The germinal center (GC) is a self-organizing structure produced in the lymphoid follicle during the T-dependent immune response and is an important component of the humoral immune system. However, the impact of the special structure of GC on antibody production is not clear. According to the latest biological experiments, we establish a spatiotemporal stochastic model to simulate the whole self-organization process of the GC including the appearance of two specific zones: the dark zone (DZ) and the light zone (LZ), the development of which serves to maintain an effective competition among different cells and promote affinity maturation. A phase transition is discovered in this process, which determines the critical GC volume for a successful growth in both the stochastic and the deterministic model. Further increase of the volume does not make much improvement on the performance. It is found that the critical volume is determined by the distance between the activated B cell receptor (BCR) and the target epitope of the antigen in the shape space. The observation is confirmed in both 2D and 3D simulations and explains partly the variability of the observed GC size.
Citation: Zishuo Yan, Hai Qi, Yueheng Lan. The role of geometric features in a germinal center[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 8304-8333. doi: 10.3934/mbe.2022387
[1] | Alexander Pigazzini, Cenap Özel, Saeid Jafari, Richard Pincak, Andrew DeBenedictis . A family of special case sequential warped-product manifolds. Journal of Geometric Mechanics, 2023, 15(1): 116-127. doi: 10.3934/jgm.2023006 |
[2] | Valentin Duruisseaux, Melvin Leok . Time-adaptive Lagrangian variational integrators for accelerated optimization. Journal of Geometric Mechanics, 2023, 15(1): 224-255. doi: 10.3934/jgm.2023010 |
[3] | Jacob R. Goodman . Local minimizers for variational obstacle avoidance on Riemannian manifolds. Journal of Geometric Mechanics, 2023, 15(1): 59-72. doi: 10.3934/jgm.2023003 |
[4] | Xavier Rivas, Daniel Torres . Lagrangian–Hamiltonian formalism for cocontact systems. Journal of Geometric Mechanics, 2023, 15(1): 1-26. doi: 10.3934/jgm.2023001 |
[5] | Maulik Bhatt, Amit K. Sanyal, Srikant Sukumar . Asymptotically stable optimal multi-rate rigid body attitude estimation based on lagrange-d'alembert principle. Journal of Geometric Mechanics, 2023, 15(1): 73-97. doi: 10.3934/jgm.2023004 |
[6] | Jordi Gaset, Arnau Mas . A variational derivation of the field equations of an action-dependent Einstein-Hilbert Lagrangian. Journal of Geometric Mechanics, 2023, 15(1): 357-374. doi: 10.3934/jgm.2023014 |
[7] | Álvaro Rodríguez Abella, Melvin Leok . Discrete Dirac reduction of implicit Lagrangian systems with abelian symmetry groups. Journal of Geometric Mechanics, 2023, 15(1): 319-356. doi: 10.3934/jgm.2023013 |
[8] | William Clark, Anthony Bloch . Existence of invariant volumes in nonholonomic systems subject to nonlinear constraints. Journal of Geometric Mechanics, 2023, 15(1): 256-286. doi: 10.3934/jgm.2023011 |
[9] | Robert I McLachlan, Christian Offen . Backward error analysis for conjugate symplectic methods. Journal of Geometric Mechanics, 2023, 15(1): 98-115. doi: 10.3934/jgm.2023005 |
[10] | Francesco Bonechi, Jian Qiu, Marco Tarlini . Generalised Kähler structure on CP2 and elliptic functions. Journal of Geometric Mechanics, 2023, 15(1): 188-223. doi: 10.3934/jgm.2023009 |
The germinal center (GC) is a self-organizing structure produced in the lymphoid follicle during the T-dependent immune response and is an important component of the humoral immune system. However, the impact of the special structure of GC on antibody production is not clear. According to the latest biological experiments, we establish a spatiotemporal stochastic model to simulate the whole self-organization process of the GC including the appearance of two specific zones: the dark zone (DZ) and the light zone (LZ), the development of which serves to maintain an effective competition among different cells and promote affinity maturation. A phase transition is discovered in this process, which determines the critical GC volume for a successful growth in both the stochastic and the deterministic model. Further increase of the volume does not make much improvement on the performance. It is found that the critical volume is determined by the distance between the activated B cell receptor (BCR) and the target epitope of the antigen in the shape space. The observation is confirmed in both 2D and 3D simulations and explains partly the variability of the observed GC size.
