
The COVID-19 pandemic caused multiple waves of mortality in South Africa, where three genetic variants of SARS-COV-2 and their ancestral strain dominated consecutively. State-of-the-art mathematical modeling approach was used to estimate the time-varying transmissibility of SARS-COV-2 and the relative transmissibility of Beta, Delta, and Omicron variants. The transmissibility of the three variants were about 73%, 87%, and 276% higher than their preceding variants. To the best of our knowledge, our model is the first simple model that can simulate multiple mortality waves and three variants' replacements in South Africa. The transmissibility of the Omicron variant is substantially higher than that of previous variants.
Citation: Yangyang Yu, Yuan Liu, Shi Zhao, Daihai He. A simple model to estimate the transmissibility of the Beta, Delta, and Omicron variants of SARS-COV-2 in South Africa[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10361-10373. doi: 10.3934/mbe.2022485
[1] | Huaying Liao, Zhengqiu Zhang . Finite-time stability of equilibrium solutions for the inertial neural networks via the figure analysis method. Mathematical Biosciences and Engineering, 2023, 20(2): 3379-3395. doi: 10.3934/mbe.2023159 |
[2] | Pan Wang, Xuechen Li, Qianqian Zheng . Synchronization of inertial complex-valued memristor-based neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2024, 21(2): 3319-3334. doi: 10.3934/mbe.2024147 |
[3] | Biwen Li, Xuan Cheng . Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Mathematical Biosciences and Engineering, 2023, 20(8): 14846-14865. doi: 10.3934/mbe.2023665 |
[4] | Zhen Yang, Zhengqiu Zhang, Xiaoli Wang . New finite-time synchronization conditions of delayed multinonidentical coupled complex dynamical networks. Mathematical Biosciences and Engineering, 2023, 20(2): 3047-3069. doi: 10.3934/mbe.2023144 |
[5] | Na Zhang, Jianwei Xia, Tianjiao Liu, Chengyuan Yan, Xiao Wang . Dynamic event-triggered adaptive finite-time consensus control for multi-agent systems with time-varying actuator faults. Mathematical Biosciences and Engineering, 2023, 20(5): 7761-7783. doi: 10.3934/mbe.2023335 |
[6] | Ruoyu Wei, Jinde Cao . Prespecified-time bipartite synchronization of coupled reaction-diffusion memristive neural networks with competitive interactions. Mathematical Biosciences and Engineering, 2022, 19(12): 12814-12832. doi: 10.3934/mbe.2022598 |
[7] | Yanjie Hong, Wanbiao Ma . Sufficient and necessary conditions for global attractivity and stability of a class of discrete Hopfield-type neural networks with time delays. Mathematical Biosciences and Engineering, 2019, 16(5): 4936-4946. doi: 10.3934/mbe.2019249 |
[8] | Rui Ma, Jinjin Han, Li Ding . Finite-time trajectory tracking control of quadrotor UAV via adaptive RBF neural network with lumped uncertainties. Mathematical Biosciences and Engineering, 2023, 20(2): 1841-1855. doi: 10.3934/mbe.2023084 |
[9] | Hai Lin, Jingcheng Wang . Pinning control of complex networks with time-varying inner and outer coupling. Mathematical Biosciences and Engineering, 2021, 18(4): 3435-3447. doi: 10.3934/mbe.2021172 |
[10] | Zixiao Xiong, Xining Li, Ming Ye, Qimin Zhang . Finite-time stability and optimal control of an impulsive stochastic reaction-diffusion vegetation-water system driven by Lˊevy process with time-varying delay. Mathematical Biosciences and Engineering, 2021, 18(6): 8462-8498. doi: 10.3934/mbe.2021419 |
The COVID-19 pandemic caused multiple waves of mortality in South Africa, where three genetic variants of SARS-COV-2 and their ancestral strain dominated consecutively. State-of-the-art mathematical modeling approach was used to estimate the time-varying transmissibility of SARS-COV-2 and the relative transmissibility of Beta, Delta, and Omicron variants. The transmissibility of the three variants were about 73%, 87%, and 276% higher than their preceding variants. To the best of our knowledge, our model is the first simple model that can simulate multiple mortality waves and three variants' replacements in South Africa. The transmissibility of the Omicron variant is substantially higher than that of previous variants.
Hopfield neural network (HNN) is in the powerful class of artificial neural networks (ANNs), which has been introduced in the literature by John Hopfield in 1982. Since then, its investigation has become a worldwide focus [1,2,3,4,5]. All of those models are real-valued neural networks (NNs). However, complex-valued neural networks (CVNNs) can handle problems that cannot be handled with real-valued parallel networks [6,7]. Recently, some authors started the dynamical analysis of CVNNs. For example, in [8], Ali et al. studied the finite time stability analysis of delayed fractional-order memristive CVNNs by using the Gronwall inequality, H¨older inequality and inequality scaling skills. In [9], Zhang and Cao investigated the existence and global exponential stability of periodic solutions of neutral type CVNNs by collecting the Lyapunov functional method with the coincidence degree theory as well as graph theory. In article [21], the authors dealt with the problem stability of impulsive CVNNs with time delay.
In the functioning of ANNs, time-delays always exist in the signal transmission between neurons on account to the limited pace of signal exchange and transmission. Thus, it is one of the main reasons poor performance and instability in a system is the presence of delays. Therefore, in recent years, the analysis of the stability of delayed ANNs has been the great attention of researchers, and various results have been discussed in the literature [16,17,18,19,20,21,22].
ANNs with neutral-type delays were also very seldom discussed in the existing literature; such models are called neutral-type ANNs. They have been the subject of in-depth studies by many researchers, for instance, Guo and Du [17], concerned with the global exponential stability of periodic solution for neutral-type CVNNs.
The theory of passivity is a significant notion of automatic for the analysis and control of models whose certain input/output characteristics are established in terms of energy criteria. The notions of passivity are adapted to several scientific fields and are effective for the regulation of electrical, mechanical, and electromechanical systems present in several fields of engineering, such as robotics, power electronics, aeronautics, etc. Many results are concentrated in the research of the passivity of NN systems. In [11], Li and Zheng proved the global exponential passivity for delayed quaternion-valued memristor-based NNs. Ge et al. [12] studied the robust passivity analysis for a class of uncertain NNs subject to mixed delays. The problem of passivity analysis for uncertain bidirectional associative memory NNs in the presence of mixed delays are discussed in [13]. In [35], Khonchaiyaphum et al. studied FTP analysis of neutral-type NNs.
Many researchers have been interested in finite-time control problems of dynamical systems based on the Lyapunov theory of stability to give big attention to the asymptotic model of systems over an infinite time interval. Recently, many interested results have been published. In [14], Thuan et al. discussed the robust FTP for a fractional order NNs with uncertainties. In paper [19], Wei et al. are focused on a class of coupled quaternion-valued NNs with several delayed couplings to study fixed-time passivity.
The main objective of this manuscript is to deal with the FTP for the following neutral-type CVNNs:
{˙z(t)=−Az(t)+Bf(z(t))+Cf(z(t−τ(t)))+D˙z(t−h(t))+ω(t),u(t)=K1z(t)+K2f(z(t)). | (1.1) |
Here, we have
∘z(⋅)=[z1(⋅),z2(⋅),⋯,zn(⋅)]T∈Cn is the complex valued state vector,
∘ω(⋅)∈Cn is the disturbance input which belongs to L2[0,+∞),p
∘u(⋅)∈Cn is the control output,
∘f(z(⋅))=[f(z1(⋅)),f(z2(⋅)),⋯,f(zn(⋅))]T∈Cn is the complex-valued activation function,
∘A=diag{a1,a2,⋯,an}>0∈Rn×n is a diagonal matrix,
∘B=(bjk)∈Cn×n,C=(cjk)∈Cn×n,D=(djk)∈Cn×n are respectively the connection weight matrix and the connection weight matrix with delays,
∘K1 is a known real constant matrice with appropriate dimension,
∘K2 is a known complex matrice with appropriate dimension.
The initial condition of (1.1) is given as
z(s)=ψ(s),s∈[−ρ,0], | (1.2) |
where ρ=max{supt∈R(τ(t),supt∈R(h(t))}.
The main contributions of our article are :
∘ We use a more adequate hypothesis for the complex-valued activation functions (CVAF) considered in our model. Based on this assumption, a controllable model is formed by divised the real and imaginary parts, and we give a sufficient condition to realize FTP. This result is more general than the existing passivity results on real-valued NNs [35,36,37].
∘ A Lyapunov–Krasovskii function that support triple, four, and five integral terms is introduced, and the Wirtinger-type inequality technique and convex combination approach are espoused.
∘ A new set of sufficient conditions in terms of LMIs is derived to guarantee FTB and FTP results. These conditions can be simply found by the Matlab LMI toolbox.
The main contents of the manuscript are outlined as follows: in Section 2, we established new assumptions, definitions, and lemmas for the dynamic systems (1.1), which will be used later. New sufficient conditions on the FTB and FTP are discussed in Section 3. Two examples are presented in Section 4 to verify our results. At last, in Section 5, we end with the conclusion and perspective.
In this section, we present new necessary assumptions and some definitions and lemmas, which are utilized in the next section.
Assumption 1: The delays τ(⋅) and h(⋅) are differentiable functions satisfies the inequalities below:
0≤τ(t)≤ˉτ, ˙τ(t)≤μ,0≤h(t)≤ˉh, ˙h(t)≤h1. |
Assumption 2: The neuron activation function fk(⋅) satisfy the below Lipschitz condition:
|fk(z1)−fk(z2)|≤lk|z1−z2|,lk>0(k=1,2,⋯,n). | (2.1) |
Furthermore, by means of Assumption 2, it is clear to get
(f(z1)−f(z2))∗(f(z1)−f(z2))≤(z1−z2)∗LTL(z1−z2), | (2.2) |
where L=diag{l1,l2,⋯,ln}.
Assumption 3: The neuron activation functions f(⋅) can be divided into two parts as follows:
f(z)=fR(x,y)+ifI(x,y), |
where z=x+iy,i shows the imaginary unit, and the real imaginary parts check the below conditions:
1) The partial derivatives ∂f∂x,∂f∂y exist and are continuous.
2) There exist positive constant numbers γRRk,γRIk,γIRk,γIIk such that
∂fRk∂x≤γRRk,∂fRk∂y≤γRIk,∂fIk∂x≤γIRk,∂fIk∂y≤γIIk. |
Thus, one can obtain that for any x1,x2,y1,y2∈R,
|fRk(x1,y1)−fRk(x2,y2)|≤γRRk|x1−x2|+γRIk|y1−y2|,|fIk(x1,y1)−fIk(x2,y2)|≤γIRk|x1−x2|+γIIk|y1−y2|, |
for all k=1,2,⋯,n.
