2+I_3. \end{aligned} \end{eqnarray} | (49) |
For the term
\begin{eqnarray*} \begin{aligned} &I_1\\ = &-\int_{\mathbb R}\rho_n\ast(\hat{u}_xvu_x+\hat{u}u_xv_x+\hat{u}vu_{xx}+\bar{u}_xu_{x}\hat{v}+\bar{u}u_{xx}\hat{v}+\bar{u}u_x\hat{v}_x\\ &\qquad\qquad\qquad\qquad+\bar{u}_x\bar{v}\hat{u}_x+\bar{u}\bar{v}_x\hat{u}_x+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}\rho_n\ast(\hat{u}vu_{xx}+\bar{u}u_{xx}\hat{v}+\bar{u}\bar{v}\hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &-\int_{\mathbb R}(\rho_n\ast\hat{u}v)(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx-\int_{\mathbb R}(\rho_n\ast\bar{u}\hat{v})(\rho_n\ast u_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad-\int_{\mathbb R}(\rho_n\ast\bar{u}\bar{v})(\rho_n\ast \hat{u}_{xx}){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t) \end{aligned} \end{eqnarray*} |
\begin{eqnarray} \begin{aligned}&\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &+\int_{\mathbb R}(\rho_n\ast(\hat{u}v)_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+\int_{\mathbb R}(\rho_n\ast(\bar{u}\hat{v})_x)(\rho_n\ast u_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx\\ &\qquad\qquad\qquad\qquad+\int_{\mathbb R}(\rho_n\ast(\bar{u}\bar{v})_x)(\rho_n\ast \hat{u}_x){\rm{sgn}}(\rho_{nx}\ast \hat{u})dx+R_n(t)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right) +R_n(t), \end{aligned} \end{eqnarray} | (50) |
where C is a constant depending on
\begin{eqnarray} \left\{ \begin{aligned} &R_n(t)\longrightarrow 0, \qquad n\rightarrow\infty, \\ &|R_n(t)|\leq \kappa(T), \;\;\, n\geq 1, \;\;t\in[0, T). \end{aligned} \right. \end{eqnarray} | (51) |
For the second term
\begin{eqnarray} \begin{aligned} &I_2\\ = -&\int_{\mathbb R}\rho_n\ast P_{xx}\ast\left({\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x\right.\\ &\qquad+\left.\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& 2\int_{\mathbb R}\rho_n\ast\left|{\frac 12}\hat{u}(u_x+\bar{u}_x)v+{\frac 12}\bar{u}^2_x\hat{v}+\hat{u}u_xv_x+\bar{u}v_x\hat{u}_x+\bar{u}\bar{u}_x\hat{v}_x+\hat{u}(u+\bar{u})v+u^2\hat{v}\right|dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (52) |
For the final term
\begin{eqnarray} \begin{aligned} I_3 = -&\int_{\mathbb R}\rho_n\ast{\frac 12}P_x\ast\left(\hat{u}_x(u_x+\bar{u}_x)v_x+\bar{u}^2_x\hat{v}_x\right){\rm{sgn}}(\rho_{nx}\ast\hat{u})dx\\ \leq& C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right). \end{aligned} \end{eqnarray} | (53) |
Adding these three terms, we obtain
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (54) |
For these terms
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right), \\ &{\frac d{dt}}\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (55) |
From (48), (54) and (55), we infer that
\begin{eqnarray} \begin{aligned} &{\frac d{dt}}\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq C\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)+R_n(t). \end{aligned} \end{eqnarray} | (56) |
If
\begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{\int^t_0C+\tilde{R}_n(\tau)d\tau}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} | (57) |
where
\begin{eqnarray} \begin{aligned} &\left(\int_{\mathbb R}|\rho_n\ast\hat{u}|dx+\int_{\mathbb R}|\rho_n\ast\hat{u}_x|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}|dx+\int_{\mathbb R}|\rho_n\ast\hat{v}_x|dx\right)\\ &\leq e^{Ct}\left(|\rho_n\ast\hat{u}|+|\rho_n\ast\hat{u}_x|+|\rho_n\ast\hat{v}|+|\rho_n\ast\hat{v}_x|\right)(0, x), \end{aligned} \end{eqnarray} | (58) |
As
[1] |
R. K. Khadanga, A. Kumar, S. Panda, Frequency control in hybrid distributed power systems via type-2 fuzzy pid controller, IET Renewable Power Gener., 15 (2021), 1706–1723. https://doi.org/10.1049/rpg2.12140 doi: 10.1049/rpg2.12140
![]() |
[2] | M. K. Diab, H. H. Ammar, R. E. Shalaby, Self-driving car lane-keeping assist using pid and pure pursuit control, in 2020 International Conference on Innovation and Intelligence for Informatics, Computing and Technologies (3ICT), IEEE, (2020), 1–6. https://doi.org/10.1109/3ICT51146.2020.9311987 |