Numerical computations on the real (compact) Stiefel manifold viewed as the embedded submanifold Stn,k={X∈Rn×k∣X⊤X=Ik} of Rn×k arise in many branches of applied mathematics like numerical linear algebra and, moreover, in the engineering context, as well. Beside interpolation problems [1], we mention the following examples which are closely linked to optimization. For instance, the symmetric eigenvalue problem can be formulated as an optimization problem on the Stiefel manifold [2]. Moreover, one encounters optimization problems on Stn,k in connection with machine learning [3], multivariate data analysis [4] and computer vision [5,6]. These problems can be tackled by Riemannian optimization methods, see e.g. [2,7,8,9]. An essential part of their design is the choice of an appropriated Riemannian metric [7, Chap. 1]. The Euclidean metric, see e.g. [2], and the so-called canonical metric, see e.g. [10], are well-known, common choices for the Stiefel manifold. For these two metrics, explicit formulas for Riemannian gradients and Riemannian Hessians of smooth functions are known. Such formulas are desirable for the application of several Riemannian optimization methods.
However, there is no reason to restrict to one of these two metrics. In principle, the performance of a Riemannian optimization method could be improved by choosing an alternative metric adapted to the particular function under consideration. For example, the dependence of the speed of convergence of a Riemannian optimization method on the Riemannian metric is investigated in [11] on "Riemannian preconditioning". Moreover, a family of metrics on the generalized Stiefel manifold is introduced in [11] which differs from the family of metrics on Stn,k discussed here.
In this paper, we investigate a 2k-parameter family of pseudo-Riemannian metrics on Stn,k from an extrinsic point of view. This family does not coincide with the family of metrics considered in [12]. Nevertheless, it contains the Euclidean metric and the so-called canonical metric. In addition, the whole one-parameter family which has been recently introduced in [13] is included. An emphasize is put on deriving explicit formulas for gradients and Hessians suitable for applying them in connection with Riemannian optimization methods. In particular, specific results of the conference paper [14] are reproduced as special cases.
Next we give an overview of this text which is kept as self-contained as possible. We start with endowing Rn×k with a family of covariant 2-tensors depending on 2k parameters, which are invariant under the O(n)-left action on Rn×k by matrix multiplication from the left. For suitable choices of these parameters, the corresponding 2-tensor induces a pseudo-Riemannian metric on an open subset U of Rn×k such that Stn,k⊆U becomes a pseudo-Riemannian submanifold of U. Hence it makes sense to consider the normal bundle of Stn,k and the orthogonal projections onto the tangent spaces of Stn,k which can be described by explicit formulas.
In order to put this extrinsic approach into context to existing works on families of metrics on the Stiefel manifold we also consider Stn,k, equipped with our family, as a pseudo-Riemannian reductive homogeneous SO(n)-space. This point of view shows that, for the Riemannian case, the family of metrics which is discussed in this text, is partially contained in the family considered in the work [15] on Einstein metrics. Nevertheless, at least to our best knowledge, the family of metrics on Stn,k considered in this paper has never been treated before from an extrinsic point of view.
After this short detour, we come back to the extrinsic approach. We derive an explicit expression for the spray S:TStn,k→T(TStn,k) associated with the metric. To this end, we exploit a well-known fact, see e.g. [16, Sec. 7.5] for the Riemannian case. The metric spray of a pseudo-Riemannian manifold coincides with the Lagrangian vector field on its tangent bundle associated with the kinetic energy defined by means of the pseudo-Riemannian metric. This allows for computing the metric spray on the tangent bundle TU, where U⊆Rn×k is the open set of which Stn,k is a pseudo-Riemannian submanifold. Eventually, by using a result from [16, Sec. 8.4] on constrained Lagrangian systems, combined with the explicit expression for the orthogonal projections, the metric spray on TStn,k is computed. As a by-product, the geodesic equation is obtained as an explicit second order matrix valued ordinary differential equation (ODE).
Next we derive expressions for pseudo-Riemannian gradients and pseudo-Riemannian Hessians of smooth functions on Stn,k involving only "ordinary" matrix operations. Using the formula for the orthogonal projection onto tangent spaces, we derive an explicit formula for pseudo-Riemannian gradients. Moreover, since we have an expression for the geodesic equation as explicit second order matrix valued ODE, we obtain an explicit formula for pseudo-Riemannian Hessians, too. The expression for the pseudo-Riemannian gradient is valid for all metrics in the 2k-parameter family, while, for the pseudo-Riemannian Hessian, we restrict ourself to a subfamily depending on (k+1)-parameters in order to obtain formulas which are not too complicated. This (k+1)-parameter subfamily still contains the Euclidean metric and the canonical metric as well as the one-parameter family from [13].
Finally, a formula for the second fundamental form of Stn,k considered as pseudo-Riemannian submanifold of an open U⊆Rn×k is derived. We give a concrete expression for the second fundamental form with respect to the metrics in the (k+1)-parameter subfamily. By means of the Gauß formula, an explicit matrix-type formula for the Levi-Civita covariant derivative is obtained.
