
The global spread of COVID-19 has not been effectively controlled. It poses a significant threat to public health and global economic development. This paper uses a mathematical model with vaccination and isolation treatment to study the transmission dynamics of COVID-19. In this paper, some basic properties of the model are analyzed. The control reproduction number of the model is calculated and the stability of the disease-free and endemic equilibria is analyzed. The parameters of the model are obtained by fitting the number of cases that were detected as positive for the virus, dead, and recovered between January 20 and June 20, 2021, in Italy. We found that vaccination better controlled the number of symptomatic infections. A sensitivity analysis of the control reproduction number has been performed. Numerical simulations demonstrate that reducing the contact rate of the population and increasing the isolation rate of the population are effective non-pharmaceutical control measures. We found that if the isolation rate of the population is reduced, a short-term decrease in the number of isolated individuals can lead to the disease not being controlled at a later stage. The analysis and simulations in this paper may provide some helpful suggestions for preventing and controlling COVID-19.
Citation: Yujie Sheng, Jing-An Cui, Songbai Guo. The modeling and analysis of the COVID-19 pandemic with vaccination and isolation: a case study of Italy[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5966-5992. doi: 10.3934/mbe.2023258
[1] | Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624 |
[2] | Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714 |
[3] | Tuba Gulsen, Sertac Goktas, Thabet Abdeljawad, Yusuf Gurefe . Sturm-Liouville problem in multiplicative fractional calculus. AIMS Mathematics, 2024, 9(8): 22794-22812. doi: 10.3934/math.20241109 |
[4] | Youyu Wang, Lu Zhang, Yang Zhang . Lyapunov-type inequalities for Hadamard fractional differential equation under Sturm-Liouville boundary conditions. AIMS Mathematics, 2021, 6(3): 2981-2995. doi: 10.3934/math.2021181 |
[5] | Youyu Wang, Xianfei Li, Yue Huang . The Green's function for Caputo fractional boundary value problem with a convection term. AIMS Mathematics, 2022, 7(4): 4887-4897. doi: 10.3934/math.2022272 |
[6] | Erdal Bas, Ramazan Ozarslan, Resat Yilmazer . Spectral structure and solution of fractional hydrogen atom difference equations. AIMS Mathematics, 2020, 5(2): 1359-1371. doi: 10.3934/math.2020093 |
[7] | Haifa Bin Jebreen, Beatriz Hernández-Jiménez . Pseudospectral method for fourth-order fractional Sturm-Liouville problems. AIMS Mathematics, 2024, 9(9): 26077-26091. doi: 10.3934/math.20241274 |
[8] | Zhongqian Wang, Xuejun Zhang, Mingliang Song . Three nonnegative solutions for Sturm-Liouville BVP and application to the complete Sturm-Liouville equations. AIMS Mathematics, 2023, 8(3): 6543-6558. doi: 10.3934/math.2023330 |
[9] | Zeliha Korpinar, Mustafa Inc, Dumitru Baleanu . On the fractional model of Fokker-Planck equations with two different operator. AIMS Mathematics, 2020, 5(1): 236-248. doi: 10.3934/math.2020015 |
[10] | Ndolane Sene . Fractional input stability for electrical circuits described by the Riemann-Liouville and the Caputo fractional derivatives. AIMS Mathematics, 2019, 4(1): 147-165. doi: 10.3934/Math.2019.1.147 |
The global spread of COVID-19 has not been effectively controlled. It poses a significant threat to public health and global economic development. This paper uses a mathematical model with vaccination and isolation treatment to study the transmission dynamics of COVID-19. In this paper, some basic properties of the model are analyzed. The control reproduction number of the model is calculated and the stability of the disease-free and endemic equilibria is analyzed. The parameters of the model are obtained by fitting the number of cases that were detected as positive for the virus, dead, and recovered between January 20 and June 20, 2021, in Italy. We found that vaccination better controlled the number of symptomatic infections. A sensitivity analysis of the control reproduction number has been performed. Numerical simulations demonstrate that reducing the contact rate of the population and increasing the isolation rate of the population are effective non-pharmaceutical control measures. We found that if the isolation rate of the population is reduced, a short-term decrease in the number of isolated individuals can lead to the disease not being controlled at a later stage. The analysis and simulations in this paper may provide some helpful suggestions for preventing and controlling COVID-19.
Fractional calculus is a notably attractive subject owing to having wide-ranging application areas of theoretical and applied sciences. Despite the fact that there are a large number of worthwhile mathematical works on the fractional differential calculus, there is no noteworthy parallel improvement of fractional difference calculus up to lately. This statement has shown that discrete fractional calculus has certain unforeseen hardship.
Fractional sums and differences were obtained firstly in Diaz-Osler [1], Miller-Ross [2] and Gray and Zhang [3] and they found discrete types of fractional integrals and derivatives. Later, several authors began to touch upon discrete fractional calculus; Goodrich-Peterson [4], Baleanu et al. [5], Ahrendt et al. [6]. Nevertheless, discrete fractional calculus is a rather novel area. The first studies have been done by Atıcı et al. [7,8,9,10,11], Abdeljawad et al. [12,13,14], Mozyrska et al. [15,16,17], Anastassiou [18,19], Hein et al. [20] and Cheng et al. [21] and so forth [22,23,24,25,26].
Self-adjoint operators have an important place in differential operators. Levitan and Sargsian [27] studied self-adjoint Sturm-Liouville differential operators and they obtained spectral properties based on self-adjointness. Also, they found representation of solutions and hence they obtained asymptotic formulas of eigenfunctions and eigenvalues. Similarly, Dehghan and Mingarelli [28,29] obtained for the first time representation of solution of fractional Sturm-Liouville problem and they obtained asymptotic formulas of eigenfunctions and eigenvalues of the problem. In this study, firstly we obtain self-adjointness of DFSL operator within nabla fractional Riemann-Liouville and delta fractional Grünwald-Letnikov operators. From this point of view, we obtain orthogonality of distinct eigenfunctions, reality of eigenvalues. In addition, we open a new gate by obtaining representation of solution of DFSL problem for researchers study in this area.
Self-adjointness of fractional Sturm-Liouville differential operators have been proven by Bas et al. [30,31], Klimek et al. [32,33]. Variational properties of fractional Sturm-Liouville problem has been studied in [34,35]. However, self-adjointness of conformable Sturm-Liouville and DFSL with Caputo-Fabrizio operator has been proven by [36,37]. Nowadays, several studies related to Atangana-Baleanu fractional derivative and its discrete version are done [38,39,40,41,42,43,44,45].
In this study, we consider DFSL operators within Riemann-Liouville and Grünwald-Letnikov sense, and we prove the self-adjointness, orthogonality of distinct eigenfunctions, reality of eigenvalues of DFSL operator. However, we get sum representation of solutions for DFSL equation by means Laplace transform for nabla fractional difference equations. Finally, we compare the results for the solution of DFSL problem, discrete Sturm-Liouville (DSL) problem with the second order, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem with the second order. The aim of this paper is to contribute to the theory of DFSL operator.