Remark 1: As we know, in many literatures [29,30,31], after the separation of the activation functions into real-imaginary type, ∂f∂x and ∂f∂y are still supposed to exist and be continuous and limited. Via these conditions, we can point that they checked the same inequalities given in hypothesis 3 by considering the mean value theorem for multivariable functions. Here, we delete these constraints of the partial derivatives and make the hypothesis into an appropriate one that imaginary and real parts of the activation functions just check the inequalities in hypothesis 3. Consequently, our study can help a broader class of CVAF.
Remark 2: By applying the modulus of a complex number to some simple inequalities, it is worth mentioning that hypothesis 2 is equivalent to hypothesis 3. Therefore, for writing convenience, we will assume that activation functions satisfy hypothesis 2 to study our main results.
Assumption 4: The neuron activation function fk(⋅) may be divided into two parts according to the complex number z as follows
fk(z)=fRk(Re(z))+ifIk(Im(z)) |
where fRk(⋅),fIk(⋅):R→R, then for any k=1,2,⋯,n, there exist constants ˇlRk,ˆlRk,ˇlIkˆlIk such that
ˇlRk≤fRk(κ1)−fRk(κ2)κ1−κ2≤ˆlRk,ˇlIk≤fIk(κ1)−fIk(κ2)κ1−κ2≤ˆlIk, | (2.3) |
where fRk(0)=0,fIk(0)=0,κ1,κ2∈R,κ1≠κ2.
For presentation convenience, we denote
ˆLR=diag{ˆlR1,⋯,ˆlRn},ˇLR=diag{ˇlR1,⋯,ˇlRn},ˆLI=diag{ˆlI1,⋯,ˆlIn},ˇLI=diag{ˇlI1,⋯,ˇlIn},L1=ˆLRˇLR,L2=ˆLIˇLI,L3=ˆLR+ˇLR2,L4=ˆLI+ˇLI2,ˉL1=diag{L1,L2},ˉL2=diag{L3,L4}. |
Remark 3: In [23,24,25], hypotheses 3 and 4 are given on the activation functions which separate between the real and imaginary parts. Moreover, we can even simply say that hypothesis 3 is quite strict and that it is a special case of hypothesis 2. This fact has already been mentioned in [26] and [27]. In addition, hypothesis 4 is also a strong constraint. For instance, if the activation functions fk(z)(k=1,2,⋯,n) checked hypothesis 4, we have:
|fRk(x1)−fRk(x2)|≤lRk|x1−x2|,|fIk(y1)−fIk(y2)|≤lIk|y1−y2| |
where z1=x1+iy1,z2=x2+iy2, lRk=max{|ˇlRk|,|ˆlRk|}, and lIk=max{|ˇlIk|,|ˆlIk|}, then one can have that
|fk(z1)−fk(z2)|=|(fRk(x1)+ifIk(y1))−(fRk(x2)+ifIk(y2))|≤|fRk(x1)−(fRk(x2)|+|fIk(y1)−fIk(y2)|≤lRk|x1−x2|+lIk|y1−y2|≤√(lRk)2+(lIk)2|z1−z2|. |
Thus, the activation function fk(z)(k=1,2,⋯,n) satisfies the Lipschitz condition of hypothesis 2. Therefore, hypotheses 3 and 4 imply hypothesis 2, that is, the condition of hypothesis 2 is a special case of hypotheses 3 and 4.
Remark 4: Indeed, when the activation function is given as follows: fk(z)=fRk(x,y)+ifIk(x,y) includes fk(z)=fRk(Re(z))+ifIk(Im(z)) as a special case. Therefore, in the following section, we will indicate that fk(z) is of the type of distinct real-imaginary activation functions. Let z(t)=x(t)+iy(t),z(t−τ(t))=zτ(t),x(t−τ(t))=xτ(t), y(t−τ(t))=yτ(t),x(t−h(t))=xh(t), y(t−h(t))=yh(t), B=BR+iBI,C=CR+iCI,f(z(t))=fR(x(t),y(t))+ifI(x(t),y(t)), f(zτ(t))=fR(xτ(t),yτ(t))+ifI(xτ(t),yτ(t)), ω(t)=ωR(t)+iωI(t), and u(t)=uR(t)+iuI(t), then model (1.1) can be divided into imaginary and real parts as the following form
{˙x(t)=−Ax(t)+BRfR(x(t),y(t))−BIfI(x(t),y(t))+CRfR(xτ(t),yτ(t))−CIfI(xτ(t),yτ(t))+DR˙xh(t)−DI˙yh(t)+ωR(t),˙y(t)=−Ay(t)+BIfR(x,y)(t))+BRfI(x(t),y(t))+CIfR(xτ(t),yτ(t))+CRfI(xτ(t),yτ(t))+DR˙yh(t)+DI˙xh(t)+ωI(t),uR(t)=K1x(t)+KR2fR(x(t),y(t))−KI2fI(x(t),y(t)),uI(t)=K1y(t)+KI2fR(x(t),y(t))+KR2fI(x(t),y(t)), | (2.4) |
The initial condition of (2.4) is given by:
{x(s)=φR(s),s∈[−ρ,0],y(s)=φI(s),s∈[−ρ,0], |
where φR(s),φI(s)∈C([−ρ,0],Rn).
Let θ=(xy), ˉf(θ)=(fR(x,y)fI(x,y)), ˉf(θτ)=(fR(xτ,yτ)fI(xτ,yτ)), ˉω=(ωRωI), ˉA=(A00A), ˉB=(BR−BIBIBR), ˉC=(CR−CICICR), ˉD=(DR−DIDIDR), ˉu=(uRuI),ˉK1=(K100K1),ˉK2=(KR1−KI1KI1KR1).
Model (2.4) can be rewritten as:
{˙θ(t)=−ˉAθ(t)+ˉBˉf(θ(t))+ˉCˉf(θτ(t))+ˉD˙θh(t)+ˉω(t),ˉu(t)=ˉK1θ(t)+ˉK2ˉf(θ(t)), | (2.5) |
with
θ(s)=ϕ(s),s∈[−ρ,0], |
where ϕ(s)=(φR(s)φI(s))∈C([−ρ,0],R2n).
The norm is defined as follows: For every ϕ(⋅)∈C([−ρ,0],R2n), ‖ϕ‖ˆh=max{‖ϕ‖,‖ϕ′‖}=max{supς∈[−ρ,0]|ϕ(θ)|,supς∈[−ρ,0]|ϕ′(ς)|}.
It is clear from (2.3) that:
ˉL−k≤ˉfk(κ1)−ˉfk(κ2)κ1−κ2≤ˉL+k, | (2.6) |
where, ˉL−=(ˇLR00ˇLI),ˉL+=(ˆLR00ˆLI).
Assumption 5: Given a positive value bR,bI, then ωR(t),ωI(t) checks
∫T10(ωR)T(t)ωR(t)dt≤bR,∫T10(ωI)T(t)ωI(t)dt≤bI,T1≥0,bR≥0,bI≥0,⇒∫T10ˉωT(t)ˉω(t)dt≤ˉb, | (2.7) |
where ˉb=(bRbI).
Definition 1 (FTB): For a known constant T1>0, system (1.1) is FTB with regard to (ˉc1,ˉc2,T1,ˉL,ˉb), and ˉω(⋅) checked (2.7) if: supt0∈[−ˉτ,0]{θT(t0)ˉLθ(t0),˙θT(t0)ˉL˙θ(t0)}≤ˉc1⇒θT(t)ˉLθ(t)≤ˉc2, for t∈[0,T1], where ˉc1=(c11c12),ˉc2=(c21c22), 0<c11<c21,0<c12<c22, ˉL>0 is a matrix.
Definition 2(FTP): For a known constant T1>0, system (1.1) is said to be FTP, with regard to (ˉc1,ˉc2,T1,ˉL,ˉb), if the beelow conditions are checked:
(ⅰ) Model (1.1) is FTB with regard to (ˉc1,ˉc2,T1,ˉL,ˉb).
(ⅱ) For a known constant γ>0, and since the zero initial condition, the below relation is true:
2∫T10ˉuT(t)ˉω(t)dt≥−γ∫T10ˉωT(t)ˉω(t)dt, |
when ˉω(⋅) checked (2.7).
Lemma 1 [28]: For a symmetric matrix ϑ=ϑT≥0, scalars e1>e2>0, such that the integrations below are well defined. We have
−(e1−e2)∫t−e2t−e1θT(s)ϑθ(s)ds≤−(∫t−e2t−e1θ(s)ds)Tϑ(∫t−e2t−e1θ(s)ds),−(e21−e22)2∫−e2−e1∫tt+sθT(u)ϑθ(u)duds≤−(∫−e2−e1∫tt+sθ(u)duds)Tϑ(∫−e2−e1∫tt+sθ(u)duds),−(e31−e32)6∫−e2−e1∫0s∫tt+uθT(v)ϑθ(v)dvduds≤−(∫−e2−e1∫0s∫tt+uθ(v)dvdudλds)Tθ×(∫−e2−e1∫0s∫tt+uθ(v)dvdudλds). | (2.8) |
Lemma 2: For a symmetric matrix ϑ=ϑT≥0, scalars e1>e2>0, such that the integrations below are well defined. We have
−(e41−e42)24∫−e2−e1∫0s∫0λ∫tt+uθT(v)ϑθ(v)dvdudλds≤−(∫−e2−e1∫0s∫0λ∫tt+uθ(v)dvdudλds)Tϑ×(∫−e2−e1∫0s∫0λ∫tt+uθ(v)dvdudλds). | (2.9) |
Proof: The proof of Lemma 2 is inspired by the proof of Lemma 2 in [28].
For any symmetric matrix ϑ=ϑT≥0, we have
[θT(v)ϑθ(v)θT(v)θ(v)ϑ−1]≥0, |
then after integration of it from t+u to t, from λ to 0, from s to 0, and from −e1 to −e2 in turn, we can obtain
(Π11Π12ΠT12Π22)≥0, |
where
Π11=∫−e2−e1∫0s∫0λ∫tt+uθT(v)ϑθ(v)dvdudλds,Π12=∫−e2−e1∫0s∫0λ∫tt+uθT(v)dvdudλds,Π22=∫−e2−e1∫0s∫0λ∫tt+uϑ−1dvdudλds=∫−e2−e1∫0s∫0λ−uϑ−1dudλds=∫−e2−e1∫0s[−u22ϑ−1]0λdλds=∫−e2−e1[λ36ϑ−1]0sds=[−s424M−1]−e2−e1=e41−e4224ϑ−1. |
According to Schur complement, [16] is equivalent to the below condition: Π22>0,Π11−Π12Π−122ΠT12≥0. ⇒Π11≥Π12Π−122ΠT12, which is equivalent to inequality (2.9).
This completes the proof.
Lemma 3 [38]: For a given symmetric definite matrix ξ>0 and for any differentiable function ζ(⋅):[e1,e2]→Rn, the below inequality holds:
∫e2e1˙ζT(s)ξ˙ζ(s)ds≥1e2−e1(ζ(e2)ζ(e1)χ)T×Ξ2(ξ)(ζ(e2)ζ(e1)χ), |
where χ=1e2−e1∫e2e1ζ(s)ds, Ξ2(ξ)=(ξ−ξ0⋆ξ0000)+π24(ξξ−2ξ⋆ξ−2ξ⋆⋆4ξ).