[3] |
H. Maghfiroh, M. Ahmad, A. Ramelan, F. Adriyanto, Fuzzy-pid in bldc motor speed control using matlab/simulink, J. Rob. Control (JRC), 3 (2022), 8–13. https://doi.org/10.18196/jrc.v3i1.10964 doi: 10.18196/jrc.v3i1.10964
![]() |
[4] |
J. R. Nayak, B. Shaw, B. K. Sahu, K. A. Naidu, Application of optimized adaptive crow search algorithm based two degree of freedom optimal fuzzy pid controller for agc system, Eng. Sci. Technol. Int. J., 32 (2022), 101061. https://doi.org/10.1016/j.jestch.2021.09.007 doi: 10.1016/j.jestch.2021.09.007
![]() |
[5] |
N. Ma, D. Li, W. He, Y. Deng, J. Li, Y. Gao, et al., Future vehicles: interactive wheeled robots, Sci. China Inf. Sci., 64 (2021), 1–3. https://doi.org/10.1007/s11432-020-3171-4 doi: 10.1007/s11432-020-3171-4
![]() |
[6] | N. Ma, Y. Gao, J. Li, D. Li, Interactive cognition in self-driving, Chin. Sci.: Inf. Sci., 48 (2018), 1083–1096. |
[7] |
D. Li, N. Ma, Y. Gao, Future vehicles: learnable wheeled robots, Sci. China Inf. Sci., 63 (2020), 1–8. https://doi.org/10.1007/s11432-019-2787-2 doi: 10.1007/s11432-019-2787-2
![]() |
[8] |
T. Yang, N. Sun, Y. Fang, Adaptive fuzzy control for a class of mimo underactuated systems with plant uncertainties and actuator deadzones: Design and experiments, IEEE Trans. Cybern., 52 (2022), 8213–8226. https://doi.org/10.1109/TCYB.2021.3050475 doi: 10.1109/TCYB.2021.3050475
![]() |
[9] |
S. H. Park, K. W. Kim, W. H. Choi, M. S. Jie, Y. Kim, The autonomous performance improvement of mobile robot using type-2 fuzzy self-tuning PID controller, Adv. Sci. Technol. Lett., 138 (2016), 182–187. https://doi.org/10.14257/astl.2016.138.37 doi: 10.14257/astl.2016.138.37
![]() |
[10] |
P. Parikh, S. Sheth, R. Vasani, J. K. Gohil, Implementing fuzzy logic controller and pid controller to a dc encoder motor–-"a case of an automated guided vehicle", Procedia Manuf., 20 (2018), 219–226. https://doi.org/10.1016/j.promfg.2018.02.032 doi: 10.1016/j.promfg.2018.02.032
![]() |
[11] |
Q. Bu, J. Cai, Y. Liu, M. Cao, L. Dong, R. Ruan, et al., The effect of fuzzy pid temperature control on thermal behavior analysis and kinetics study of biomass microwave pyrolysis, J. Anal. Appl. Pyrolysis, 158 (2021), 105176. https://doi.org/10.1016/j.jaap.2021.105176 doi: 10.1016/j.jaap.2021.105176
![]() |
[12] | M. S. Jie, W. H. Choi, Type-2 fuzzy pid controller design for mobile robot, Int. J. Control Autom., 9 (2016), 203–214. |
[13] | N. Kumar, M. Takács, Z. Vámossy, Robot navigation in unknown environment using fuzzy logic, in 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), IEEE, (2017), 279–284. https://doi.org/10.1109/SAMI.2017.7880317 |
[14] | T. Muhammad, Y. Guo, Y. Wu, W. Yao, A. Zeeshan, Ccd camera-based ball balancer system with fuzzy pd control in varying light conditions, in 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC), IEEE, (2019), 305–310. https://doi.org/10.1109/ICNSC.2019.8743305 |
[15] |
A. Wong, T. Back, A. V. Kononova, A. Plaat, Deep multiagent reinforcement learning: Challenges and directions, Artif. Intell. Rev., 2022 (2022). https://doi.org/10.1007/s10462-022-10299-x doi: 10.1007/s10462-022-10299-x
![]() |
[16] |
Z. Cao, S. Xu, H. Peng, D. Yang, R. Zidek, Confidence-aware reinforcement learning for self-driving cars, IEEE Trans. Intell. Transp. Syst., 23 (2022), 7419–7430. https://doi.org/10.1109/TITS.2021.3069497 doi: 10.1109/TITS.2021.3069497
![]() |
[17] | T. Ribeiro, F. Gonçalves, I. Garcia, G. Lopes, A. F. Ribeiro, Q-learning for autonomous mobile robot obstacle avoidance, in 2019 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), IEEE, (2019), 1–7. https://doi.org/10.1109/ICARSC.2019.8733621 |
[18] | S. Danthala, S. Rao, K. Mannepalli, D. Shilpa, Robotic manipulator control by using machine learning algorithms: A review, Int. J. Mech. Prod. Eng. Res. Dev., 8 (2018), 305–310. |
[19] |