Throughout this text, except for Section 3.4, we view the real (compact) Stiefel manifold Stn,k as an embedded submanifold of the real (n×k)-matrices Rn×k which is given by
Stn,k={X∈Rn×k∣X⊤X=Ik}⊆Rn×k,1≤k≤n. | (2.1) |
We point out that Stn,k is a proper subset of Rn×k although the inclusion is denoted by Stn,k⊆Rn×k. In the sequel, we often denote proper inclusions by "⊆". The symbol "⊂" is only used if we want to emphasize that an inclusion is not an equality. The tangent bundle of Stn,k is denoted by TStn,k which is considered as a submanifold of TRn×k≅Rn×k×Rn×k. More generally, for a manifold M, we denote by TM and T∗M its tangent and cotangent bundle, respectively. In the sequel, if not indicated other-wise, we identify Rn×k with its dual space (Rn×k)∗ via the linear isomorphism
Rn×k→(Rn×k)∗,V↦tr(V⊤(⋅))=(W↦tr(V⊤W)) | (2.2) |
induced by the Frobenius scalar product. The following characterization of the tangent space of Stn,k at X∈Stn,k considered as subspace of Rn×k is used frequently
TXStn,k={V∈Rn×k∣X⊤V=−V⊤X}⊆Rn×k. | (2.3) |
We write
O(n)=Stn,n={R∈Rn×n∣R⊤R=RR⊤=In} | (2.4) |
for the orthogonal group and
SO(n)={R∈Rn×k∣R⊤R=RR⊤=In and det(R)=1} | (2.5) |
for the special orthogonal group. Their Lie algebras coincide and are denoted by
so(n)={ξ∈Rn×n∣ξ⊤=−ξ}. | (2.6) |
Moreover, we write
skew:Rn×n→so(n)⊆Rn×n, A↦12(A−A⊤) | (2.7) |
for the projection onto so(n) whose kernel is given by the set of symmetric matrices Rn×nsym. The O(n)-left action on Rn×k by matrix multiplication from the left is denoted by
Ψ:O(n)×Rn×k→Rn×k,(R,X)↦RX. | (2.8) |
By restricting the second argument of Ψ one obtains the O(n)-action
O(n)×Stn,k→Stn,k,(R,X)↦RX | (2.9) |
on Stn,k from the left which we denote by Ψ, as well. It is well-known that this O(n)-action on Stn,k is transitive. For fixed R∈O(n) we denote the diffeomorphisms induced by the actions from (2.8) and (2.9)
Rn×k∋X↦RX∈Rn×k and Stn,k∋X↦RX∈Stn,k | (2.10) |
both by ΨR.
If U⊆Rn×k is some subset, we write
ιU:U→Rn×k | (2.11) |
for the canonical inclusion of U into Rn×k. Moreover, the canonical inclusion of Stn,k into Rn×k is often denoted by
ι:Stn,k→Rn×k | (2.12) |
for short.
Next let pr:F→M be a vector bundle over a manifold M with dual bundle F∗. The smooth sections of F are denoted by Γ∞(F). Moreover, we denote by F⊗ℓ, Sℓ(F) and Λℓ(F) the ℓ-th tensor power, the ℓ-th symmetrized tensor power and the ℓ-th antisymmetrized tensor power of F, respectively. In addition, we write End(F)≅F∗⊗F for the endormorphism bundle of F. The vertical bundle of F is denoted by Ver(F)⊆TF.
Let f:M→N be a smooth map between manifolds and let α∈Γ∞((T∗N)⊗ℓ) be a covariant tensor field on N. The pullback of α by f is denoted by f∗α. If α is a differential form, i.e. α∈Γ∞(Λℓ(T∗M)), the exterior derivative of α is denoted by d α. The tangent map of f is denoted by Tf:TM→TN. If f is a map between (open subsets of) finite dimensional R-vector spaces, we write Df(X)V for the derivative of f at X evaluated at V. Sometimes, the tangent map of a smooth map f between arbitrary manifolds at the point X evaluated at a tangent vector V is denoted by Df(X)V, as well.
Next let M⊆Rn×k be a submanifold. A vector field V:M→TM⊆Rn×k×Rn×k is often implicitly identified with the map M→Rn×k defined by its second component which we denote by V, as well, i.e. the "foot point" X∈M is suppressed in our notation. If S∈Γ∞(T(TM)) is a vector field on TM, we view it as a map S:TM→T(TM)⊆(Rn×k)4 usually not suppressing the "foot point" (X,V)∈TM.