Remark 5: In this manuscript, our goal is to know how to determine the sufficient condition to study the FTB and FTP of the proposed model. So, to get the desired objectives, a processable whole model (2.5) is first formed by dividing the initial model into imaginary and real parts and founding an equivalent real-valued model. Second, using the Lyapunov function approach, the design procedure can be easily performed by checked the LMIs, so in the next section the expected conditions will be obtained.
In this section, we will concentrate on the problem of FTB and FTP.
In this first part, our goal is to study the FTB in the following system:
˙θ(t)=−ˉAθ(t)+ˉBˉf(θ(t))+ˉCˉf(θτ(t))+ˉD˙θh(t)+ˉω(t). | (3.1) |
Theorem 1: Suppose that Assumptions 1–5 hold. Let ˉτ,μ,ˉh,h1, and δ be positive scalars, then system (3.1) is FTB, with respect to (ˉc1, ˉc2, T1, ˉL, ˉb), if there exists symmetric positive definite matrices P, Q1, Q2, R01, R1, R02, R2, R3, R4 R5 R6, T01, T2, T3 and diagonal matrices M1>0, M2>0, M3>0, such that the following LMIs hold:
Ω=[η1,1ˉL1M3η1,3η1,4η1,5G1Dη1,7η1,80η1,11Π22ˉhR6ˉτ22T2ˉτ36T3G1⋆η2,20000−MT3FT2η2,8000000⋆⋆η3,3000000Π22ˉτR40000⋆⋆⋆η4,4000000Π22ˉhR6000⋆⋆⋆⋆η5,5G2ˉDη5,7G2ˉC00000G2⋆⋆⋆⋆⋆η6,600000000⋆⋆⋆⋆⋆⋆η7,7M3000000⋆⋆⋆⋆⋆⋆⋆η8,8000000⋆⋆⋆⋆⋆⋆⋆⋆η9,900000⋆⋆⋆⋆⋆⋆⋆⋆⋆η10,100000⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆η11,11000⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆−T200⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆−T30⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆⋆−δI]<0, | (3.2) |
ˉc1Γ+ˉb(1−e−δT1)<ˉc2λ1e−δT1, | (3.3) |
where
η1,1=R01+R1−R4−Π24R4+ˉτ2R5−R6−Π24R6−ˉτ2T01−ˉτ44T2−ˉτ66T3−ˉL1M1−ˉL1M3−G1ˉA−ˉATGT1−δP,η1,3=R4−π24R4,η1,4=R6−Π24R6,η1,5=P−ˉL−Q1+ˉL+Q2−G1−ˉATGT2,η1,7=ˉL2M1+ˉL2M3+G1ˉB,η1,11=Π22ˉτR4+ˉτT01,η2,2=−(1−μ)R01−ˉL1M2−ˉL1M3,η2,8=ˉL2M2+MT3LT2,η3,3=−R4−π24R4−R1,η4,4=−R6−Π24R6,η5,5=R3+ˉτ2R4+ˉh2R6+ˉτ44T01+ˉτ636T2+ˉτ8576T3−G2−GT2,η5,7=QT1−QT2+G2ˉB,η6,6=−(1−h1)R3,η7,7=R02+R2−M1−M3,η8,8=−(1−μ)R02−M2−M3,η9,9=−R2,η10,10=−Π2ˉτ2R4−R5−T01,η11,11=−Π2ˉh2R6. |
Proof: We consider the Lyapunov functional below:
V(θ(t))=5∑i=1Vi(θ(t)), | (3.4) |
where
V1(θ(t))=θT(t)Pθ(t),V2(θ(t))=2∫θ(t)0Q1(ˉf(s)−ˉL−s)+Q2(ˉL+s−ˉf(s))ds,V3(θ(t))=∫tt−τ(t)θT(s)R01θ(s)ds+∫tt−τθT(s)R1θ(s)ds+∫tt−τ(t)ˉfT(θ(s))R02ˉf(θ(s))ds+∫tt−ˉτˉfT(θ(s))R2ˉf(θ(s))ds,V4(θ(t))=∫tt−h(t)˙θT(s)R3˙θ(s)ds+ˉτ∫0−ˉˉτ∫tt+β˙θT(s)R4˙θ(s)dsdβ+ˉτ∫0−ˉτ∫tt+βθT(s)R5θ(s)dsdβ+ˉh∫0−ˉh∫tt+β˙θT(s)R6˙θ(s)dsdβ,V5(θ(t))=ˉτ22∫0−ˉτ∫0γ∫tt+β˙θT(s)T01˙θ(s)dsdβdγ+ˉτ36∫0−ˉτ∫0λ∫0γ∫tt+β˙θT(s)T2˙θ(s)dsdβdγdλ+ˉτ424∫0−ˉτ∫0λ∫0α∫0γ∫tt+β˙θT(s)T3˙θ(s)dsdβdγdαdλ. |
Calculating the time-derivative of V(θ(⋅)) along any trajectory of model (3.1), we obtain
˙V(θ(t))=5∑i=1˙Vi(θ(t)), | (3.5) |
where
˙V1(θ(t))=2θT(t)P˙θ(t),˙V2(θ(t))=2(ˉf(θ(t))−ˉL−θ(t))TQ1˙θ(t)+2(ˉL+θ(t)−ˉf(θ(t)))TQ2˙θ(t),=2ˉf(θ(t))TQ1˙θ(t)−2θ(t)TˉL−Q1˙θ(t)+2θT(t)ˉL+Q2˙θ(t)−2ˉf(θ(t))TQ2˙θ(t),˙V3(θ(t))≤θT(t)[R01+R1]θ(t)+ˉfT(θ(t))[R02+R2]ˉf(θ(t))−(1−μ)ˉfT(θ(t−τ(t)))R02ˉf(θ(t−τ(t)))−θT(t−ˉτ)R1θ(t−ˉτ)−(1−μ)θT(t−τ(t))R01θ(t−τ(t))−ˉfT(θ(t−ˉτ))R2ˉf(θ(t−ˉτ)), |
˙V4(θ(t))=˙θT(t)R3˙θ(t)−(1−˙h(t))˙θT(t−h(t))R3˙θ(t−h(t))+ˉτ∫0−ˉτ˙θT(t)R4˙θ(t)−˙θT(t+β)R4˙θ(t+β)dβ+ˉτ∫0−ˉτθT(t)R5θ(t)−θT(t+β)R5θ(t+β)dβ+ˉh∫0−ˉh˙θT(t)R6˙θ(t)−˙θT(t+β)R6˙θ(t+β)dβ≤˙θT(t)R3˙θ(t)−(1−h1)˙θT(t−h(t))R3˙θ(t−h(t))+ˉτ2˙θT(t)R4˙θ(t)−ˉτ∫tt−ˉτ˙θT(s)R4˙θ(s)ds+ˉτ2θT(t)R5θ(t)−ˉτ∫tt−ˉτθT(s)R5θ(s)ds+ˉh2˙θT(t)R6˙θ(t)−ˉh∫tt−ˉh˙θT(s)R6˙θ(s)ds. |
Applying Lemma 3 to the above inequality, we get
−ˉτ∫tt−ˉτ˙θT(s)R4˙θ(s)ds≤−(θ(t)θ(t−ˉτ)1ˉτ∫tt−ˉτθ(s)ds)T×Ξ2(R4)(θ(t)θ(t−ˉτ)1ˉτ∫tt−ˉτθ(s)ds), |
where
Ξ2(R4)=(R4−R40⋆R40000)+Π24(R4R4−2R4⋆R4−2R4⋆⋆4R4), |
−ˉτ∫tt−ˉτ˙θT(s)R4˙θ(s)ds≤−[θT(t)(R4+Π24R4)θ(t)+2θT(t)(−R4+Π24R4)θ(t−ˉτ)+2θT(t)(−Π22ˉτR4)∫tt−ˉτθ(s)ds+θT(t−ˉτ)(R4+Π24R4)θ(t−ˉτ)+2θT(t−ˉτ)(−Π22ˉτR4)∫tt−ˉτθ(s)ds+(∫tt−ˉτθT(s)ds)Π2ˉτ2R4∫tt−ˉτθ(s)ds]. |
Similary,
−ˉh∫tt−ˉh˙θT(s)R6˙θ(s)ds≤−[θT(t)(R6+Π24R6)θ(t)+2θT(t)(−R6+Π24R6)θ(t−ˉh)+2θT(t)(−Π22ˉhR6)∫tt−ˉhθ(s)ds+θT(t−ˉh)(R6+Π24R6)θ(t−ˉh)+2θT(t−ˉh)(−Π22ˉhR6)∫tt−ˉhθ(s)ds+∫tt−ˉhθT(s)ds(Π2ˉh2R6)∫tt−ˉhθ(s)ds], |
and by applying Lemma 1,
−ˉτ∫tt−ˉτθT(s)R5θ(s)ds≤−(∫tt−ˉτθT(s)ds)TR5(∫tt−ˉτθ(s)ds). |
˙V5(θ(t))=ˉτ44˙θT(t)T01˙θ(t)−ˉτ22∫0−ˉτ∫tt+γ˙θT(s)T01˙θ(s)dsdγ+ˉτ636˙θT(t)T2˙θ(t)−ˉτ36∫0−ˉτ∫0λ∫tt+γ˙θT(s)T2˙θ(s)dsdγdλ+ˉτ8576˙θT(t)T3˙θ(t)−ˉτ424∫0−ˉτ∫0λ∫0α∫tt+γ˙θT(s)T3˙θ(s)dsdγdαdλ. |
Applying Lemma 1 and 3 to the above inequality, we get
A1=−ˉτ22∫0−ˉτ∫tt+γ˙θT(s)T01˙θ(s)dsdγA1≤−(∫0−ˉτ∫tt+γ˙θT(s)ds)T01(∫0−ˉτ∫tt+γ˙θ(s)dsdγ)=−[ˉτθT(t)−∫tt−ˉτθT(s)ds]T1[ˉτθ(t)−∫tt−ˉτθ(s)ds]=−ˉτ2θT(t)T01θ(t)+2ˉτθT(t)T01∫tt−ˉτθ(s)ds−(∫tt−ˉτθT(s)ds)T1(∫tt−ˉτθ(s)ds).A2=−ˉτ36∫0−ˉτ∫0λ∫tt+γ˙θT(s)T2˙θ(s)dsdγdλ≤(∫0−ˉτ∫0λ∫tt+γ˙θT(s)dsdγdλ)×T2(∫0−ˉτ∫0λ∫tt+γ˙θ(s)dsdγdλ)=−[ˉτ22θT(t)−∫0−ˉτ∫tt+λθT(s)dsdλ]T2[ˉτ22θ(t)−∫0−ˉτ∫tt+λθ(s)dsdλ]=−ˉτ44θT(t)T2θ(t)+2θT(t)(ˉτ22T2)∫0−ˉτ∫tt+λθ(s)dsdλ−(∫0−ˉτ∫tt+λθT(s)dsdλ)T2(∫0−ˉτ∫tt+λθ(s)dsdλ). |