We discuss DFSL equations in three different ways with;
i) Self-adjoint (nabla left and right) Riemann-Liouville (R-L) fractional operator,
L1x(t)=∇μa(p(t)b∇μx(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, |
ii) Self-adjoint (delta left and right) Grünwald-Letnikov (G-L) fractional operator,
L2x(t)=Δμ−(p(t)Δμ+x(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, |
iii)(nabla left) DFSL operator is defined by R-L fractional operator,
L3x(t)=∇μa(∇μax(t))+q(t)x(t)=λx(t), 0<μ<1. |
Definition 2.1. [4] Delta and nabla difference operators are defined by respectively
Δx(t)=x(t+1)−x(t),∇x(t)=x(t)−x(t−1). | (1) |
Definition 2.2. [46] Falling function is defined by, α∈R
tα_=Γ(α+1)Γ(α+1−n), | (2) |
where Γ is Euler gamma function.
Definition 2.3. [46] Rising function is defined by, α∈R,
t¯α=Γ(t+α)Γ(t). | (3) |
Remark 1. Delta and nabla operators have the following properties
Δtα_=αtα−1_, | (4) |
∇t¯α=αt¯α−1. |
Definition 2.4. [2,7] Fractional sum operators are defined by,
(i) The left defined nabla fractional sum with order μ>0 is defined by
∇−μax(t)=1Γ(μ)t∑s=a+1(t−ρ(s))¯μ−1x(s), t∈Na+1, | (5) |
(ii) The right defined nabla fractional sum with order μ>0 is defined by
b∇−μx(t)=1Γ(μ)b−1∑s=t(s−ρ(t))¯μ−1x(s), t∈ b−1N, | (6) |
where ρ(t)=t−1 is called backward jump operators, Na={a,a+1,...}, bN={b,b−1,...}.
Definition 2.5. [47] Fractional difference operators are defined by,
(i) The nabla left fractional difference of order μ>0 is defined
∇μax(t)=∇n∇−(n−μ)ax(t)=∇nΓ(n−μ)t∑s=a+1(t−ρ(s))¯n−μ−1x(s), t∈Na+1, | (7) |
(ii) The nabla right fractional difference of order μ>0 is defined
b∇μx(t)=(−1)nΔn b∇−(n−μ)x(t)=(−1)nΔnΓ(n−μ)b−1∑s=t(s−ρ(t))¯n−μ−1x(s), t∈ b−1N. | (8) |
Fractional differences in (7−8) are called the Riemann-Liouville (R-L) definition of the μ-th order nabla fractional difference.
Definition 2.6. [1,21,48] Fractional difference operators are defined by,
(i) The left defined delta fractional difference of order μ, 0<μ≤1, is defined by
Δμ−x(t)=1hμt∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t−s), t=1,...,N. | (9) |
(ii) The right defined delta fractional difference of order μ, 0<μ≤1, is defined by
Δμ+x(t)=1hμN−t∑s=0(−1)sμ(μ−1)...(μ−s+1)s!x(t+s), t=0,..,N−1. | (10) |
Fractional differences in (9−10) are called the Grünwald-Letnikov (G-L) definition of the μ-th order delta fractional difference.
Theorem 2.7. [47] We define the summation by parts formula for R-L fractional nabla difference operator, u is defined on bN and v is defined on Na, then
b−1∑s=a+1u(s)∇μav(s)=b−1∑s=a+1v(s)b∇μu(s). | (11) |
Theorem 2.8. [26,48] We define the summation by parts formula for G-L delta fractional difference operator, u, v is defined on {0,1,...,n}, then
n∑s=0u(s)Δμ−v(s)=n∑s=0v(s)Δμ+u(s). | (12) |
Definition 2.9. [20] f:Na→R, s∈ℜ, Laplace transform is defined as follows,
La{f}(s)=∞∑k=1(1−s)k−1f(a+k), |
where ℜ=C∖{1} and ℜ is called the set of regressive (complex) functions.
Definition 2.10. [20] Let f,g:Na→R, all t∈Na+1, convolution property of f and g is given by
(f∗g)(t)=t∑s=a+1f(t−ρ(s)+a)g(s), |
where ρ(s) is the backward jump function defined in [46] as
ρ(s)=s−1. |
Theorem 2.11. [20] f,g:Na→R, convolution theorem is expressed as follows,
La{f∗g}(s)=La{f}La{g}(s). |
Lemma 2.12. [20] f:Na→R, the following property is valid,
La+1{f}(s)=11−sLa{f}(s)−11−sf(a+1). |
Theorem 2.13. [20] f:Na→R, 0<μ<1, Laplace transform of nabla fractional difference
La+1{∇μaf}(s)=sμLa+1{f}(s)−1−sμ1−sf(a+1),t∈Na+1. |
Definition 2.14. [20] For |p|<1, α>0, β∈R and t∈Na, discrete Mittag-Leffler function is defined by
Ep,α,β(t,a)=∞∑k=0pk(t−a)¯αk+βΓ(αk+β+1), |
where t¯n={t(t+1)⋯(t+n−1),n∈ZΓ(t+n)Γ(t),n∈R is rising factorial function.
Theorem 2.15. [20] For |p|<1, α>0, β∈R, |1−s|<1, and |s|α>p, Laplace transform of discrete Mittag-Leffler function is as follows,
La{Ep,α,β(.,a)}(s)=sα−β−1sα−p. |
Definition 2.16. Laplace transform of f(t)∈R+, t≥0 is defined as follows,
L{f}(s)=∞∫0e−stf(t)dt. |
Theorem 2.17. For z, θ∈C,Re(δ)>0, Mittag-Leffler function with two parameters is defined as follows
Eδ,θ(z)=∞∑k=0zkΓ(δk+θ). |
Theorem 2.18. Laplace transform of Mittag-Leffler function is as follows
L{tθ−1Eδ,θ(λtδ)}(s)=sδ−θsδ−λ. |
Property 2.19. [28] f:Na→R, 0<μ<1, Laplace transform of fractional derivative in Caputo sense is as follows, 0<α<1,
L{CDα0+f}(s)=sαL{f}(s)−sα−1f(0). |
Property 2.20. [28] f:Na→R, 0<μ<1, Laplace transform of left fractional derivative in Riemann-Liouville sense is as follows, 0<α<1,
L{Dα0+f}(s)=sαL{f}(s)−I1−α0+f(t)|t=0, |
here Iα0+ is left fractional integral in Riemann-Liouville sense.