For a smooth function F:Rn×k→R we write ∇F(X) for the gradient of F at X∈Rn×k with respect to the Frobenius scalar product, i.e. the unique matrix ∇F(X)∈Rn×k with
d F|X(V)=tr((∇F(X))⊤V) | (2.13) |
for all V∈Rn×k. Furthermore Eij∈Rn×k denotes the matrix whose entries fulfill (Eij)fℓ=δifδjℓ for all f∈{1,…,n} and ℓ∈{1,…,k} with δif and δjℓ being Kronecker deltas.
Finally, following the convention in [17, Chap. 2], a scalar product is a non-degenerated symmetric bilinear form. Moreover, an inner product is a positive definite symmetric bilinear form.
We start with investigating a 2k-parameter family of symmetric covariant 2- tensors on Rn×k. For certain choices of these parameters, it defines a pseudo-Riemannian metric on an open subset U⊆Rn×k such that Stn,k⊆U becomes a pseudo-Riemannian submanifold of U.
We introduce a 2k-parameter family of symmetric covariant 2-tensors on Rn×k.
Lemma 3.1. Let D=diag(D11,…,Dkk)∈Rk×k and E=diag(E11,…,Ekk)∈Rk×k be both diagonal. Then the point-wise definition
⟨V,W⟩D,EX=tr(V⊤WD)+tr(V⊤XX⊤WE) | (3.1) |
with X∈Rn×k and V,W∈TXRn×k≅Rn×k yields a smooth covariant 2-tensor ⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Rn×k)) which is invariant under the O(n)-action Ψ defined in (2.8).
Proof. Obviously, (3.1) defines a smooth covariant 2-tensor. Let R∈O(n). Then Ψ∗R⟨⋅,⋅⟩D,E(⋅)=⟨⋅,⋅⟩D,E(⋅) holds due to
⟨DΨR(X)V,DΨR(X)W⟩D,EΨR(X)=⟨RV,RW⟩D,ERX=⟨V,W⟩D,EX |
for X∈Rn×k and V,W∈TXRn×k≅Rn×k showing the Ψ-invariance of ⟨⋅,⋅⟩D,E(⋅).
Remark 3.2. Observe that the diagonal entry Eii∈R of the diagonal matrix E=diag(E11,…,Ekk)∈Rk×k shall not be confused with the matrix Eii∈Rn×k introduced at the end of Section 2. In the sequel, it should be clear by the context how the symbol Eii has to be understood.
Remark 3.3. Let E=0. Then ⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Rn×k)) becomes independent of X∈Rn×k. Hence we may identify ⟨⋅,⋅⟩D,0(⋅) with the symmetric bilinear form
⟨⋅,⋅⟩D:Rn×k×Rn×k→R,(V,W)↦⟨V,W⟩D=tr(V⊤WD). | (3.2) |
If we want to emphasize that ⟨⋅,⋅⟩D is a symmetric bilinear form on Rn×k, we denote it by ⟨⋅,⋅⟩DRn×k.
Remark 3.4. The pull-back ι∗⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Stn,k)) of ⟨⋅,⋅⟩D,E(⋅) with ι:Stn,k→Rn×k simplifies for the following values of k:
1. For k=n one has Stn,n=O(n). Thus for X∈O(n) and V,W∈TXRn×k≅Rn×k one obtains
⟨V,W⟩D,EX=tr(V⊤W(D+E))=⟨V,W⟩D+E | (3.3) |
due to X⊤X=XX⊤=In, i.e. ι∗⟨⋅,⋅⟩D,E(⋅)=⟨⋅,⋅⟩D+E holds.
2. For k=1 one has Stn,1=Sn−1⊆Rn. Using X⊤V=0 for all X∈Sn−1 and V∈TXSn−1 yields
⟨V,W⟩D,EX=⟨V,W⟩D, | (3.4) |
i.e. ι∗⟨⋅,⋅⟩D,E(⋅)=⟨⋅,⋅⟩D holds.
Remark 3.5. The pull-back ι∗⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Stn,k)) yields well-known metrics on Stn,k for certain choices of D and E:
1. For D=Ik and E=0 one obtains the Euclidean metric, see e.g. [10], [18, Sec. 23.5] or [2]
2. Setting D=Ik and E=−12Ik yields the canonical metric, see e.g. [10] or [18, Sec. 23.5]
3. For D=2Ik and E=νIk with ν=−2α+1α+1 and α∈R∖{−1} the metric ⟨⋅,⋅⟩D,E(⋅) reproduces a one-parameter family which has been introduced in [13], see in particular [13, Eq. (55)].
In order to investigate ⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Rn×k)) and its pull-back to Stn,k we first list some properties of ⟨⋅,⋅⟩D.