\begin{eqnarray} \mathbf{A}_{3}& = &-\frac{\bar{\tau}^{4}}{24} \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\alpha}^{0}\int_{t+\gamma}^{t}\dot{\theta}^{T}(s)T_{3}\dot{\theta}(s)dsd\gamma d\alpha d\lambda\\ \mathbf{A}_{3}&\leq&-\bigg( \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\alpha}^{0}\int_{t+\gamma}^{t}\dot{\theta}^{T}(s)dsd\gamma d\alpha d\lambda\bigg) T_{3}\bigg(\int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\alpha}^{0}\int_{t+\gamma}^{t}\dot{\theta}(s)dsd\gamma d\alpha d\lambda\bigg)\\ & = &-\big[\frac{\bar{\tau}^{3}}{6}\theta^{T}(t)- \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{t+\alpha}^{t}\theta^{T}(s)dsd\alpha d\lambda\big] T_{3}\big[\frac{\bar{\tau}^{3}}{6}\theta(t)- \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{t+\alpha}^{t}\theta(s)dsd\alpha d\lambda\big]\\ && = -\frac{\bar{\tau}^{6}}{36}\theta^{T}(t)T_{3}\theta(t)+2\theta^{T}(t)(\frac{\bar{\tau}^{3}}{6}T_{3})\bigg( \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{t+\alpha}^{t}\theta(s)dsd\alpha d\lambda\bigg)\\ &&-\bigg( \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{t+\alpha}^{t}\theta^{T}(s)dsd\alpha d\lambda\bigg)T_{3}\bigg( \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{t+\alpha}^{t}\theta(s)dsd\alpha d\lambda\bigg). \end{eqnarray} | (3.6) |
For any \rho_{1k} > 0, \; \rho_{2k} > 0, \; \rho_{3k} > 0, \; k = 1, \; 2, \cdots, n, it follows from (2.3) that
\begin{eqnarray*} &&[\bar{f}_{k}(\theta_{k}(t))-\bar{L}_{k}^{-}\theta_{k}(t)]^{T}\rho_{1k}[\bar{L}_{k}^{+}\theta_{k}(t)-\bar{f}_{k}(\theta_{k}(t))]\geq0,\\ \nonumber\\ &&[\bar{f}_{k}(\theta_{k}(t-\tau(t)))-\bar{L}_{k}^{-}\theta_{k}(t-\tau(t))]^{T}\rho_{2k}[\bar{L}_{k}^{+}\theta_{k}(t-\tau(t))-\bar{f}_{k}(\theta_{k}(t-\tau(t)))]\geq0,\\ \nonumber\\ &&[\bar{f}_{k}(\theta_{k}(t))-\bar{f}_{k}(\theta_{k}(t-\tau(t)))-\bar{L}_{k}^{-}\big(\theta_{k}(t)-\theta_{k}(t-\tau(t))\big)]^{T}\rho_{3k}[\bar{L}_{k}^{+}(\theta_{k}(t)-\theta_{k}(t-\tau(t)))-\big(\bar{f}_{k}(\theta_{k}(t))\nonumber\\ &&+\bar{f}_{k}(\theta_{k}(t-\tau(t)))\big)]\geq0, \end{eqnarray*} |
which implies
\begin{eqnarray} &&\left( \begin{array}{c} \theta^{T}(t) \\ \bar{f}^{T}(\theta(t)) \\ \end{array} \right)\left( \begin{array}{cc} -\bar{L}_{1}M_{1} & \bar{L}_{2}M_{1} \\ \star & -M_{1} \\ \end{array} \right)\times\left( \begin{array}{c} \theta(t) \\ \bar{f}(\theta(t)) \\ \end{array} \right)\geq0, \end{eqnarray} | (3.7) |
\begin{eqnarray} &\left( \begin{array}{c} \theta^{T}(t-\tau(t)) \\ \bar{f}^{T}(\theta(t-\tau(t))) \\ \end{array} \right)\left( \begin{array}{cc} -\bar{L}_{1}M_{2} & \bar{L}_{2}M_{2} \\ \star & -M_{2} \\ \end{array} \right)\times\left( \begin{array}{c} \theta(t-\tau(t)) \\ \bar{f}(\theta(t-\tau(t))) \\ \end{array} \right)\geq0,\quad \end{eqnarray} | (3.8) |
and
\begin{eqnarray} &&\left( \begin{array}{c} \theta^{T}(t) \\ \bar{f}^{T}(\theta(t)) \\ \theta^{T}(t-\tau(t)) \\ \bar{f}^{T}(\theta(t-\tau(t))) \\ \end{array} \right)\times\left( \begin{array}{cccc} -\bar{L}_{1}M_{3} & \bar{L}_{2}M_{3} & \bar{L}_{1}M_{3} & -\bar{L}_{1}M_{3} \\ \star & -M_{3} & -\bar{L}_{2}M_{3} & \bar{L}_{3} \\ \star & \star & -\bar{L}_{1}M_{3} & \bar{L}_{1}M_{3} \\ \star & \star & \star & -M_{3} \\ \end{array} \right)\left( \begin{array}{c} \theta(t) \\ \bar{f}(\theta(t)) \\ \theta(t-\tau(t)) \\ \bar{f}(\theta(t-\tau(t))) \\ \end{array} \right)\geq0,\;\; \end{eqnarray} | (3.9) |
where M_{1} = diag\{\rho_{11}, \; \rho_{12}, \cdots\rho_{1n}\}, \; M_{2} = diag\{\rho_{21}, \; \rho_{22}, \cdots\rho_{2n}\}, M_{3} = diag\{\rho_{31}, \; \rho_{32}, \cdots\rho_{3n}\}.
Moreover, for any matrices G_{1} and G_{2} with appropriate dimensions, it is true that,
\begin{eqnarray} &&2\big[\theta^{T}(t)G_{1}+\dot{\theta}^{T}(t)G_{2}\big][-\dot{\theta}(t)-\bar{A}\theta(t)+\bar{B}\bar{f}(\theta(t))+\bar{C}\bar{f}(\theta(t-\tau(t)))+\bar{D}\dot{\theta}(t-h(t))+\bar{\omega}(t)] = 0\\ && = -2\theta^{T}(t)G_{1}\dot{\theta}(t)-2\theta^{T}(t)G_{1}\bar{A}\theta(t)+2\theta^{T}(t)G_{1}\bar{B}\bar{f}(\theta(t))+2\theta^{T}(t)G_{1}\bar{C}\bar{f}(\theta(t-\tau(t)))\\ &&+2\theta^{T}(t)G_{1}\bar{D}\dot{\theta}(t-h(t))+2\theta^{T}(t)G_{1}\bar{\omega}(t)-2\dot{\theta}^{T}(t)G_{2}\dot{\theta}(t)-2\dot{\theta}^{T}(t)G_{2}\bar{A}\theta(t)\\ &&+2\dot{\theta}^{T}(t)G_{2}\bar{B}\bar{f}(\theta(t))+2\dot{\theta}^{T}(t)G_{2}\bar{C}f(\theta(t-\tau(t)))+2\dot{\theta}^{T}(t)G_{2}\bar{D}\dot{\theta}(t-h(t))\\ &&+2\dot{\theta}^{T}(t)G_{2}\bar{\omega}(t). \end{eqnarray} | (3.10) |
We can say that
\begin{eqnarray} \dot{V}(\theta(t))-\delta V_{1}(\theta(t))-\delta\bar{\omega}^{T}(t)\bar{\omega}(t)\leq\xi^{T}(t)\Omega\xi(t) < 0, \end{eqnarray} | (3.11) |
where
\begin{eqnarray*} \xi(t)& = &\bigg[\theta^{T}(t)\quad \theta^{T}(t-\tau(t))\quad \theta^{T}(t-\bar{\tau})\quad\theta^{T}(t-\bar{h})\quad \dot{\theta}^{T}(t)\quad\dot{\theta}^{T}(t-h(t))\\ &\;&\bar{f}^{T}(\theta(t)) \quad \bar{f}^{T}(\theta(t-\tau(t)))\quad \bar{f}^{T}(\theta(t-\bar{\tau})) \quad \int_{t-\bar{\tau}}^{t}\theta^{T}(s)ds\quad \int_{t-\bar{h}}^{t}\theta^{T}(s)ds\\ &\:& \int_{-\bar{\tau}}^{0}\int_{t+\lambda}^{t}\theta^{T}(s)dsd\lambda\quad \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{t+\alpha}^{t}\theta^{T}(s)dsd\alpha d\lambda \quad\bar{\omega}(t)\bigg]^{T}, \end{eqnarray*} |
and \Omega is given in (3.2).