We consider discrete fractional Sturm-Liouville equations in three different ways as follows:
First Case: Self-adjoint L1 DFSL operator is defined by (nabla right and left) R-L fractional operator,
L1x(t)=∇μa(p(t)b∇μx(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, | (13) |
where p(t)>0, r(t)>0, q(t) is a real valued function on [a+1,b−1] and real valued, λ is the spectral parameter, t∈[a+1,b−1], x(t)∈l2[a+1,b−1]. In ℓ2(a+1,b−1), the Hilbert space of sequences of complex numbers u(a+1),...,u(b−1) with the inner product is given by,
⟨u(n),v(n)⟩=b−1∑n=a+1u(n)v(n), |
for every u∈DL1, let's define as follows
DL1={u(n), v(n)∈ℓ2(a+1,b−1):L1u(n), L1v(n)∈ℓ2(a+1,b−1)}. |
Second Case: Self-adjoint L2 DFSL operator is defined by(delta left and right) G-L fractional operator,
L2x(t)=Δμ−(p(t)Δμ+x(t))+q(t)x(t)=λr(t)x(t), 0<μ<1, | (14) |
where p,r,λ is as defined above, q(t) is a real valued function on [0,n], t∈[0,n], x(t)∈l2[0,n]. In ℓ2(0,n), the Hilbert space of sequences of complex numbers u(0),...,u(n) with the inner product is given by, n is a finite integer,
⟨u(i),r(i)⟩=n∑i=0u(i)r(i), |
for every u∈DL2, let's define as follows
DL2={u(i), v(i)∈ℓ2(0,n):L2u(n), L2r(n)∈ℓ2(0,n)}. |
Third Case:L3 DFSL operator is defined by (nabla left) R-L fractional operator,
L3x(t)=∇μa(∇μax(t))+q(t)x(t)=λx(t), 0<μ<1, | (15) |
p,r,λ is as defined above, q(t) is a real valued function on [a+1,b−1], t∈[a+1,b−1].
Firstly, we consider the first case and give the following theorems and proofs;
Theorem 3.1. DFSL operator L1 is self-adjoint.
Proof.
u(t)L1v(t)=u(t)∇μa(p(t)b∇μv(t))+u(t)q(t)v(t), | (16) |
v(t)L1u(t)=v(t)∇μa(p(t)b∇μu(t))+v(t)q(t)u(t). | (17) |
If (16−17) is subtracted from each other
u(t)L1v(t)−v(t)L1u(t)=u(t)∇μa(p(t)b∇μv(t))−v(t)∇μa(p(t)b∇μu(t)) |
and sum operator from a+1 to b−1 to both side of the last equality is applied, we get
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1u(s)∇μa(p(s)b∇μv(s)) | (18) |
−b−1∑s=a+1v(s)∇μa(p(s)b∇μu(s)). |
If we apply the summation by parts formula in (11) to right hand side of (18), we have
b−1∑s=a+1(u(s)L1v(s)−v(s)L1u(s))=b−1∑s=a+1p(s)b∇μv(s)b∇μu(s)−b−1∑s=a+1p(s)b∇μu(s)b∇μv(s)=0, |
⟨L1u,v⟩=⟨u,L1v⟩. |
Hence, the proof completes.
Theorem 3.2. Two eigenfunctions, u(t,λα) and v(t,λβ), of the equation (13) are orthogonal as λα≠λβ.
Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u(t) and v(t) respectively for the the equation (13),
∇μa(p(t)b∇μu(t))+q(t)u(t)−λαr(t)u(t)=0,∇μa(p(t)b∇μv(t))+q(t)v(t)−λβr(t)v(t)=0. |
If we multiply last two equations by v(t) and u(t) respectively, subtract from each other and apply definite sum operator, owing to the self-adjointness of the operator L1, we have
(λα−λβ)b−1∑s=a+1r(s)u(s)v(s)=0, |
since λα≠λβ,
b−1∑s=a+1r(s)u(s)v(s)=0,⟨u(t),v(t)⟩=0. |
Hence, the proof completes.
Theorem 3.3. All eigenvalues of the equation (13) are real.
Proof. Let λ=α+iβ, owing to the self-adjointness of the operator L1, we can write
⟨L1u(t),u(t)⟩=⟨u(t),L1u(t)⟩,⟨λru(t),u(t)⟩=⟨u(t),λr(t)u(t)⟩, |
(λ−¯λ)⟨u(t),u(t)⟩r=0. |
Since ⟨u(t),u(t)⟩r≠0,
λ=¯λ |
and hence β=0. The proof completes.
Secondly, we consider the second case and give the following theorems and proofs;
Theorem 3.4. DFSL operator L2 is self-adjoint.
Proof.
u(t)L2v(t)=u(t)Δμ−(p(t)Δμ+v(t))+u(t)q(t)v(t), | (19) |
v(t)L2u(t)=v(t)Δμ−(p(t)Δμ+u(t))+v(t)q(t)u(t). | (20) |
If (19−20) is subtracted from each other
u(t)L2v(t)−v(t)L2u(t)=u(t)Δμ−(p(t)Δμ+v(t))−v(t)Δμ−(p(t)Δμ+u(t)) |
and definite sum operator from 0 to t to both side of the last equality is applied, we have
t∑s=0(u(s)L1v(s)−v(s)L2u(s))=t∑s=0u(s)Δμ−(p(s)Δμ+v(s))−t∑s=0v(s)Δμ−(p(s)Δμ+u(s)). | (21) |
If we apply the summation by parts formula in (12) to r.h.s. of (21), we get
t∑s=0(u(s)L2v(s)−v(s)L2u(s))=t∑s=0p(s)Δμ+v(s)Δμ+u(s)−t∑s=0p(s)Δμ+u(s)Δμ+v(s)=0, |
⟨L2u,v⟩=⟨u,L2v⟩. |
Hence, the proof completes.
Theorem 3.5. Two eigenfunctions, u(t,λα) and v(t,λβ), of the equation (14) are orthogonal as λα≠λβ. orthogonal.
Proof. Let λα and λβ are two different eigenvalues corresponds to eigenfunctions u(t) and v(t) respectively for the the equation (14),
Δμ−(p(t)Δμ+u(t))+q(t)u(t)−λαr(t)u(t)=0,Δμ−(p(t)Δμ+v(t))+q(t)v(t)−λβr(t)v(t)=0. |
If we multiply last two equations to v(t) and u(t) respectively, subtract from each other and apply definite sum operator, owing to the self-adjointness of the operator L2, we get
(λα−λβ)t∑s=0r(s)u(s)v(s)=0, |
since λα≠λβ,
t∑s=0r(s)u(s)v(s)=0⟨u(t),v(t)⟩=0. |
So, the eigenfunctions are orthogonal. The proof completes.
Theorem 3.6. All eigenvalues of the equation (14) are real.
Proof. Let λ=α+iβ, owing to the self-adjointness of the operator L2
⟨L2u(t),u(t)⟩=⟨u(t),L2u(t)⟩,⟨λr(t)u(t),u(t)⟩=⟨u(t),λr(t)u(t)⟩, |
(λ−¯λ)⟨u,u⟩r=0. |
Since ⟨u,u⟩r≠0,
λ=¯λ, |
and hence β=0. The proof completes.
Now, we consider the third case and give the following theorem and proof;
Theorem 3.7.
L3x(t)=∇μa(∇μax(t))+q(t)x(t)=λx(t),0<μ<1, | (22) |
x(a+1)=c1,∇μax(a+1)=c2, | (23) |
where p(t)>0, r(t)>0, q(t) is defined and real valued, λ is the spectral parameter. The sum representation of solution of the problem (22)−(23) is found as follows,
x(t)=c1[(1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a)] | (24) |
+c2[Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a)]−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)q(s)x(s), |
where |λ|<1, |1−s|<1, and |s|α>λ from Theorem 2.15.