Lemma 3.6. Let D=diag(D11,…,Dkk)∈Rk×k be diagonal. The following assertions are fulfilled:
1. The symmetric bilinear form ⟨⋅,⋅⟩D:Rn×k×Rn×k→R is a scalar product iff D is invertible.
2. The bilinear form ⟨⋅,⋅⟩D:Rn×k×Rn×k→R is an inner product iff Dii>0 holds for all i∈{1,…,k}.
3. Assume that D is invertible. Then ⟨⋅,⋅⟩D:Rk×k×Rk×k→R induces a scalar product on so(k) iff
Dii+Djj≠0 | (3.5) |
holds for all i,j∈{1,…,k}. This condition is always satisfied for k=1.
4. Let k≥2. Then ⟨⋅,⋅⟩D|so(k)×so(k):so(k)×so(k)→R defines an inner product on so(n) iff
Dii+Djj>0 | (3.6) |
holds for all 1≤i<j≤k. For k=1, this bilinear form defines always an inner product.
Proof. Let Eij∈Rn×k denote the matrix whose entries fulfill (Eij)fℓ=δifδjℓ. Clearly, the set
B={Eij∣i∈{1,…,n}andj∈{1,…,k}} |
defines a basis of Rn×k. Thus it suffices to show that for all Eij∈B the associated linear forms
Rn×k→R,V↦⟨Eij,V⟩D | (3.7) |
are non-zero iff D is invertible. We have
⟨Eij,V⟩D=tr(E⊤ijVD)=VijDjj | (3.8) |
with V=(Vij)∈Rn×k. Equation (3.8) implies that D is invertible iff the linear forms in (3.7) are non-vanishing for all i∈{1,…,n} and j∈{1,…,k} showing Claim 1.
Next we prove Claim 2. Let 0≠V=(Vij)∈Rn×k. Then ⟨V,V⟩D>0 holds iff Dii>0 for i∈{1,…,k} due to
⟨V,V⟩D=tr(V⊤VD)=k∑i=1n∑j=1V2jiDii. |
We now prove Claim 3. For k=1 the assertion is trivial due to dim(so(1))=0. For k≥2 the set {Eij−Eji∣1≤i<j≤k} is a basis of so(k). Thus ⟨⋅,⋅⟩D induces a scalar product on so(k) iff the linear forms
so(k)→R,A↦⟨Eij−Eji,A⟩D |
are non-vanishing for all 1≤i<j≤k. Writing A=(Aij)=(−Aji)∈so(k) we compute
⟨Eij−Eji,A⟩D=⟨Eij,A⟩D−⟨Eji,A⟩D=AijDjj−AjiDii=Aij(Djj+Dii) |
showing that ⟨⋅,⋅⟩D defines a scalar product on so(k) iff
Dii+Djj≠0,i,j∈{1,…,k} |
holds. Here we exploited that Dii+Dii≠0 is automatically fulfilled because D is invertible.
It remains to prove Claim 4. The case k=1 is trivial due to so(1)={0}. Thus assume k≥2. Let A=(Aij)∈so(k). Exploiting Aij=−Aji we calculate
⟨A,A⟩D=12tr(A⊤AD)+12tr(A⊤AD)=12k∑i,j=1A2ij(Dii+Djj). | (3.9) |
Using Aii=0 we conclude that ⟨A,A⟩D>0 holds for all 0≠A∈so(k) iff Dii+Djj>0 is fulfilled for all 1≤i<j≤k.
The next lemma shows that ⟨⋅,⋅⟩D,E(⋅) induces a pseudo-Riemannian metric on the Stiefel manifold for certain choices of D and E.
Lemma 3.7. Let D=diag(D11.…,Dkk)∈Rk×k and E=diag(E11,…,Ekk)∈Rk×k be both diagonal and let X∈Stn,k. Then the following assertions are fulfilled:
1. Let 1≤k<n. The bilinear form
⟨⋅,⋅⟩D,EX:TXRn×k×TXRn×k≅Rn×k×Rn×k→R | (3.10) |
is a scalar product iff D and D+E are both invertible. For k=n the bilinear form in (3.10) defines a scalar product iff D+E is invertible.
2. Assume that (3.10) defines a scalar product. Then the pull-back ι∗⟨⋅,⋅⟩D,E(⋅) to Stn,k defines a pseudo-Riemannian metric on Stn,k, i.e.
⟨⋅,⋅⟩D,EX:TXStn,k×TXStn,k→R | (3.11) |
is a scalar product on TXStn,k, iff the condition
Dii+Eii+Djj+Ejj≠0,i,j∈{1,…,k} | (3.12) |
holds.