\begin{eqnarray} \dot{V}(\theta(t))&\leq& \delta V_{1}(\theta(t))+\delta \bar{\omega}^{T}(t)\bar{\omega}(t)\\ & < &\delta V(\theta(t))+\delta \bar{\omega}^{T}(t)\bar{\omega}(t) \end{eqnarray} | (3.12) |
Multiplying by e^{-\delta t}, we can obtain
\begin{eqnarray} &&e^{-\delta t}\dot{V}(\theta(t))-\delta e^{-\delta t} V(\theta(t)) < \delta e^{-\delta t}\bar{\omega}^{T}(t)\bar{\omega}(t),\\ &&\frac{d}{dt}(e^{-\delta t}V(\theta(t))) < \delta e^{-\delta t}\bar{\omega}^{T}(t)\bar{\omega}(t). \end{eqnarray} | (3.13) |
By integrating (3.13] between 0 to t, such as t\in [0, \; T_{1}], we can write
\begin{eqnarray} &&e^{-\delta t}V(\theta(t))-V(x(0)) < \delta \int_{0}^{t}e^{-\delta s}\bar{\omega}^{T}(s)\bar{\omega}(s)ds,\\ &&V(\theta(t)) < e^{\delta t}[V(\theta(0))+ \int_{0}^{t}e^{-\delta s}\bar{\omega}^{T}(s)\omega(s)ds].\qquad \end{eqnarray} | (3.14) |
So,
\begin{eqnarray*} &&V(\theta(0)) = \theta^{T}(0)P\theta(0)+2\int_{0}^{\theta(0)}Q_{1}(\bar{f}(s)-\bar{L}^{-}s)+Q_{2}(\bar{L}^{+}s-\bar{f}(s))ds\\ &&+\int_{-\tau(t)}^{0}\theta^{T}(s)R_{01}\theta(s)ds+\int_{-\bar{\tau}}^{0}\theta^{T}(s)R_{1}\theta(s)ds+ \int_{-\bar{\tau}}^{0}\bar{f}^{T}(\theta(s))R_{2}\bar{f}(\theta(s))ds\\ &&+ \int_{-\tau(t)}^{0}\bar{f}^{T}(\theta(s))R_{02}\bar{f}(\theta(s))ds+ \int_{-h(t)}^{0}\dot{\theta}^{T}(s)R_{3}\dot{\theta}(s)ds+\bar{\tau}\int_{-\bar{\tau}}^{0}\int_{\beta}^{t}\dot{\theta}^{T}(s)R_{4}\dot{\theta}(s)dsd\beta\\ &&+\bar{\tau}\int_{-\bar{\tau}}^{0}\int_{\beta}^{0}\theta^{T}(s)R_{5}\theta(s)dsd\beta+\bar{h} \int_{-\bar{h}}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)R_{6}\dot{\theta}(s)dsd\beta\\ &&+\frac{\bar{\tau}^{2}}{2} \int_{-\bar{\tau}}^{0}\int_{\gamma}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)T_{01}\dot{\theta}(s)dsd\beta d\gamma+\frac{\bar{\tau}^{3}}{6} \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\gamma}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)T_{2}\dot{\theta}(s)dsd\beta d\gamma d\lambda\\ &&+\frac{\bar{\tau}^{4}}{24} \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\alpha}^{0}\int_{\gamma}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)T_{3}\dot{\theta}(s)dsd\beta d\gamma d\alpha d\lambda. \end{eqnarray*} |
Letting
\begin{eqnarray*} &&\hat{P} = \bar{L}^{-\frac{1}{2}}P\bar{L}^{-\frac{1}{2}},\; \hat{Q_{1}} = \bar{L}^{-\frac{1}{2}}Q_{1}\bar{L}^{-\frac{1}{2}},\;\hat{Q_{2}} = \bar{L}^{-\frac{1}{2}}Q_{2}\bar{L}^{-\frac{1}{2}},\;\hat{R_{01}} = \bar{L}^{-\frac{1}{2}}R_{01}\bar{L}^{-\frac{1}{2}},\\ &&\hat{R_{1}} = \bar{L}^{-\frac{1}{2}}R_{1}\bar{L}^{-\frac{1}{2}},\;\hat{R_{02}} = \bar{L}^{-\frac{1}{2}}R_{02}\bar{L}^{-\frac{1}{2}},\;\hat{R_{2}} = \bar{L}^{-\frac{1}{2}}R_{2}\bar{L}^{-\frac{1}{2}},\;\hat{R_{3}} = \bar{L}^{-\frac{1}{2}}R_{3}\bar{L}^{-\frac{1}{2}},\\ &&\hat{R_{4}} = \bar{L}^{-\frac{1}{2}}R_{4}\bar{L}^{-\frac{1}{2}},\;\hat{R_{5}} = \bar{L}^{-\frac{1}{2}}R_{5}\bar{L}^{-\frac{1}{2}},\;\hat{R_{6}} = \bar{L}^{-\frac{1}{2}}R_{6}\bar{L}^{-\frac{1}{2}},\;\hat{T}_{01} = \bar{L}^{-\frac{1}{2}}T_{01}\bar{L}^{-\frac{1}{2}},\\ &&\hat{T}_{2} = \bar{L}^{-\frac{1}{2}}T_{2}\bar{L}^{-\frac{1}{2}}, \hat{T}_{3} = \bar{L}^{-\frac{1}{2}}T_{3}\bar{L}^{-\frac{1}{2}},\;\lambda_{1} = \lambda_{\min}(\hat{P}),\; \lambda_{2} = \lambda_{\max}(\hat{P}),\\ &&\lambda_{3} = \lambda_{\max}(\hat{Q}_{1}),\;\lambda_{4} = \lambda_{\max}(\hat{Q}_{2}),\;\lambda_{5} = \lambda_{\max}(\hat{R}_{01}),\;\lambda_{6} = \lambda_{\max}(\hat{R}_{1}),\\ &&\lambda_{7} = \lambda_{\max}(\hat{R}_{02}),\;\lambda_{8} = \lambda_{\max}(\hat{R}_{2}),\;\lambda_{9} = \lambda_{\max}(\hat{R}_{3}),\;\lambda_{10} = \lambda_{\max}(\hat{R}_{4}),\\ &&\lambda_{11} = \lambda_{\max}(\hat{R}_{5}),\;\lambda_{12} = \lambda_{\max}(\hat{R}_{6}),\;\lambda_{13} = \lambda_{\max}(\hat{T}_{01}),\;\lambda_{14} = \lambda_{\max}(\hat{T}_{2}),\\ &&\lambda_{15} = \lambda_{\max}(\hat{T}_{3}), \end{eqnarray*} |
we obtain
\begin{eqnarray*} V(\theta(0))& = &\theta^{T}(0)\bar{L}^{\frac{1}{2}}\hat{P}\bar{L}^{\frac{1}{2}}\theta(0)+2 \int_{0}^{\theta(0)}\bar{L}^{\frac{1}{2}}\hat{Q}_{1}\bar{L}^{\frac{1}{2}}(\bar{f}(s)-\bar{L}^{-}s)\\ &+&\bar{L}^{\frac{1}{2}}\hat{Q}_{2}\bar{L}^{\frac{1}{2}}(\bar{L}^{+}s-\bar{f}(s))ds+\int_{-\tau(t)}^{0}\theta^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{01}\bar{L}^{\frac{1}{2}}\theta(s)ds\\ &+&\int_{-\bar{\tau}}^{0}\theta^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{1}\bar{L}^{\frac{1}{2}}\theta(s)ds+ \int_{-\bar{\tau}}^{0}((\bar{L}^{+})^{2}\theta^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{2}\bar{L}^{\frac{1}{2}}\theta(s)ds\\ &+& \int_{-\tau(t)}^{0}((\bar{L}^{+})^{2}\theta^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{02}\bar{L}^{\frac{1}{2}}\theta(s)ds+ \int_{-h(t)}^{0}\dot{\theta}^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{3}\bar{L}^{\frac{1}{2}}\dot{\theta}(s)ds\\ &+&\bar{\tau} \int_{-\bar{\tau}}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{4}\bar{L}^{\frac{1}{2}}\dot{\theta}(s)dsd\beta+\bar{\tau} \int_{-\bar{\tau}}^{0}\int_{\beta}^{0}\theta^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{5}\bar{L}^{\frac{1}{2}}\theta(s)dsd\beta\\ &+&\bar{h}\int_{-\bar{h}}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)\bar{L}^{\frac{1}{2}}\hat{R}_{6}\bar{L}^{\frac{1}{2}}\dot{\theta}(s)dsd\beta+\frac{\bar{\tau}^{2}}{2} \int_{-\bar{\tau}}^{0}\int_{\gamma}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)\bar{L}^{\frac{1}{2}}\hat{T}_{1}\bar{L}^{\frac{1}{2}}\dot{\theta}(s)dsd\beta d\gamma\\ &+&\frac{\bar{\tau}^{3}}{6} \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\gamma}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)\bar{L}^{\frac{1}{2}}\hat{T}_{2}\bar{L}^{\frac{1}{2}}\dot{\theta}(s)dsd\beta d\gamma d\lambda\\ &+&\frac{\bar{\tau}^{4}}{24} \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\alpha}^{0}\int_{\gamma}^{0}\int_{\beta}^{0}\dot{\theta}^{T}(s)\bar{L}^{\frac{1}{2}}\hat{T}_{3}\bar{L}^{\frac{1}{2}}\dot{\theta}(s)dsd\beta d\gamma d\alpha d\lambda\\ &\leq&\bigg\{\lambda_{\max}(\hat{P})\theta^{T}(0)\bar{L}\theta(0)+2\lambda_{\max}(\hat{Q_{1}})[\max\{|\bar{L}^{+},\;\bar{L}^{-}|^{2}-\bar{L}^{-}\}]\\ &+&2\lambda_{\max}(\hat{Q_{2}})[\max\{\bar{L}^{+}-|\bar{L}^{+},\;\bar{L}^{-}|^{2}\}]+\bar{\tau}[\lambda_{\max}(\hat{R_{01}})+\lambda_{\max}(\hat{R_{1}})]\\ &+&\bar{\tau} [\max\{|\bar{L}^{+},\;\bar{L}^{-}|^{2}\}][\lambda_{\max}(\hat{R_{02}})+\lambda_{\max}(\hat{R_{2}})]+\bar{h}\lambda_{\max}(\hat{R_{3}})+\frac{\bar{\tau}^3}{2}\lambda_{\max}(\hat{R_{4}})\\ &+&\frac{\bar{\tau}^3}{2}\lambda_{\max}(\hat{R_{5}})+\frac{\bar{h}^3}{2}\lambda_{\max}(\hat{R_{6}})+\frac{\bar{\tau}^5}{12}\lambda_{\max}(\hat{T_{1}})+\frac{\bar{\tau}^7}{144}\lambda_{\max}(\hat{T_{2}})+\frac{\bar{\tau}^9}{2880}\lambda_{\max}(\hat{T_{3}})\bigg\}\\ &&\times \sup\limits_{t_{0}\in[-\bar{\tau},0]}\big\{\theta^{T}(t_{0})\bar{L}\theta(t_{0}),\;\dot{\theta}^{T}(t_{0})\bar{L}\dot{\theta}(t_{0})\big\},\\ &&V(\theta(0))\leq \bar{c}_{1}\Gamma, \end{eqnarray*} |
where
\begin{eqnarray*} \Gamma& = &[\lambda_{2}+\lambda_{3}[\tilde{L}^{2}-\bar{L}^{-}]+\lambda_{4}[\bar{L}^{+}-\tilde{L}^{2}]+\bar{\tau}[\lambda_{5}+\lambda_{6}]+\bar{\tau} \tilde{L}^{2}[\lambda_{7}+\lambda_{8}]+\bar{h}\lambda_{9}+\frac{\bar{\tau}^{3}}{2}[\lambda_{10}\\ &+&\lambda_{11}]+\frac{\bar{h}^{3}}{2}\lambda_{12}+\frac{\bar{\tau}^{5}}{12}\lambda_{13}+\frac{\bar{\tau}^7}{144}\lambda_{14}+\frac{\bar{\tau}^9}{2880}\lambda_{15}, \end{eqnarray*} |
where \tilde{L} = \max\{|\bar{L}^{+}, \; \bar{L}^{-}|^{2}.
Furthermore, it follows from (3.14) that
\begin{eqnarray} V(\theta(t))\geq\theta^{T}(t)P\theta(t)\geq\lambda_{min}(\hat{P})\theta^{T}(t)\bar{L}\theta(t) = \lambda_{1}\theta^{T}(t)\bar{L}\theta(t). \end{eqnarray} | (3.15) |
Because of inequalities (3.14) and (3.15), we obtain
\begin{eqnarray} &&\lambda_{1} \theta^{T}(t)P\theta(t)\leq e^{\delta t}[V(\theta(0))+\int_{0}^{t}e^{-\delta t}\bar{\omega}^{T}(s)\bar{\omega}(s)ds],\\ &&\Rightarrow \theta^{T}(t)\bar{L}\theta(t)\leq \frac{e^{\delta T_{1}}[\bar{c}_{1}\Gamma+b(1-e^{(-\delta T_{1})})]}{\lambda_{1}}. \end{eqnarray} | (3.16) |
From condition (3.3), we arrive at \theta^{T}(t)L\theta(t) < \bar{c}_{2}. From Definition 1, the model (3.1) is FTB with regard to (\bar{c}_{1}, \; \bar{c}_{2}, \; T_{1}, \; \bar{L}, \; \bar{b}).