Proof. Let's use the Laplace transform of both side of the equation (22) by Theorem 2.13, and let q(t)x(t)=g(t),
La+1{∇μa(∇μax)}(s)+La+1{g}(s)=λLa+1{x}(s),=sμLa+1{∇μax}(s)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s),=sμ(sμLa+1{x}(s)−1−sμ1−sc1)−1−sμ1−sc2=λLa+1{x}(s)−La+1{g}(s), |
=La+1{x}(s)=1−sμ1−s1s2μ−λ(sμc1+c2)−1s2μ−λLa+1{g}(s), |
from Lemma 2.12, we get
La{x}(s)=c1(sμ−λs2μ−λ)−1−ss2μ−λ(11−sLa{g}(s)−11−sg(a+1))+c2(1−sμs2μ−λ). | (25) |
Applying inverse Laplace transform to the equation (25), then we get representation of solution of the problem (22)−(23),
x(t)=c1((1+q(a+1))Eλ,2μ,μ−1(t,a)−λEλ,2μ,2μ−1(t,a))+c2(Eλ,2μ,2μ−1(t,a)−Eλ,2μ,μ−1(t,a))−t∑s=a+1Eλ,2μ,2μ−1(t−ρ(s)+a)q(s)x(s). |
Now, let us consider comparatively discrete fractional Sturm-Liouville (DFSL) problem, discrete Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem respectively as follows by taking q(t)=0,
DFSL problem:
∇μ0(∇μ0x(t))=λx(t), | (26) |
x(1)=1, ∇μax(1)=0, | (27) |
and its analytic solution is as follows by the help of Laplace transform in Lemma 2.12
x(t)=Eλ,2μ,μ−1(t,0)−λEλ,2μ,2μ−1(t,0), | (28) |
DSL problem:
∇2x(t)=λx(t), | (29) |
x(1)=1, ∇x(1)=0, | (30) |
and its analytic solution is as follows
x(t)=12(1−λ)−t[(1−√λ)t(1+√λ)−(−1+√λ)(1+√λ)t], | (31) |
FSL problem:
CDμ0+(Dμ0+x(t))=λx(t), | (32) |
I1−μ0+x(t)|t=0=1, Dμ0+x(t)|t=0=0, | (33) |
and its analytic solution is as follows by the help of Laplace transform in Property 2.19 and 2.20
x(t)=tμ−1E2μ,μ(λt2μ), | (34) |
CSL problem:
x′′(t)=λx(t), | (35) |
x(0)=1, x′(0)=0, | (36) |
and its analytic solution is as follows
x(t)=cosht√λ, | (37) |
where the domain and range of function x(t) and Mittag-Leffler functions must be well defined. Note that we may show the solution of CSL problem can be obtained by taking μ→1 in the solution of FSL problem and similarly, the solution of DSL problem can be obtained by taking μ→1 in the solution of DFSL problem.
Firstly, we compare the solutions of DFSL and DSL problems and from here we show that the solutions of DFSL problem converge to the solutions of DSL problem as μ→1 in Figure 1 for discrete Mittag-Leffler function Ep,α,β(t,a)=1000∑k=0pk(t−a)¯αk+βΓ(αk+β+1); let λ=0.01,
Secondly, we compare the solutions of DFSL, DSL, FSL and CSL problems for discrete Mittag-Leffler function Ep,α,β(t,a)=1000∑k=0pk(t−a)¯αk+βΓ(αk+β+1). At first view, we observe the solution of DSL and CSL problems almost coincide in any order μ, and we observe the solutions of DFSL and FSL problem almost coincide in any order μ. However, we observe that all of the solutions of DFSL, DSL, FSL and CSL problems almost coincide to each other as μ→1 in Figure 2. Let λ=0.01,
Thirdly, we compare the solutions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues for discrete Mittag-Leffler function Ep,α,β(t,a)=1000∑k=0pk(t−a)¯αk+βΓ(αk+β+1) in the Figure 3;
Eigenvalues of DFSL problem (22−23), correspond to some specific eigenfunctions for numerical values of discrete Mittag-Leffler function Ep,α,β(t,a)=i∑k=0pk(t−a)¯αk+βΓ(αk+β+1), is given with different orders while q(t)=0 in Table 1;
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.992 | −0.982 | −0.057 | −0.986 | −0.941 | −0.027 | −0.483 | −0.483 | 0 |
1000 | −0.989 | −0.977 | −0.057 | −0.990 | −0.954 | −0.027 | −0.559 | −0.435 | 0 |
2000 | −0.996 | −0.990 | −0.057 | −0.995 | −0.978 | −0.027 | −0.654 | −0.435 | 0 |
x(5),μ=0.5 | x(10),μ=0.9 | x(2000),μ=0.1 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.951 | −0.004 | 0 | −0.868 | −0.793 | −0.0003 | −0.190 | −3.290×10−6 | 0 |
1000 | −0.963 | −0.004 | 0 | −0.898 | −0.828 | −0.0003 | −0.394 | −3.290×10−6 | 0 |
2000 | −0.981 | −0.004 | 0 | −0.947 | −0.828 | −0.0003 | −0.548 | −3.290×10−6 | 0 |
x(20),μ=0.5 | x(100),μ=0.9 | x(1000),μ=0.7 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.414 | −9.59×10−7 | 0 | −0.853 | −0.0003 | 0 | −0.330 | −4.140×10−6 | 0 |
1000 | −0.478 | −9.59×10−7 | 0 | −0.887 | −0.0003 | 0 | −0.375 | −4.140×10−6 | 0 |
2000 | −0.544 | −9.59×10−7 | 0 | −0.940 | −0.0003 | 0 | −0.361 | −4.140×10−6 | 0 |
x(1000),μ=0.3 | x(100),μ=0.8 | x(1000),μ=0.9 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.303 | −3.894×10−6 | 0 | −0.192 | −0.066 | 0 | −0.985 | −0.955 | −0.026 |
1000 | −0.335 | −3.894×10−6 | 0 | −0.197 | −0.066 | 0 | −0.989 | −0.941 | −0.026 |
2000 | −0.399 | −3.894×10−6 | 0 | −0.289 | −0.066 | 0 | −0.994 | −0.918 | −0.026 |
x(1000),μ=0.8 | x(2000),μ=0.6 | x(10),μ=0.83 |
Finally, we give the solutions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues for discrete Mittag-Leffler function Ep,α,β(t,a)=100∑k=0pk(t−a)¯αk+βΓ(αk+β+1) in Tables 2–4;
x(t) | μ=0.1 | μ=0.2 | μ=0.5 | μ=0.7 | μ=0.9 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.125 | 0.25 | 0.625 | 0.875 | 1.125 |
x(3) | 0.075 | 0.174 | 0.624 | 1.050 | 1.575 |
x(5) | 0.045 | 0.128 | 0.830 | 1.968 | 4.000 |
x(7) | 0.0336 | 0.111 | 1.228 | 4.079 | 11.203 |
x(9) | 0.0274 | 0.103 | 1.878 | 8.657 | 31.941 |
x(12) | 0.022 | 0.098 | 3.622 | 27.05 | 154.56 |
x(15) | 0.0187 | 0.0962 | 7.045 | 84.75 | 748.56 |
x(16) | 0.0178 | 0.0961 | 8.800 | 124.04 | 1266.5 |
x(18) | 0.0164 | 0.0964 | 13.737 | 265.70 | 3625.6 |
x(20) | 0.0152 | 0.0972 | 21.455 | 569.16 | 10378.8 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
Now, let's consider the problems together DFSL (26)−(27), DSL (29)−(30), FSL (32)−(33) and CSL (35)−(36). Eigenvalues of these problems are the roots of the following equation
x(35)=0. |
Thus, if we apply the solutions (28), (31), (34) and (37) of these four problems to the equation above respectively, we can find the eigenvalues of these problems for the orders μ=0.9 and μ=0.99 respectively in Table 5, and Table 6,
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.904 | −0.859 | −0.811 | −0.262 | −0.157 | −0.079 | −0.029 | −0.003 | 0.982 | |
FSL | −0.497 | −0.383 | −0.283 | −0.196 | −0.124 | −0.066 | −0.026 | −0.003 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.866 | −0.813 | −0.200 | −0.115 | −0.057 | −0.020 | −0.002 | 0 | 0.982 | |
FSL | −0.456 | −0.343 | −0.246 | −0.165 | −0.100 | −0.051 | −0.018 | −0.002 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | ... |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
In here, we observe that these four problems have real eigenvalues under different orders μ=0.9 and μ=0.99, hence we can find eigenfunctions putting these eigenvalues into the four solutions. Furthermore, as the order changes, we can see that eigenvalues change for DFSL problems.