3. Assume that (3.10) defines a scalar product. For 2≤k≤n−1 the symmetric covariant 2-tensor ι∗⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Stn,k)) is a Riemannian metric on Stn,k, i.e.
⟨⋅,⋅⟩D,EX:TXStn,k×TXStn,k→R | (3.13) |
is an inner product on TXStn,k, iff the conditions Dii>0 for all i∈{1,…,k} and
Dii+Eii+Djj+Ejj>0,1≤i<j≤k | (3.14) |
are fulfilled. For k=1 one obtains a Riemannian metric iff D11>0 holds. For k=n the tensor ι∗⟨⋅,⋅⟩D,E(⋅) defines a Riemannian metric iff Dii+Eii+Djj+Ejj>0 holds for all 1≤i<j≤n.
Proof. Since the O(n)-left action Ψ on Rn×k defined in (2.8) is isometric with respect to ⟨⋅,⋅⟩D,E(⋅) by Lemma 3.1 and, moreover, Ψ restricts to a transitive action on Stn,k it suffices to prove the claims for a single point X0∈Stn,k.
We first consider the case k=n. Then ⟨⋅,⋅⟩D,EX=⟨⋅,⋅⟩D+E holds for all X∈Stn,n=O(n) by Remark 3.4, Claim 1. Hence ⟨⋅,⋅⟩D,EX is non-degenerated iff D+E is invertible according to Lemma 3.6, Claim 1. Next we consider the case 1≤k<n. We choose X0=In,k, where
In,k=[Ik0]∈Stn,k, |
and write
V=[V1V2]∈Rn×kandW=[W1W2]∈Rn×k |
with V1,W1∈Rk×k and V2,W2∈R(n−k)×k. By this notation and identifying TXRn×k≅Rn×k we calculate
⟨V,W⟩D,EIn,k=tr([V1V2]⊤[W1W2]D)+tr([V1V2]⊤[Ik000][W1W2]E)=tr(V⊤1W1(D+E))+tr(V⊤2W2D). | (3.15) |
By (3.15) and Lemma 3.6, Claim 1, the bilinear form ⟨⋅,⋅⟩D,EIn,k defines a scalar product on TXRn×k iff D and D+E are both invertible.
Next we assume that D and D+E are choosen such that ⟨⋅,⋅⟩D,EX defines a scalar product on TXRn×k for each X∈Stn,k. We now prove Claim 2 for 1≤k≤n−1. To this end, it is sufficient to show that
⟨⋅,⋅⟩D,EIn,k:TIn,kStn,k×TIn,kStn,k→R | (3.16) |
is a scalar product iff (3.12) holds. The tangent space TIn,kStn,k is given by
TIn,kStn,k={[V1V2]|V1∈so(k) and V2∈R(n−k)×k}⊆TIn,kRn×k≅Rn×k, | (3.17) |
see e.g. [10, Sec. 2.2.1]. Thus we may write V,W∈TXStn,k as
V=[V1V2]∈Rn×k andW=[W1W2]∈Rn×k |
with V1,W1∈so(k) and V2,W2∈R(n−k)×k. We now obtain
ι∗⟨V,W⟩D,EIn,k=tr(V⊤1W1(D+E))+tr(V⊤2W2D) | (3.18) |
analogously to (3.15). Clearly, Equation (3.18) defines a scalar product on TIn,kStn,k iff
so(k)×so(k)→R,(V1,W1)↦tr(V⊤1W1(D+E)) |
yields a scalar product on so(k) and
R(n−k)×k×R(n−k)×k→R,(V2,W2)↦tr(V⊤2W2D) |
defines a scalar product on R(n−k)×k. By applying Lemma 3.6, Claim 3 we obtain the desired result. Next we consider the case k=n. By exploiting the O(n)-invariance of ⟨⋅,⋅⟩D,E(⋅) and TInStn,n=so(n) as well as ⟨⋅,⋅⟩D,E(⋅)=⟨⋅,⋅⟩D+E for k=n, Claim 2 follows by Lemma 3.6, Claim 3.
It remains to prove Claim 3. We first consider the case 2≤k≤n−1. Since the bilinear form on TIn,kStn,k induced by ⟨⋅,⋅⟩D,E(⋅) is given by (3.18), the desired result is a consequence of Lemma 3.6, Claim 2 and Lemma 3.6, Claim 4. For k=1, we observe that ι∗⟨⋅,⋅⟩D,E(⋅) is independent of E due to X⊤V=0 for all X∈Stn,1 and V∈TXStn,1, see also Remark 3.4, Claim 2. Hence (3.18) implies that ⟨⋅,⋅⟩D,E(⋅) is positive definite iff
R(n−k)×k×R(n−k)×k→R,(V2,W2)↦tr(V⊤2W2D) |
is positive definite. The desired result follows by Lemma 3.6, Claim 2. For k=n, the assertion holds due to ⟨⋅,⋅⟩D,EX=⟨⋅,⋅⟩D+E for all X∈Stn,n=O(n) by Lemma 3.6, Claim 3.