X. Lei, Z. Zhang, P. Dong, Dynamic path planning of unknown environment based on deep reinforcement learning, J. Rob., 2018 (2018). https://doi.org/10.1155/2018/5781591 doi: 10.1155/2018/5781591
![]() |
[20] |
Y. Shan, B. Zheng, L. Chen, L. Chen, D. Chen, A reinforcement learning-based adaptive path tracking approach for autonomous driving, IEEE Trans. Veh. Technol., 69 (2020), 10581–10595. https://doi.org/10.1109/TVT.2020.3014628 doi: 10.1109/TVT.2020.3014628
![]() |
[21] | T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al., Continuous control with deep reinforcement learning, preprint, arXiv: 1509.02971. https://doi.org/10.48550/arXiv.1509.02971 |
[22] |
P. Ramanathan, K. K. Mangla, S. Satpathy, Smart controller for conical tank system using reinforcement learning algorithm, Measurement, 116 (2018), 422–428. https://doi.org/10.1016/j.measurement.2017.11.007 doi: 10.1016/j.measurement.2017.11.007
![]() |
[23] |
L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, et al., Safe learning in robotics: From learning-based control to safe reinforcement learning, Annu. Rev. Control Rob. Auton. Syst., 5 (2022), 411–444. https://doi.org/10.1146/annurev-control-042920-020211 doi: 10.1146/annurev-control-042920-020211
![]() |
[24] | A. I. Lakhani, M. A. Chowdhury, Q. Lu, Stability-preserving automatic tuning of PID control with reinforcement learning, preprint, arXiv: 2112.15187. https://doi.org/10.20517/ces.2021.15 |
[25] |
O. Dogru, K. Velswamy, F. Ibrahim, Y. Wu, A. S. Sundaramoorthy, B. Huang, et al., Reinforcement learning approach to autonomous pid tuning, Comput. Chem. Eng., 161 (2022), 107760. https://doi.org/10.1016/j.compchemeng.2022.107760 doi: 10.1016/j.compchemeng.2022.107760
![]() |
[26] |
X. Yu, Y. Fan, S. Xu, L. Ou, A self-adaptive sac-pid control approach based on reinforcement learning for mobile robots, Int. J. Robust Nonlinear Control, 32 (2022), 9625–9643. https://doi.org/10.1002/rnc.5662 doi: 10.1002/rnc.5662
![]() |
[27] |
B. Guo, Z. Zhuang, J. S. Pan, S. C. Chu, Optimal design and simulation for pid controller using fractional-order fish migration optimization algorithm, IEEE Access, 9 (2021), 8808–8819. https://doi.org/10.1109/ACCESS.2021.3049421 doi: 10.1109/ACCESS.2021.3049421
![]() |
[28] | M. Praharaj, D. Sain, B. Mohan, Development, experimental validation, and comparison of interval type-2 mamdani fuzzy pid controllers with different footprints of uncertainty, Inf. Sci., 601 (2022), 374–402. |
[29] |
Y. Jia, R. Zhang, X. Lv, T. Zhang, Z. Fan, Research on temperature control of fuel-cell cooling system based on variable domain fuzzy pid, Processes, 10 (2022), 534. https://doi.org/10.3390/pr10030534 doi: 10.3390/pr10030534
![]() |
[30] |
J. Wei, L. Gang, W. Tao, G. Kai, Variable universe fuzzy pid control based on adaptive contracting-expanding factors, Eng. Mech., 38 (2021), 23–32. https://doi.org/10.6052/j.issn.1000-4750.2020.11.0786 doi: 10.6052/j.issn.1000-4750.2020.11.0786
![]() |
[31] | R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT press, 2018. |
[32] |
P. R. Montague, Reinforcement learning: an introduction, by Sutton, RS and Barto, AG, Trends Cognit. Sci., 3 (1999), 360. https://doi.org/10.1016/S1364-6613(99)01331-5 doi: 10.1016/S1364-6613(99)01331-5
![]() |
[33] | D. Wang, R. Walters, X. Zhu, R. Platt, Equivariant q learning in spatial action spaces, in Conference on Robot Learning, PMLR, (2022), 1713–1723. |
[34] |
E. Anderlini, D. I. Forehand, P. Stansell, Q. Xiao, M. Abusara, Control of a point absorber using reinforcement learning, IEEE Trans. Sustainable Energy, 7 (2016), 1681–1690. https://doi.org/10.1109/TSTE.2016.2568754 doi: 10.1109/TSTE.2016.2568754
![]() |
1. | Byungsoo Moon, Orbital stability of periodic peakons for the generalized modified Camassa-Holm equation, 2021, 14, 1937-1632, 4409, 10.3934/dcdss.2021123 | |
2. | K.H. Karlsen, Ya. Rybalko, Global semigroup of conservative weak solutions of the two-component Novikov equation, 2025, 86, 14681218, 104393, 10.1016/j.nonrwa.2025.104393 |