We consider firstly discrete fractional Sturm-Liouville (DFSL) operators with nabla Riemann-Liouville and delta Grünwald-Letnikov fractional operators and we prove self-adjointness of the DFSL operator and fundamental spectral properties. However, we analyze DFSL problem, discrete Sturm-Liouville (DSL) problem, fractional Sturm-Liouville (FSL) problem and classical Sturm-Liouville (CSL) problem by taking q(t)=0 in applications. Firstly, we compare the solutions of DFSL and DSL problems and we observe that the solutions of DFSL problem converge to the solutions of DSL problem when μ→1 in Fig. 1. Secondly, we compare the solutions of DFSL, DSL, FSL and CSL problems in Fig. 2. At first view, we observe the solutions of DSL and CSL problems almost coincide with any order μ, and we observe the solutions of DFSL and FSL problem almost coincide with any order μ. However, we observe that all of solutions of DFSL, DSL, FSL and CSL problems almost coincide with each other as μ→1. Thirdly, we compare the solutions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues in Fig. 3.
Eigenvalues of DFSL problem (22−23) corresponded to some specific eigenfunctions is given with different orders in Table 1. We give the eigenfunctions of DFSL problem (22−23) with different orders, different potential functions and different eigenvalues in Table 2, Table 3 and Table 4.
In Section 4.1, we consider DFSL, DSL, FSL and CSL problems together and thus, we can compare the eigenvalues of these four problems in Table 5 and Table 6 for different values of μ. We observe that these four problems have real eigenvalues under different values of μ, from here we can find eigenfunctions corresponding eigenvalues. Moreover, when the order change, eigenvalues change for DFSL problems.
Consequently, important results in spectral theory are given for discrete Sturm-Liouville problems. These results will lead to open gates for the researchers studied in this area. Especially, representation of solution will be practicable for future studies. It worths noting that visual results both will enable to be understood clearly by readers and verify the results to the integer order discrete case while the order approaches to one.
This paper includes a part of Ph.D. thesis data of Ramazan OZARSLAN.
The authors declare no conflict of interest.
[1] |
D. Cucinotta, M. Vanelli, WHO declares COVID-19 a pandemic, Acta Biomed., 91 (2020), 157–160. https://doi.org/10.23750/abm.v91i1.9397 doi: 10.23750/abm.v91i1.9397
![]() |
[2] |
S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med., 172 (2020), 577–582. https://doi.org/10.7326/M20-0504 doi: 10.7326/M20-0504
![]() |
[3] |
A. K. Singh, R. Gupta, A. Misra, Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers, Diabetes Metab. Syndr. Clin. Res. Rev., 14 (2020), 283–287. https://doi.org/10.1016/j.dsx.2020.03.016 doi: 10.1016/j.dsx.2020.03.016
![]() |
[4] |
Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med., 8 (2020), 420–422. https://doi.org/10.1016/S2213-2600(20)30076-X doi: 10.1016/S2213-2600(20)30076-X
![]() |
[5] |
W. Guan, Z. Ni, Y. Hu, W. Liang, C. Ou, J. He, et al., Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. Med., 382 (2020), 1708–1720. https://doi.org/10.1056/NEJMoa2002032 doi: 10.1056/NEJMoa2002032
![]() |
[6] | World Health Organization, Coronavirus disease 2019 (COVID-19) pandemic, (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed July 4, 2022). |
[7] |
Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
![]() |
[8] |
C. del Rio, P. N. Malani, COVID-19—new insights on a rapidly changing epidemic, Jama J. Am. Med. Assoc., 323 (2020), 1339–1340. https://doi.org/10.1001/jama.2020.3072 doi: 10.1001/jama.2020.3072
![]() |
[9] |
J. A. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
![]() |
[10] |
Y. Li, J. A. Cui, The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage, Commun. Nonlinear. Sci. Numer. Simul., 14 (2009), 2353–2365. https://doi.org/10.1016/j.cnsns.2008.06.024 doi: 10.1016/j.cnsns.2008.06.024
![]() |
[11] |
J. Rui, Q. Wang, J. Lv, B. Zhao, Q. Hu, H. Du, et al., The transmission dynamics of middle east respiratory syndrome coronavirus, Travel Med. Infect. Dis., 45 (2022), 102243. https://doi.org/10.1016/j.tmaid.2021.102243 doi: 10.1016/j.tmaid.2021.102243
![]() |
[12] |
J. Li, P. Yuan, J. Heffernan, T. Zheng, N. Ogden, B. Sander, et al., Fangcang shelter hospitals during the COVID-19 epidemic, Wuhan, China, Bull. World Health Organ., 98 (2020), 830–841. https://doi.org/10.2471/BLT.20.258152 doi: 10.2471/BLT.20.258152
![]() |
[13] |
L. Wang, J. Wang, H. Zhao, Y. Shi, K. Wang, P. Wu, et al., Modelling and assessing the effects of medical resources on transmission of novel coronavirus (COVID-19) in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2936–2949. https://doi.org/10.3934/mbe.2020165 doi: 10.3934/mbe.2020165
![]() |
[14] |
B. Yuan, R. Liu, S. Tang, A quantitative method to project the probability of the end of an epidemic: application to the COVID-19 outbreak in Wuhan, 2020, J. Theor. Biol., 545 (2022), 111149. https://doi.org/10.1016/j.jtbi.2022.111149 doi: 10.1016/j.jtbi.2022.111149
![]() |
[15] |
L. Xue, S. Jing, J. C. Miller, W. Sun, H. Li, J. G. Estrada-Franco, et al., A data-driven network model for the emerging COVID-19 epidemics in Wuhan, Toronto and Italy, Math. Biosci., 326 (2020), 108391. https://doi.org/10.1016/j.mbs.2020.108391 doi: 10.1016/j.mbs.2020.108391