This allowed the proof to be obtained.
Remark 6: In Theorem 1, sufficient conditions are met to verify that the model (3.1) is FTB, then Theorem 2 will present FTP conditions.
In this second part, we study the FTP analysis for the below model
\begin{eqnarray} \left\{ \begin{array}{ll} \dot{\theta}(t) = -\bar{A}\theta(t)+\bar{B}\bar{f}(\theta(t))+\bar{C}\bar{f}(\theta(t-\tau(t)))+\bar{D}\dot{\theta}(t-h(t))+\bar{\omega}(t), \\ \bar{u}(t) = \bar{K}_{1}\theta(t)+\bar{K}_{2}\bar{f}(\theta(t)). \end{array} \right. \end{eqnarray} | (3.17) |
Theorem 2: Suppose that Assumptions 1–5 hold. Let \bar{\tau}, \; \mu, \; \bar{h}, \; h_{1}, and \delta be scalars, then system (3.17) is FTP with keeping the parameter (\bar{c}_{1}, \bar{c}_{2}, T_{1}, \bar{L}, \bar{b}), if there exists symmetric positive definite matrices P, Q_{1}, Q_{2}, R_{01}, R_{1}, R_{02}, R_{2}, R_{3}, R_{4}, R_{5}, T_{01}, T_{2}, T_{3} and diagonal matrices M_{1} > 0, M_{2} > 0, M_{3} > 0, and scalar \beta > 0 such that the following LMIs (3.18) hold:
\begin{eqnarray} \tilde{\Omega} = \left[ \begin{array}{cccccccccccccc} \eta_{1,1} & \bar{L}_{1}M_{3} & \eta_{1,3} & \eta_{1,4} & \eta_{1,5} & G_{1}D & \eta_{1,7} & \eta_{1,8} & 0 & \eta_{1,10} & \frac{\Pi^{2}}{2h}R_{6} & \frac{\bar{\tau}^{2}}{2}T_{2} & \frac{\bar{\tau}^{3}}{6}T_{3} & G_{1}-\beta I-\bar{K}_{1} \\ \star& \eta_{2,2} & 0 & 0 & 0 & 0 & -M_{3}^{T}\bar{L}_{2}^{T} & \eta_{2,8} & 0 & 0 & 0 & 0 & 0 & 0 \\ \star & \star & \eta_{3,3} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\Pi^{2}}{2\bar{\tau}}R_{4} & 0 & 0 & 0 & 0 \\ \star & \star & \star & \eta_{4,4} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\Pi^{2}}{2h}R_{6} & 0 & 0 & 0 \\ \star & \star & \star & \star & \eta_{5,5} & G_{2}\bar{D} & \eta_{5,7} & G_{2}\bar{C} & 0 & 0 & 0 & 0 & 0 & G_{2}\\ \star & \star & \star & \star & \star & \eta_{6,6} & 0 &0 & 0 & 0 & 0 & 0 & 0 & 0\\ \star & \star & \star & \star & \star & \star & \eta_{7,7} & M_{3} & 0 & 0 & 0 & 0 & 0 & -\bar{K}_{2}\\ \star & \star & \star & \star & \star & \star & \star & \eta_{8,8} & 0 & 0 & 0 & 0 & 0 & 0\\ \star & \star & \star & \star & \star & \star & \star & \star & \eta_{9,9} & 0 & 0 & 0 & 0 & 0\\ \star & \star & \star & \star & \star & \star & \star & \star & \star & \eta_{10,10} & 0 & 0 & 0 & 0 \\ \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & \eta_{11,11} & 0 & 0 & 0 \\ \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & -T_{2} & 0 & 0\\ \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & -T_{3} & 0 \\ \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & \star & -\beta I \\ \end{array} \right] < 0,\qquad \end{eqnarray} | (3.18) |
\begin{eqnarray*} \bar{c}_{1}\Gamma+\bar{b}(1-e^{-\delta T_{1}}) < \bar{c}_{2}\lambda_{1}e^{-\delta T_{1}}, \end{eqnarray*} |
where the parameters are kept the same as Theorem 3.1.
Proof: Select the Lyapunov function used in the Theorem 3.1. We get
\begin{eqnarray*} &&\dot{V}(\theta(t))-\delta V_{1}(\theta(t))-2\bar{u}^{T}(t)\bar{\omega}(t)-\beta\bar{\omega}^{T}(t)\bar{\omega}(t)\leq\xi^{T}(t)\tilde{\Omega}\xi(t) < 0,\\ &&\Rightarrow \dot{V}(\theta(t))-\delta V(\theta(t))-2\bar{u}^{T}(t)\bar{\omega}(t)-\beta\bar{\omega}^{T}(t)\bar{\omega}(t) < 0, \end{eqnarray*} |
where \tilde{\Omega} is given in (3.18), then
\begin{eqnarray} \dot{V}(\theta(t))-\delta V(\theta(t))&\leq&2\bar{u}^{T}(t)\bar{\omega}(t)+\beta\bar{\omega}^{T}(t)\bar{\omega}(t). \end{eqnarray} | (3.19) |
Multiplying (3.19) by e^{-\delta t}, we can get
\begin{eqnarray*} e^{-\delta t}\dot{V}(\theta(t))-\delta e^{-\delta t} V(\theta(t))\leq2e^{-\delta t}\bar{u}^{T}(t)\bar{\omega}(t)+\beta e^{-\delta t}\bar{\omega}^{T}(t)\bar{\omega}(t), \end{eqnarray*} |
\begin{eqnarray*} \frac{d}{dt}\big(e^{-\delta t}V(\theta(t))\big)\leq2e^{-\delta t}\bar{u}^{T}(t)\bar{\omega}(t)+\beta e^{-\delta t}\bar{\omega}^{T}(t)\bar{\omega}(t). \end{eqnarray*} |
Integrating the above inequality between 0 to T_{1}, we can write
\begin{eqnarray*} e^{-\delta T_{1}}V(\theta(t))-V(\theta(0))&\leq&2\int_{0}^{T_{1}}e^{-\delta t}\bar{u}^{T}(t)\bar{\omega}(t)dt+\beta \int_{0}^{T_{1}}e^{-\delta t}\bar{\omega}^{T}(t)\bar{\omega}(t)dt. \end{eqnarray*} |
Consider the zero initial condition for \theta_{0} = 0 and we have V(\theta(0)) = 0, then
\begin{eqnarray*} e^{-\delta T_{1}}V(\theta(t))&\leq&2\int_{0}^{T_{1}}e^{-\delta t}\bar{u}^{T}(t)\bar{\omega}(t)dt+\beta\int_{0}^{T_{1}}e^{-\delta t}\bar{\omega}^{T}(t)\bar{\omega}(t)dt, \end{eqnarray*} |
\begin{eqnarray} V(\theta(t))&\leq&e^{\delta T_{1}}\int_{0}^{T_{1}}[2\bar{u}^{T}(t)\bar{\omega}(t)+\beta\bar{\omega}^{T}(t)\bar{\omega}(t)]dt. \end{eqnarray} | (3.20) |
Since V(\theta(t))\geq 0, we can say from (3.20) that
\begin{eqnarray} 2\int_{0}^{T_{1}}\bar{u}^{T}(t)\bar{\omega}(t)dt\geq-\beta \int_{0}^{T_{1}}\bar{\omega}^{T}(t)\bar{\omega}(t)dt. \end{eqnarray} | (3.21) |
Finally, we can say that the system (3.17) is FTP. This allowed the proof to be obtained.
Remark 7: It should be emphasized that the LMI approach proposed in this paper is more useful for reducing the conservatism of the delay system, which may lead to obtain less conservative results. This proves the advantage of our proposed method.
Remark 8: We note that the optimal value of \bar{c}_{2} depends on the parameter \delta, then the optimal minimum value of \bar{c}_{2} is determined from the minimum value of \delta, such that the LMIs matrix solution remains feasible.
Remark 9: In the majority of published work, the Lyapunov function theory is the most effective approach to investigating the problem of stability and passivity for divers dynamical models. Moreover, it can be seen that the existing literature [11,12,13,15,19,32,33,34,35] contains the Lyapunov function with single, double, tripe, and four integral terms. However, in this article, we give the Lyapunov–Krasovskii function with five integral terms such as \frac{\bar{\tau}^{4}}{24} \int_{-\bar{\tau}}^{0}\int_{\lambda}^{0}\int_{\alpha}^{0}\int_{\gamma}^{0}\int_{t+\beta}^{t}\dot{\theta}^{T}(s)T_{3}\dot{\theta}(s)dsd\beta d\gamma d\alpha d\lambda. Different from the published work, this is the first time studying the problem of FTP of neutral-type CVNNs. Via a Lyapunov–Krasovskii function with triple, four and five integral terms, by utilizing Jensons inequality and the Wirtinger-type inequality technique, new sufficient conditions for FTB and FTP are taken in terms of LMIs, which is effective on reducing conservatism.
In this section, two examples are given to show the feasibility of our results.