The next lemma generalizing [14, Lem. 2] shows that there is an open neigbourhood U⊆Rn×k of Stn,k such that Stn,k⊆(U,ι∗U⟨⋅,⋅⟩D,E(⋅)) is a pseudo-Riemannian submanifold. This fact is crucial for the following discussion.
Lemma 3.8. Let D,E∈Rk×k be both diagonal such that for each X∈Stn,k
⟨⋅,⋅⟩D,EX:TXRn×k×TXRn×k→R | (3.19) |
defines a scalar product on TXRn×k≅Rn×k which induces a scalar product on TXStn,k⊆TXRn×k. Then there exists an open neighbourhood U⊆Rn×k of Stn,k such that ι∗U⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗U)) is a pseudo-Riemannian metric on U and (Stn,k,ι∗⟨⋅,⋅⟩D,E(⋅)) is a pseudo-Riemannian submanifold of (U,ι∗U⟨⋅,⋅⟩D,E(⋅)).
Proof. We identify ⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Rn×k)) with the continuous map
φ:Rn×k→S2((Rn×k)∗),X↦⟨⋅,⋅⟩D,EX=((V,W)↦⟨V,W⟩D,EX). |
The bilinear form φ(X)=⟨⋅,⋅⟩D,EX∈S2((Rn×k)∗) is a scalar product for all X∈Stn,k by assumption. Hence, by the continuity of φ, there is an on open neighbourhood UX of X in Rn×k such that φ(˜X)∈S2((Rn×k)∗) is non-degnerated for all ˜X∈UX. We set
U=⋃X∈Stn,kUX. |
Then U⊆Rn×k is open as a union of open sets and fulfills Stn,k⊆U by definition. Moreover, φ(˜X) is non-dengenerated for all ˜X∈U by construction. Hence ι∗U⟨⋅,⋅⟩D,E(⋅) defines a pseudo-Riemannian metric on U such that Stn,k⊆(U,ι∗U⟨⋅,⋅⟩D,E(⋅)) is a pseudo-Riemannian submanifold.
Obviously, the inclusion Stn,k⊆U from Lemma 3.8 is always proper since Stn,k is closed in Rn×k while U is open in Rn×k.
Notation 3.9. From now on, unless indicated otherwise, pull-backs of ⟨⋅,⋅⟩D,E(⋅) to submanifolds of Rn×k are suppressed in the notation.
In the case k=n, the 2k-parameter family of covariant 2-tensors ⟨⋅,⋅⟩D,E(⋅) is actually a k-parameter family by Remark 3.4, Claim 1. Indeed, ⟨⋅,⋅⟩D,E(⋅) depends only on D+E. Hence one may ask if there exits always such an over-parameterization.
Lemma 3.10. Let D=diag(D11,…,Dkk)∈Rk×k be some diagonal matrix. Then the following assertions are fulfilled:
1. The bilinear form ⟨⋅,⋅⟩D:Rn×k×Rn×k→R vanishes identically iff D=0 holds.
2. The restriction ⟨⋅,⋅⟩D|so(k)×so(k):so(k)×so(k)→R of ⟨⋅,⋅⟩D:Rk×k×Rk×k→R fulfills the following assertions:
(a) For k=1 one has ⟨⋅,⋅⟩D|so(k)×so(k)=0 for all D∈R1×1≅R.
(b) For k=2 one has ⟨⋅,⋅⟩D|so(k)×so(k)=0 iff D11+D22=0 holds.
(c) For k≥3 one has ⟨⋅,⋅⟩D|so(k)×so(k)=0 iff D=0 holds.
Proof. Let Eij∈Rn×k the matrix whose entries fulfill (Eij)fℓ=δifδjℓ. Then
⟨Eij,V⟩D=VijDjj,i∈{1,…,n}, j∈{1,…,k}, | (3.20) |
where V=(Vij)∈Rn×k. Since ⟨⋅,⋅⟩D=0 holds iff the linear forms ⟨Eij,⋅⟩D:Rn×k→R vanishes for all 1≤i≤n and 1≤j≤k, the first claim follows by (3.20).
Next, we consider ⟨⋅,⋅⟩D|so(k)×so(k):so(k)×so(k)→R. Clearly, it vanishes for k=1 for all D∈R1×1 due to so(1)={0}.