![]() |
[16] |
C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708–2724. https://doi.org/10.3934/mbe.2020148 doi: 10.3934/mbe.2020148
![]() |
[17] |
Z. Li, T. Zhang, Analysis of a COVID-19 epidemic model with seasonality, Bull. Math. Biol., 84 (2022). https://doi.org/10.1007/s11538-022-01105-4 doi: 10.1007/s11538-022-01105-4
![]() |
[18] |
X. Wang, S. Wang, J. Wang, L. Rong, A multiscale model of COVID-19 dynamics, Bull. Math. Biol., 84 (2022). https://doi.org/10.1007/s11538-022-01058-8 doi: 10.1007/s11538-022-01058-8
![]() |
[19] |
L. Xue, S. Jing, W. Sun, M. Liu, Z. Peng, H. Zhu, Evaluating the impact of the travel ban within mainland China on the epidemic of the COVID-19, Int. J. Infect. Dis., 107 (2021), 278–283. https://doi.org/10.1016/j.ijid.2021.03.088 doi: 10.1016/j.ijid.2021.03.088
![]() |
[20] |
S. Wang, Y. Pan, Q. Wang, H. Miao, A. N. Brown, L. Rong, Modeling the viral dynamics of SARS-CoV-2 infection, Math. Biosci., 328 (2020), 108438. https://doi.org/10.1016/j.mbs.2020.108438 doi: 10.1016/j.mbs.2020.108438
![]() |
[21] |
H. Wan, J. A. Cui, G. J. Yang, Risk estimation and prediction of the transmission of coronavirus disease-2019 (COVID-19) in the mainland of China excluding Hubei province, Infect. Dis. Poverty, 9 (2020). https://doi.org/10.1186/s40249-020-00683-6 doi: 10.1186/s40249-020-00683-6
![]() |
[22] |
K. S. Al-Basyouni, A. Q. Khan, Discrete-time COVID-19 epidemic model with chaos, stability and bifurcation, Results. Phys., 43 (2022), 106038. https://doi.org/10.1016/j.rinp.2022.106038 doi: 10.1016/j.rinp.2022.106038
![]() |
[23] |
A. Abbes, A. Ouannas, N. Shawagfeh, G. Grassi, The effect of the Caputo fractional difference operator on a new discrete COVID-19 model, Results Phys., 39 (2022), 105797. https://doi.org/10.1016/j.rinp.2022.105797 doi: 10.1016/j.rinp.2022.105797
![]() |
[24] |
S. He, J. Yang, M. He, D. Yan, S. Tang, L. Rong, The risk of future waves of COVID-19: modeling and data analysis, Math. Biosci. Eng., 18 (2021), 5409–5426. https://doi.org/10.3934/mbe.2021274 doi: 10.3934/mbe.2021274
![]() |
[25] |
P. Y. Liu, S. He, L. B. Rong, S. Y. Tang, The effect of control measures on COVID-19 transmission in Italy: comparison with Guangdong province in China, Infect. Dis. Poverty, 9 (2020). https://doi.org/10.1186/s40249-020-00730-2 doi: 10.1186/s40249-020-00730-2
![]() |
[26] |
H. Song, Z. Jia, Z. Jin, S. Liu, Estimation of COVID-19 outbreak size in Harbin, China, Nonlinear. Dyn., 106 (2021), 1229–1237. https://doi.org/10.1007/s11071-021-06406-2 doi: 10.1007/s11071-021-06406-2
![]() |
[27] |
X. Ma, X. F. Luo, L. Li, Y. Li, G. Q. Sun, The influence of mask use on the spread of COVID-19 during pandemic in New York City, Results Phys., 34 (2022), 105224. https://doi.org/10.1016/j.rinp.2022.105224 doi: 10.1016/j.rinp.2022.105224
![]() |
[28] |
J. K. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Q. Sun, Z. Jin, et al., Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Results Phys., 33 (2022), 105177. https://doi.org/10.1016/j.rinp.2022.105177 doi: 10.1016/j.rinp.2022.105177
![]() |
[29] |
L. Masandawa, S. S. Mirau, I. S. Mbalawata, J. N. Paul, K. Kreppel, O. M. Msamba, Modeling nosocomial infection of COVID-19 transmission dynamics, Results Phys., 37 (2022), 105503. https://doi.org/10.1016/j.rinp.2022.105503 doi: 10.1016/j.rinp.2022.105503
![]() |
[30] |
C. Legarreta, S. Alonso-Quesada, M. De la Sen, Analysis and parametrical estimation with real COVID-19 data of a new extended SEIR epidemic model with quarantined individuals, Discrete Dyn. Nat. Soc., 2022 (2022), 1–29. https://doi.org/10.1155/2022/5151674 doi: 10.1155/2022/5151674
![]() |
[31] |
M. De la Sen, A. Ibeas, On an SE (Is) (Ih) AR epidemic model with combined vaccination and antiviral controls for COVID-19 pandemic, Adv. Differ. Equations, 2021 (2021). https://doi.org/10.1186/s13662-021-03248-5 doi: 10.1186/s13662-021-03248-5
![]() |
[32] |
M. Rangasamy, N. Alessa, P. B. Dhandapani, K. Loganathan, Dynamics of a novel IVRD pandemic model of a large population over a long time with efficient numerical methods, Symmetry, 14 (2022), 1919. https://doi.org/10.3390/sym14091919 doi: 10.3390/sym14091919
![]() |
[33] |
A. K. Paul, M. A. Kuddus, Mathematical analysis of a COVID-19 model with double dose vaccination in Bangladesh, Results Phys., 35 (2022), 105392. https://doi.org/10.1016/j.rinp.2022.105392 doi: 10.1016/j.rinp.2022.105392
![]() |
[34] |
U. A. P. de León, E. Avila-Vales, K. Huang, Modeling COVID-19 dynamic using a two-strain model with vaccination, Chaos Solitons Fractals, 157 (2022), 111927. https://doi.org/10.1016/j.chaos.2022.111927 doi: 10.1016/j.chaos.2022.111927
![]() |
[35] |
X. Wang, H. Wu, S. Tang, Assessing age-specific vaccination strategies and post-vaccination reopening policies for COVID-19 control using SEIR modeling approach, Bull. Math. Biol., 84 (2022). https://doi.org/10.1007/s11538-022-01064-w doi: 10.1007/s11538-022-01064-w
![]() |
[36] |
F. Zhang, Z. Jin, Effect of travel restrictions, contact tracing and vaccination on control of emerging infectious diseases: transmission of COVID-19 as a case study, Math. Biosci. Eng., 19 (2022), 3177–3201. https://doi.org/10.3934/mbe.2022147 doi: 10.3934/mbe.2022147
![]() |
[37] |