Example 1: Consider the following model
\begin{eqnarray} \left\{ \begin{array}{ll} \dot{z}(t) = -Az(t)+Bf(z(t))+Cf(z(t-\tau(t)))+D\dot{z}(t-h(t))+\omega(t),\\ z(s) = \psi(s),\;\;s\in[-\rho,\;0], \end{array} \right. \end{eqnarray} | (4.1) |
where
\begin{eqnarray*} A& = &\left( \begin{array}{cc} 1.9 & 0 \\ 0 & 1.2 \\ \end{array} \right),\;B = \left( \begin{array}{cc} 0.5+0.5i & 0.03+0.03i \\ -0.4-0.4i & -0.1-0.1i \\ \end{array} \right),\;C = \left( \begin{array}{cc} 1.1+1.1i & 0.03+0.03i \\ 0.07+0.07i & 0.1+0.1i \\ \end{array} \right),\\ D& = &\left( \begin{array}{cc} 0.1+0.1i & 0 \\ 0 & 0.1+0.1i \\ \end{array} \right),\;\bar{A} = \left( \begin{array}{cccc} 1.9 & 0 & 0 & 0 \\ 0 & 1.2 & 0 & 0 \\ 0 & 0 & 1.9 & 0 \\ 0 & 0 & 0 & 1.2 \\ \end{array} \right),\;\bar{B} = \left( \begin{array}{cccc} 0.5 & 0.03 & -0.5 & -0.03 \\ -0.4 & -0.1 & 0.4 & 0.1 \\ 0.5 & 0.03 & 0.5 & 0.03 \\ -0.4 & -0.1 & -0.4 & -0.1 \\ \end{array} \right),\\ \bar{C}& = &\left( \begin{array}{cccc} 1.1 & 0.03 & -1.1 & -0.03 \\ 0.07 & 0.1 & -0.07 & -0.1 \\ 1.1 & 0.03 & 1.1 & 0.03 \\ 0.07 & 0.1 & 0.07 & 0.1 \\ \end{array} \right),\;\bar{D} = \left( \begin{array}{cccc} 0.1 & 0 & -0.1 & 0 \\ 0 & 0.1 & 0 & -0.1 \\ 0.1 & 0 & 0.1 &0 \\ 0 & 0.1 & 0 & 0.1 \\ \end{array} \right), \end{eqnarray*} |
f_{j}(z) = 0.3(|x_{j}+1|-|x_{j}-1|)+i0.3(|y_{j}+1|-|y_{j}-1|). Thus, L_{1} = L_{2} = 0_{2\times 2} and L_{3} = L_{4} = \left(\begin{array}{cc} 0.3 & 0 \\ 0 & 0.3 \\ \end{array} \right), \Rightarrow \bar{L}_{1} = 0_{4\times 4} and \bar{L}_{2} = 0.3 I_{4} \tau(t) = 0.15(1-\sin(2t)), \; h(t) = 0.15(1-\cos(2t)), \; \omega(t) = 0.9\sin(\pi t)e^{-0.5t}+\sin(\pi t)e^{-0.3t}i , \delta = 1, \; \bar{c}_{1} = \left(\begin{array}{c} 0.5 \\ 0.5 \\ \end{array} \right) 0.5, \; \bar{b} = \left(\begin{array}{c} 0.81 \\ 0.60 \\ \end{array} \right), \; T_{1} = 15, matrix \bar{L} = I. Using the Matlab LMI toolbox to solve the LMIs (3.2) and (3.3) in Theorem 1, we obtained the feasible solutions for an optimal minimum value of \bar{c}_{2} = \left(\begin{array}{c} 9.8208 \\ 9.4072 \\ \end{array} \right). The trajectories of the solution of system (4.1) in Example 1 are shown in Figures 1 and 2, and the time history of (Re(z))^{T}L(Re(z)) and (Im(z))^{T}L(Im(z)) are given in Figure 3. Hence, it can be concluded that the system (4.1) is FTB.
Example 2: Consider the following system :
\begin{eqnarray} \left\{ \begin{array}{lll} \dot{z}(t) = -Az(t)+Bf(z(t))+Cf(z(t-\tau(t)))+D\dot{z}(t-h(t))+\omega(t),\\ u(t) = K_{1}z(t)+K_{2}f(z(t)),\\ z(s) = \psi(s),\;\;s\in[-\rho,\;0], \end{array} \right. \end{eqnarray} | (4.2) |
where
\begin{eqnarray*} A& = &\left( \begin{array}{cc} 3.8 & 0 \\ 0 & 2.4 \\ \end{array} \right),\;B = \left( \begin{array}{cc} 1+i & 0.06+0.06i \\ -0.8-0.8i & -0.2-0.2i \\ \end{array} \right),\;C = \left( \begin{array}{cc} 2.2+2.2i & 0.06+0.06i \\ 0.14+0.14i & 0.2+0.2i \\ \end{array} \right),\\D& = &\left( \begin{array}{cc} 0.2+0.2i & 0 \\ 0 & 0.2+0.2i \\ \end{array} \right),\;K_{1} = \left( \begin{array}{cc} 1.2 & 1.6 \\ 1.25 & 1 \\ \end{array} \right),\;K_{2} = \left( \begin{array}{cc} 1+i & 0.5+0.6i \\ 0.5-0.4i & 1-i \\ \end{array} \right),\\ \bar{A}& = &\left( \begin{array}{cccc} 3.8 & 0 & 0 & 0 \\ 0 & 2.4 & 0 & 0 \\ 0 & 0 & 3.8 & 0 \\ 0 & 0 & 0 & 2.4 \\ \end{array} \right),\;\bar{B} = \left( \begin{array}{cccc} 1 & 0.06 & -1 & -0.06 \\ -0.8 & -0.2 & 0.8 & 0.2 \\ 1 & 0.06 & 1 & 0.06 \\ -0.8 & -0.2 & -0.8 & -0.2 \\ \end{array} \right),\; \bar{C} = \left( \begin{array}{cccc} 2.2 & 0.06 & -2.2 & -0.06 \\ 0.14 & 0.2 & -0.14 & -0.2 \\ 2.2 & 0.06 & 2.2 & 0.06 \\ -0.14 & 0.2 & 0.14 & 0.2 \\ \end{array} \right),\\\bar{D}& = &\left( \begin{array}{cccc} 0.2 & 0 & -0.2 & 0 \\ 0 & 0.2 & 0 & -0.2 \\ 0.2 & 0 & 0.2 &0 \\ 0 & 0.2 & 0 & 0.2 \\ \end{array} \right),\;\bar{K}_{1} = \left( \begin{array}{cccc} 1.2 & -1.6 & 0 & 0 \\ -1.25 & 1 & 0 & 0 \\ 0 & 0 & 1.2 & -1.6 \\ 0 & 0 & -1.25 & 1 \\ \end{array} \right),\; \bar{K}_{2} = \left( \begin{array}{cccc} 1 & 0.5 & 1 & -0.6 \\ 0.5 & 1 & 0.4 & 1 \\ -1 & 0.6 & 1 & 0.5 \\ -0.4 & -1 & 0.5 & 1 \\ \end{array} \right), \end{eqnarray*} |
f_{j}(z) = 0.6\tanh(x_{j})+i0.7\tanh(y_{j}). Thus, L_{1} = L_{2} = 0_{2\times 2} and L_{3} = \left(\begin{array}{cc} 0.3 & 0 \\ 0 & 0.3 \\ \end{array} \right), \; L_{4} = \left(\begin{array}{c} 0.35 \\ 0.35 \\ \end{array} \right) \Rightarrow \bar{L}_{1} = 0_{4\times 4} and \bar{L}_{2} = \left(\begin{array}{cccc} 0.3 & 0 & 0 & 0 \\ 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0.35 & 0 \\ 0 & 0 & 0 & 0.35 \\ \end{array} \right), \tau(t) = 0.15(1-\cos(2t)), \; h(t) = 0.15(1-\sin(2t)), \; \omega(t) = 0.2e^{-0.5t}+0.3e^{-0.3t}i, \delta = 1, \; \bar{c}_{1} = \left(\begin{array}{c} 0.1 \\ 0.1 \\ \end{array} \right) 0.5, \bar{b} = \left(\begin{array}{c} 0.019 \\ 0.053 \\ \end{array} \right), \; T_{1} = 12, matrix \bar{L} = I. Using the Matlab LMI toolbox to solve the LMIs (3.2) and (3.3) in Theorem 2, we obtained the feasible solutions for an optimal minimum value of \bar{c}_{2} = \left(\begin{array}{c} 12.4431 \\ 15.0562 \\ \end{array} \right). From Table 1, The results presented in this manuscript are significantly better than those of [32,33,34,35], which confirms the validity of our work.
\mu | 0.8 | 0.9 |
[32] | 3.9212 | 2.3901 |
[33] | 5.2403 | 3.5211 |
[34] | 5.6384 | 3.7718 |
[35] | 6.5411 | 4.5074 |
\bar{\tau} of our result | 6.9307 | 5.2113 |
The trajectories of the solution of model (4.2) in Example 4 are given in Figure 4 and Figure 5. The time history of (Re(z))^{T}L(Re(z)) and (Im(z))^{T}L(Im(z)) are given in Figure 6. Hence, it can be concluded that the system (4.2) is FTP.
This paper is focused on the FTP problem of neutral-type complex-valued NNs in the presence of time-varying delays. By using Lyapunov functionals, the Wirtinger inequality, and LMIs, new sufficient conditions are gotten to guarantee the finite-time boundedness and finite-time passivity of our model. Finally, two examples are presented to prove the effectiveness of our main results. In the future work, we will take the challenge to study the finite-time dissipativity of stochastic complex NNs with mixed delays via a non-separation approach and the fixed-time passivity of coupled clifford-valued NNs subject to multiple delayed couplings.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors declare there is no conflict of interest.