J. H. Buckner, G. Chowell, M. R. Springborn, Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers, Appl. Biol. Sci., 118 (2021). https://doi.org/10.1073/pnas.2025786118 doi: 10.1073/pnas.2025786118
![]() |
[38] |
S. Moore, E. M. Hill, M. J. Tildesley, L. Dyson, M. J. Keeling, Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study, Lancet Infect. Dis., 21 (2021), 793–802. https://doi.org/10.1016/S1473-3099(21)00143-2 doi: 10.1016/S1473-3099(21)00143-2
![]() |
[39] | Z. Ma, Y. Zhou, C. Li, Qualitative and stability methods of ordinary differential equations (in Chinese), 2nd ed, Science Press, Beijing, 2015. |
[40] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[41] |
S. Guo, W. Ma, Remarks on a variant of Lyapunov-LaSalle theorem, Math. Biosci. Eng., 16 (2019), 1056–1066. https://doi.org/10.3934/mbe.2019050 doi: 10.3934/mbe.2019050
![]() |
[42] |
S. Guo, Y. Xue, X. Li, Z. Zheng, Dynamics of COVID-19 models with asymptomatic infections and quarantine measures, arXiv preprint, (2022). https://doi.org/10.21203/rs.3.rs-2291574/v1 doi: 10.21203/rs.3.rs-2291574/v1
![]() |
[43] | Italian Ministry of Health, COVID-19 Vaccines Report, (2022). Available from: https://www.governo.it/it/cscovid19/report-vaccini/(accessed January 5, 2023). |
[44] | United States Food and Drug Administration, FDA Briefing Document Pfizer-BioNTech COVID-19 Vaccine, (2020). Available from: https://www.fda.gov/media/144245/download. |
[45] | Presidency of the Council of Ministers, DECREE-LAW No. 172 of December 18, 2020, (2020). Available from: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legge:2020-12-18;172!vig= (accessed October 9, 2022). |
[46] | Governo Italiano, Council of Ministers Press Release No. 97, (2021). Available from: https://www.sitiarcheologici.palazzochigi.it/www.governo.it/febbraio%202021/node/16180.html (accessed October 8, 2022). |
[47] | Italian Ministry of Health, OJ General Series No. 75, 27-03-2021, (2021). Available from: https://www.gazzettaufficiale.it/eli/id/2021/03/27/21A01967/sg (accessed October 9, 2022). |
[48] | Italy Civil Protection Department, Italian COVID-19 data, (2022). Available from: https://github.com/pcm-dpc/COVID-19 (accessed January 5, 2023). |
[49] | World Bank, Average life expectancy in Italy, (2020). Available from: https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=IT (accessed January 5, 2023). |
[50] | World Bank, Italy Birth rate, crude (per 1,000 people), (2020). Available from: https://data.worldbank.org/indicator/SP.DYN.CBRT.IN?locations=IT (accessed January 5, 2023). |
[51] | Our World in Data, Italian COVID-19 vaccine dataset, (2022). |
[52] | World Bank, Italian population data. Available from: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=IT (accessed January 5, 2023). |
[53] |
N. Chitnis, J. M. Hyman, J. M. Cushing, Determining important parameters in the spread of Malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272. https://doi.org/10.1007/s11538-008-9299-0 doi: 10.1007/s11538-008-9299-0
![]() |
[54] |
H. Tian, Y. Liu, Y. Li, C. H. Wu, B. Chen, M. U. G. Kraemer, et al., An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China, Science, 368 (2020), 638–642. https://doi.org/10.1126/science.abb6105 doi: 10.1126/science.abb6105
![]() |
[55] |
M. Duan, Z. Jin, The heterogeneous mixing model of COVID-19 with interventions, J. Theor. Biol., 553 (2022), 111258. https://doi.org/10.1016/j.jtbi.2022.111258 doi: 10.1016/j.jtbi.2022.111258
![]() |
[56] |
J. A. Cui, Y. Wu, S. Guo, Effect of non-homogeneous mixing and asymptomatic individuals on final epidemic size and basic reproduction number in a meta-population model, Bull. Math. Biol., 84 (2022). https://doi.org/10.1007/s11538-022-00996-7 doi: 10.1007/s11538-022-00996-7
![]() |
1. | Jing Li, Jiangang Qi, On a nonlocal Sturm–Liouville problem with composite fractional derivatives, 2021, 44, 0170-4214, 1931, 10.1002/mma.6893 | |
2. | Ramazan Ozarslan, Erdal Bas, Reassessments of gross domestic product model for fractional derivatives with non-singular and singular kernels, 2021, 25, 1432-7643, 1535, 10.1007/s00500-020-05237-4 | |
3. | Ahu Ercan, Ramazan Ozarslan, Erdal Bas, Existence and uniqueness analysis of solutions for Hilfer fractional spectral problems with applications, 2021, 40, 2238-3603, 10.1007/s40314-020-01382-6 | |
4. | Erdal Bas, Funda Metin Turk, Ramazan Ozarslan, Ahu Ercan, Spectral data of conformable Sturm–Liouville direct problems, 2021, 11, 1664-2368, 10.1007/s13324-020-00428-6 | |
5. | Alberto Almech, Eugenio Roanes-Lozano, A 3D proposal for the visualization of speed in railway networks, 2020, 5, 2473-6988, 7480, 10.3934/math.2020479 | |
6. | Churong Chen, Martin Bohner, Baoguo Jia, Ulam‐Hyers stability of Caputo fractional difference equations, 2019, 42, 0170-4214, 7461, 10.1002/mma.5869 | |
7. | Muath Awadalla, Nazim I. Mahmudov, Jihan Alahmadi, A novel delayed discrete fractional Mittag-Leffler function: representation and stability of delayed fractional difference system, 2024, 70, 1598-5865, 1571, 10.1007/s12190-024-02012-8 | |
8. | B. Shiri, Y. Guang, D. Baleanu, Inverse problems for discrete Hermite nabla difference equation, 2025, 33, 2769-0911, 10.1080/27690911.2024.2431000 | |
9. | Ahu Ercan, Erdal Bas, Ramazan Ozarslan, Solving Hilfer fractional dirac systems: a spectral approach, 2025, 95, 0939-1533, 10.1007/s00419-025-02767-x |
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.992 | −0.982 | −0.057 | −0.986 | −0.941 | −0.027 | −0.483 | −0.483 | 0 |
1000 | −0.989 | −0.977 | −0.057 | −0.990 | −0.954 | −0.027 | −0.559 | −0.435 | 0 |
2000 | −0.996 | −0.990 | −0.057 | −0.995 | −0.978 | −0.027 | −0.654 | −0.435 | 0 |
x(5),μ=0.5 | x(10),μ=0.9 | x(2000),μ=0.1 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.951 | −0.004 | 0 | −0.868 | −0.793 | −0.0003 | −0.190 | −3.290×10−6 | 0 |
1000 | −0.963 | −0.004 | 0 | −0.898 | −0.828 | −0.0003 | −0.394 | −3.290×10−6 | 0 |
2000 | −0.981 | −0.004 | 0 | −0.947 | −0.828 | −0.0003 | −0.548 | −3.290×10−6 | 0 |
x(20),μ=0.5 | x(100),μ=0.9 | x(1000),μ=0.7 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.414 | −9.59×10−7 | 0 | −0.853 | −0.0003 | 0 | −0.330 | −4.140×10−6 | 0 |
1000 | −0.478 | −9.59×10−7 | 0 | −0.887 | −0.0003 | 0 | −0.375 | −4.140×10−6 | 0 |
2000 | −0.544 | −9.59×10−7 | 0 | −0.940 | −0.0003 | 0 | −0.361 | −4.140×10−6 | 0 |
x(1000),μ=0.3 | x(100),μ=0.8 | x(1000),μ=0.9 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.303 | −3.894×10−6 | 0 | −0.192 | −0.066 | 0 | −0.985 | −0.955 | −0.026 |
1000 | −0.335 | −3.894×10−6 | 0 | −0.197 | −0.066 | 0 | −0.989 | −0.941 | −0.026 |
2000 | −0.399 | −3.894×10−6 | 0 | −0.289 | −0.066 | 0 | −0.994 | −0.918 | −0.026 |
x(1000),μ=0.8 | x(2000),μ=0.6 | x(10),μ=0.83 |
x(t) | μ=0.1 | μ=0.2 | μ=0.5 | μ=0.7 | μ=0.9 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.125 | 0.25 | 0.625 | 0.875 | 1.125 |
x(3) | 0.075 | 0.174 | 0.624 | 1.050 | 1.575 |
x(5) | 0.045 | 0.128 | 0.830 | 1.968 | 4.000 |
x(7) | 0.0336 | 0.111 | 1.228 | 4.079 | 11.203 |
x(9) | 0.0274 | 0.103 | 1.878 | 8.657 | 31.941 |
x(12) | 0.022 | 0.098 | 3.622 | 27.05 | 154.56 |
x(15) | 0.0187 | 0.0962 | 7.045 | 84.75 | 748.56 |
x(16) | 0.0178 | 0.0961 | 8.800 | 124.04 | 1266.5 |
x(18) | 0.0164 | 0.0964 | 13.737 | 265.70 | 3625.6 |
x(20) | 0.0152 | 0.0972 | 21.455 | 569.16 | 10378.8 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.904 | −0.859 | −0.811 | −0.262 | −0.157 | −0.079 | −0.029 | −0.003 | 0.982 | |
FSL | −0.497 | −0.383 | −0.283 | −0.196 | −0.124 | −0.066 | −0.026 | −0.003 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.866 | −0.813 | −0.200 | −0.115 | −0.057 | −0.020 | −0.002 | 0 | 0.982 | |
FSL | −0.456 | −0.343 | −0.246 | −0.165 | −0.100 | −0.051 | −0.018 | −0.002 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | ... |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.992 | −0.982 | −0.057 | −0.986 | −0.941 | −0.027 | −0.483 | −0.483 | 0 |
1000 | −0.989 | −0.977 | −0.057 | −0.990 | −0.954 | −0.027 | −0.559 | −0.435 | 0 |
2000 | −0.996 | −0.990 | −0.057 | −0.995 | −0.978 | −0.027 | −0.654 | −0.435 | 0 |
x(5),μ=0.5 | x(10),μ=0.9 | x(2000),μ=0.1 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.951 | −0.004 | 0 | −0.868 | −0.793 | −0.0003 | −0.190 | −3.290×10−6 | 0 |
1000 | −0.963 | −0.004 | 0 | −0.898 | −0.828 | −0.0003 | −0.394 | −3.290×10−6 | 0 |
2000 | −0.981 | −0.004 | 0 | −0.947 | −0.828 | −0.0003 | −0.548 | −3.290×10−6 | 0 |
x(20),μ=0.5 | x(100),μ=0.9 | x(1000),μ=0.7 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.414 | −9.59×10−7 | 0 | −0.853 | −0.0003 | 0 | −0.330 | −4.140×10−6 | 0 |
1000 | −0.478 | −9.59×10−7 | 0 | −0.887 | −0.0003 | 0 | −0.375 | −4.140×10−6 | 0 |
2000 | −0.544 | −9.59×10−7 | 0 | −0.940 | −0.0003 | 0 | −0.361 | −4.140×10−6 | 0 |
x(1000),μ=0.3 | x(100),μ=0.8 | x(1000),μ=0.9 | |||||||
i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i | λ1,i | λ2,i | λ3,i |
750 | −0.303 | −3.894×10−6 | 0 | −0.192 | −0.066 | 0 | −0.985 | −0.955 | −0.026 |
1000 | −0.335 | −3.894×10−6 | 0 | −0.197 | −0.066 | 0 | −0.989 | −0.941 | −0.026 |
2000 | −0.399 | −3.894×10−6 | 0 | −0.289 | −0.066 | 0 | −0.994 | −0.918 | −0.026 |
x(1000),μ=0.8 | x(2000),μ=0.6 | x(10),μ=0.83 |
x(t) | μ=0.1 | μ=0.2 | μ=0.5 | μ=0.7 | μ=0.9 |
x(1) | 1 | 1 | 1 | 1 | 1 |
x(2) | 0.125 | 0.25 | 0.625 | 0.875 | 1.125 |
x(3) | 0.075 | 0.174 | 0.624 | 1.050 | 1.575 |
x(5) | 0.045 | 0.128 | 0.830 | 1.968 | 4.000 |
x(7) | 0.0336 | 0.111 | 1.228 | 4.079 | 11.203 |
x(9) | 0.0274 | 0.103 | 1.878 | 8.657 | 31.941 |
x(12) | 0.022 | 0.098 | 3.622 | 27.05 | 154.56 |
x(15) | 0.0187 | 0.0962 | 7.045 | 84.75 | 748.56 |
x(16) | 0.0178 | 0.0961 | 8.800 | 124.04 | 1266.5 |
x(18) | 0.0164 | 0.0964 | 13.737 | 265.70 | 3625.6 |
x(20) | 0.0152 | 0.0972 | 21.455 | 569.16 | 10378.8 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
x(t) | q(t)=1 | q(t)=t | q(t)=√t |
x(1) | 1 | 1 | 1 |
x(2) | 0.2261 | 0.1505 | 0.1871 |
x(3) | 0.1138 | 0.0481 | 0.0767 |
x(5) | 0.0518 | 0.0110 | 0.0252 |
x(7) | 0.0318 | 0.0043 | 0.0123 |
x(9) | 0.0223 | 0.0021 | 0.0072 |
x(12) | 0.0150 | 0.0010 | 0.0039 |
x(15) | 0.0110 | 0.0005 | 0.0025 |
x(16) | 0.0101 | 0.0004 | 0.0022 |
x(18) | 0.0086 | 0.0003 | 0.0017 |
x(20) | 0.0075 | 0.0002 | 0.0014 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.904 | −0.859 | −0.811 | −0.262 | −0.157 | −0.079 | −0.029 | −0.003 | 0.982 | |
FSL | −0.497 | −0.383 | −0.283 | −0.196 | −0.124 | −0.066 | −0.026 | −0.003 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |
λ1 | λ2 | λ3 | λ4 | λ5 | λ6 | λ7 | λ8 | λ9 | λ10 | |
DFSL | −0.866 | −0.813 | −0.200 | −0.115 | −0.057 | −0.020 | −0.002 | 0 | 0.982 | |
FSL | −0.456 | −0.343 | −0.246 | −0.165 | −0.100 | −0.051 | −0.018 | −0.002 | 0 | ... |
DSL | −1.450 | −0.689 | −0.469 | −0.310 | −0.194 | −0.112 | −0.055 | −0.019 | −0.002 | ... |
CSL | −0.163 | −0.128 | −0.098 | −0.072 | −0.050 | −0.032 | −0.008 | −0.002 | 0 |