[1] |
K. S. S. Abdool, K.Q. Adbool, Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic. Lancet, 398 (2021), 2126–2128. https://doi.org/10.1016/S0140-6736(21)02758-6 doi: 10.1016/S0140-6736(21)02758-6
![]() |
[2] |
H. Tegally, E. Wilkinson, C. L. Althaus, M. Giovanetti, J. E. San, J. Giandhari, et al., Rapid replacement of the Beta variant by the Delta variant in South Africa, medRxiv, 2021. https://doi.org/10.1101/2021.09.23.21264018 doi: 10.1101/2021.09.23.21264018
![]() |
[3] |
S. Cele, I. Gazy, L. Jackson, S.-H. Hwa, H. Tegally, G. Lustig, et al., Escape of SARS-CoV-2 501Y. V2 from neutralization by convalescent plasma, Nature, 593 (2021), 142–146. https://doi.org/10.1038/s41586-021-03471-w doi: 10.1038/s41586-021-03471-w
![]() |
[4] |
S. A. Madhi, V. Baillie, C. L. Cutland, M. Voysey, A. L. Koen, L. Fairlie, et al., Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B. 1.351 variant, N Engl. J. Med., 384 (2021), 1885–1898. https://doi.org/10.1056/NEJMoa2102214 doi: 10.1056/NEJMoa2102214
![]() |
[5] |
H. Tegally, E. Wikinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, et al., Detection of a SARS-CoV-2 variant of concern in South Africa, Nature, 592 (2021), 438–443. https://doi.org/10.1038/s41586-021-03402-9 doi: 10.1038/s41586-021-03402-9
![]() |
[6] |
H. Chemaitelly, R. Bertollini, L. J. Abu-Raddad, Efficacy of natural immunity against SARS-CoV-2 reinfection with the Beta variant, N Engl. J. Med., 385 (2021), 2585–2586. https://doi.org/10.1056/NEJMc2110300 doi: 10.1056/NEJMc2110300
![]() |
[7] |
C. Del Rio, P. N. Malani, S. B. Omer, Confronting the delta variant of SARS-CoV-2, summer 2021, JAMA, 326 (2021), 1001–1002. https://doi.org/10.1001/jama.2021.14811 doi: 10.1001/jama.2021.14811
![]() |
[8] |
Y. Liu, J. Rocklöv, The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus, J. Travel Med., 2021. https://doi.org/10.1093/jtm/taab124 doi: 10.1093/jtm/taab124
![]() |
[9] |
P. Mlcochova, S. A. Kemp, M. S. Dhar, G. Papa, B. Meng, I. A. T. M. Ferreira, et al., SARS-CoV-2 B. 1.617. 2 Delta variant replication and immune evasion, Nature, 599 (2021), 114–119. https://doi.org/10.1038/s41586-021-03944-y doi: 10.1038/s41586-021-03944-y
![]() |
[10] | I. Torjesen, Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear, BMJ. https://doi.org/10.1136/bmj.n2943 |
[11] |
K. Ito, C. Piantham, H. Nishiura, Predicted dominance of variant Delta of SARS-CoV-2 before Tokyo Olympic Games, Japan, July 2021, Euro. Surveill., 26 (2021), 2100570. https://doi.org/10.2807/1560-7917.ES.2021.26.27.2100570 doi: 10.2807/1560-7917.ES.2021.26.27.2100570
![]() |
[12] |
H. Gu, P. Krishnan, D. Y. Ng, L. D. J. Chang, G. Y. Z. Liu, S. S. M. Cheng, et al., Probable transmission of SARS-CoV-2 omicron variant in quarantine hotel, Hong Kong, China, November 2021, Emerg. Infect. Dis., 28 (2022), 460. https://doi.org/10.3201/eid2802.212422 doi: 10.3201/eid2802.212422
![]() |
[13] |
O. Dyer, Covid-19: Peru's official death toll triples to become world's highest, BMJ, 373 (2021), n1442. https://doi.org/10.1136/bmj.n1442 doi: 10.1136/bmj.n1442
![]() |
[14] |
A. Wilhelm, M. Widera, K. Grikscheit, T. Toptan, B. Schenk, C. Pallas, et al., Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies, MedRxiv, 2021. https://doi.org/10.1101/2021.12.07.21267432 doi: 10.1101/2021.12.07.21267432
![]() |
[15] |
L. Zhang, Q. Li, Z. Liang, T. Li, S. Liu, Q. Q. Cui, et al., The significant immune escape of pseudotyped SARS-CoV-2 Variant Omicron, Emerg. Microbes Infect., 11 (2022), 1–5. https://doi.org/10.1080/22221751.2021.2017757 doi: 10.1080/22221751.2021.2017757
![]() |
[16] |
W. Dejnirattisai, R. H. Shaw, P. Supasa, C. Liu, A. S. V. Stuart, A. J. Pollard, et al., Reduced neutralisation of SARS-CoV-2 omicron B. 1.1. 529 variant by post-immunisation serum. Lancet, 399 (2022), 234–236. https://doi.org/10.1016/S0140-6736(21)02844-0 doi: 10.1016/S0140-6736(21)02844-0
![]() |
[17] |
B. J. Gardner, A. M. Kilpatrick, Estimates of reduced vaccine effectiveness against hospitalization, infection, transmission and symptomatic disease of a new SARS-CoV-2 variant, Omicron (B. 1.1. 529), using neutralizing antibody titers, MedRxiv, 2021. https://doi.org/10.1101/2021.12.10.21267594 doi: 10.1101/2021.12.10.21267594
![]() |
[18] |
C. Kuhlmann, C. K. Mayer, M. Claassen, T. G. Maponga, A. D. Sutherland, T. Suliman, et al., Breakthrough infections with SARS-CoV-2 Omicron variant despite booster dose of mRNA vaccine, Available at SSRN 3981711, 2021. https://dx.doi.org/10.2139/ssrn.3981711 doi: 10.2139/ssrn.3981711
![]() |
[19] |
H. Nishiura, K. Ito, A. Anzai, T. Kobayashi, C. Piantham, A. J. Rodriguez-Morales, Relative reproduction number of SARS-CoV-2 Omicron (B. 1.1. 529) compared with Delta variant in South Africa, J. Clin. Med., 11 (2021), 30. https://doi.org/10.3390/jcm11010030 doi: 10.3390/jcm11010030
![]() |
[20] |
Y. Bai, Z. Du, M. Xu, L. Wang, P. Wu, E. H. Y. Lau, et al., International risk of SARS-CoV-2 Omicron variant importations originating in South Africa, medRxiv, 2021. https://doi.org/10.1101/2021.12.07.21267410 doi: 10.1101/2021.12.07.21267410
![]() |
[21] |
S. Kumar, T. S. Thambiraja, K. Karuppanan, G. Subramaniam, Omicron and Delta variant of SARS‐CoV‐2: a comparative computational study of spike protein. J. Med. Virol., 2021. https://doi.org/10.1002/jmv.27526 doi: 10.1002/jmv.27526
![]() |
[22] |
J. Chen, R. Wang, N. B. Gilby, G. W. Wei, Omicron (B. 1.1. 529): Infectivity, vaccine breakthrough, and antibody resistance, J. Chem. Inf. Model., 62 (2022), 412–422. https://doi.org/10.1021/acs.jcim.1c01451 doi: 10.1021/acs.jcim.1c01451
![]() |
[23] |
D. S. Khoury, M. Steain, J. Triccas, A. Sigal, M. P. Davenport, D. Cromer, Analysis: A meta-analysis of Early Results to predict Vaccine efficacy against Omicron, medRxiv, 2021. https://doi.org/10.1101/2021.12.13.21267748 doi: 10.1101/2021.12.13.21267748
![]() |
[24] |
E. A. Le Rutte, A. J. Shattock, N. Chitnis, S. L. Kelly, M. A. Penny, Assessing impact of Omicron on SARS-CoV-2 dynamics and public health burden, medRxiv, 2021. https://doi.org/10.1101/2021.12.12.21267673 doi: 10.1101/2021.12.12.21267673
![]() |
[25] | H. Ritchie, E. Mathieu, L. Rodés-Guirao, C. Appel, C. Giattino, E. Ortiz-Ospina, et al., Coronavirus Pandemic (COVID-19), 2020 [cited 2022 Feb 28]. Available from: https://ourworldindata.org/coronavirus |
[26] |
Y. Shu, J. McCauley, GISAID: Global initiative on sharing all influenza data–from vision to reality, Euro. Surveill., 22 (2017), 30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494 doi: 10.2807/1560-7917.ES.2017.22.13.30494
![]() |
[27] |
S. Khare, C. Gurry, L. Freitas, M. B. Schultz, G. Bach, A, Diallo, et al., GISAID's Role in Pandemic Response, China CDC Wkly, 3 (2021), 1049. https://doi.org/10.46234/ccdcw2021.255 doi: 10.46234/ccdcw2021.255
![]() |
[28] |
S. Elbe, G. Buckland‐Merrett, Data, disease and diplomacy: GISAID's innovative contribution to global health, Global Challenges, 1 (2017), 33–46. https://doi.org/10.1002/gch2.1018 doi: 10.1002/gch2.1018
![]() |
[29] |
E. Mathieu, H. Ritchie, E. Ortiz-Ospina, M. Roser, J. Hasell, C. Appel, et al., A global database of COVID-19 vaccinations, Nat. Hum. Behav., 5 (2021), 947–953. https://doi.org/10.1038/s41562-021-01122-8 doi: 10.1038/s41562-021-01122-8
![]() |
[30] |
T. Hale, N. Angrist, R. Goldszmidt, B. Kira, A. Petherick, T. Phillips, et al., A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker), Nat. Hum. Behav., 5 (2021), 529–538. https://doi.org/10.1038/s41562-021-01079-8 doi: 10.1038/s41562-021-01079-8
![]() |
[31] |
H. Song, G. Fan, S. Zhao, H. Li, Q. Huang, D. He, Forecast of the COVID-19 trend in India: A simple modelling approach, Math. Biosci. Eng., 18 (2021), 9775–9786. https://doi.org/10.3934/mbe.2021479 doi: 10.3934/mbe.2021479
![]() |
[32] |
H. Song, G. Fan, Y. Liu, X. Wang, D. He, The second wave of COVID-19 in South and Southeast Asia and the effects of vaccination, Front. Med., 8 (2021). https://doi.org/10.3389/fmed.2021.773110 doi: 10.3389/fmed.2021.773110
![]() |
[33] |
S. S. Musa, X. Wang, S. Zhao, S. Li, N. Hussaini, W. Wang, D. He, The heterogeneous severity of COVID-19 in African countries: A modeling approach, Bull. Math. Biol., 84 (2022), 1–16. https://doi.org/10.1007/s11538-022-00992-x doi: 10.1007/s11538-022-00992-x
![]() |
[34] |
D. He, E. L. Ionides, A. A. King, Plug-and-play inference for disease dynamics: Measles in large and small populations as a case study, J. R. Soc. Interf., 7 (2010), 271–283. https://doi.org/10.1098/rsif.2009.0151 doi: 10.1098/rsif.2009.0151
![]() |
[35] |
E. L. Ionides, C. Bretó, A. A. King, Inference for nonlinear dynamical systems, PNAS, 103 (2006), 18438-18443. https://doi.org/10.1073/pnas.0603181103 doi: 10.1073/pnas.0603181103
![]() |
[36] | W. T. Vetterling, W. H. Press, S. A. Teukolsky, B. P. Flannery, Numerical recipes: Example book C (The Art of Scientific Computing), 1992, Press Syndicate of the University of Cambridge. |
[37] |
H. Campbell, P. Gustafson, Inferring the COVID-19 IFR with a simple Bayesian evidence synthesis of seroprevalence study data and imprecise mortality data, medRxiv, 2021. https://doi.org/10.1101/2021.05.12.21256975 doi: 10.1101/2021.05.12.21256975
![]() |
[38] | N. Ferguson, A. Ghani, A. Cori, A. Hogan, W. Hinsley, E. Volz, Report 49: Growth, population distribution and immune escape of Omicron in England, Imperial College London. https://doi.org/10.25561/93038 |
[39] |
K. Leung, M. H. Shum, G. M. Leung, T. T. Lam, J. T. Wu, Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020, Euro. Surveill., 26 (2021), 2002106. https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002106 doi: 10.2807/1560-7917.ES.2020.26.1.2002106
![]() |
[40] |
B. Roquebert, S. Trombert-Paolantoni, S. Haim-Boukobza, E. Lecorche, L. Verdurme, V. Foulongne, et al., The SARS-CoV-2 B. 1.351 lineage (VOC β) is outgrowing the B. 1.1. 7 lineage (VOC α) in some French regions in April 2021, Euro. Surveill., 26 (2021), 2100447. https://doi.org/10.2807/1560-7917.ES.2021.26.23.2100447 doi: 10.2807/1560-7917.ES.2021.26.23.2100447
![]() |
[41] |
K. Ito, C. Piantham, H. Nishiura, Relative instantaneous reproduction number of Omicron SARS‐CoV‐2 variant with respect to the Delta variant in Denmark, J. Med. Virol., 94 (2022), 2265–2268. https://doi.org/10.1002/jmv.27560 doi: 10.1002/jmv.27560
![]() |
[42] |
Y. M. Chu, A. Ali, M. A. Khan, S. Islam, S. Ullah, Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia, Results Phys., 21 (2021), 103787. https://doi.org/10.1016/j.rinp.2020.103787 doi: 10.1016/j.rinp.2020.103787
![]() |
[43] |
X. P. Li, Y. Wang, M. A. Khan, M. Y. Alshahrani, T. Muhammad, A dynamical study of SARS-COV-2: A study of third wave, Results Phys., 29 (2021), 104705. https://doi.org/10.1016/j.rinp.2021.104705 doi: 10.1016/j.rinp.2021.104705
![]() |