We now assume k≥2. Then ⟨⋅,⋅⟩D|so(k)×so(k):so(k)×so(k)→R vanishes iff the linear forms
⟨Eij−Eji,⋅⟩D:so(k)→R | (3.21) |
vanish for all 1≤i<j≤k. Writing A=(Aij)=(−Aji)∈so(k) we obtain
⟨Eij−Eji,A⟩D=AijDii−AjiDjj=Aij(Dii+Djj). |
Thus the linear forms (3.21) are zero iff Dii+Djj=0 holds for all 1≤i<j≤k. For k=2 this is equivalent to D11+D22=0. It remains to consider the case k≥3. The conditions Dii+Djj=0 for all 1≤i<j≤k include the conditions
D11+Dii=0⟺D11=−Dii for all2≤i≤k | (3.22) |
and
D(k−1)(k−1)+Dkk=0. | (3.23) |
In particular D11=−Dk−1 and D11=−Dkk holds. Plugging these identities into (3.23) yields
−D11−D11=−2D11=0⟺D11=0. |
Hence (3.22) implies Dii=0 for all 2≤i≤k. Therefore ⟨⋅,⋅⟩D|so(k)×so(k)=0 iff D=0 as desired.
The next lemma justifies calling ⟨⋅,⋅⟩D,E(⋅) a 2k-parameter family provided that 3≤k≤n−1 holds.
Lemma 3.11. Let
Rk×kdiag={diag(D11,…,Dkk)∣D11,…,Dkk∈R}⊆Rk×k |
denote the k-dimensional real vector space of (k×k)-diagonal matrices. Moreover, define
ψ:Rk×kdiag×Rk×kdiag→Γ∞(S2(T∗Stn,k)),(D,E)↦⟨⋅,⋅⟩D,E(⋅). | (3.24) |
Then ψ is a linear map which fulfills the following assertions depending on k and n:
1. For k=1=n, one has dim(im(ψ))=0 and ker(ψ)=R×R.
2. For k=1 and n>1 one has dim(im(ψ))=1 and ker(ψ)={(0,E)∣E∈R}⊆R×R.
3. For k=2=n one has dim(im(ψ))=1 and
ker(ψ)={((D11,D22),(E11,−D11−D22−E11))∣D11,D22,E11∈R}⊆R2×2diag×R2×2diag. |
4. For 2<k<n one has dim(im(ψ))=2k and ker(ψ)={0}⊆Rk×kdiag×Rk×kdiag.
5. For k=n>2 one has dim(im(ψ))=k and ker(ψ)={(D,−D)∣D∈Rk×kdiag}⊆Rk×kdiag×Rk×kdiag.
Proof. Clearly, the map ψ is linear. Next we define the linear map
˜ψ:Rk×kdiag×Rk×kdiag→S2(T∗In,kStn,k),(D,E)↦⟨⋅,⋅⟩D,EIn,k. |
Obviously, for each (D,E)∈Rk×kdiag×Rk×kdiag one has (ψ(D,E))(In,k)=⟨⋅,⋅⟩D,EIn,k=˜ψ(D,E). Since ⟨⋅,⋅⟩D,E(⋅) is invariant under the transitive O(n)-action Ψ on Stn,k according to Lemma 3.1, this yields
(D,E)∈ker(ψ)⟺(D,E)∈ker(˜ψ). | (3.25) |
Moreover, the equivalence
(D,E)∈ker(˜ψ)⟺(⟨V,W⟩D,EIn,k=0 for all V,W∈TIn,kStn,k) | (3.26) |
is clearly fulfilled. We again write
V=[V1V2]∈TIn,kStn,kandW=[W1W2]∈TIn,kStn,k |
with V1,W1∈so(k) and V2,W2∈R(n−k)×k. By this notation and the description of ker(˜ψ) from (3.26), we study each case separately:
1. Obviously, for k=1=n the claim ker(˜ψ)=R×R is correct due to TI1St1,1={0} implying dim(S2(T∗I1St1,1))=0.
2. For k=1 and n>1 we have
(˜ψ(D,E))(V,W)=tr(V⊤1W1(D+E))+tr(V⊤2W2D)=⟨V1,W1⟩D+E|so(1)×so(1)+⟨V2,W2⟩DR(n−1)×1. | (3.27) |
Clearly, Equation (3.27) vanishes iff D=0 holds independent of the value of D+E by Lemma 3.10. Hence the kernel of ψ is given by ker(˜ψ)={(0,E)∣E∈R}
3. For k=2=n we have
(˜ψ(D,E))(V,W)=⟨V,W⟩D+E|so(2)×so(2). |
Lemma 3.10 yields ˜ψ(D,E)=0 iff (D+E)11+(D+E)22=0 is fulfilled. Therefore we obtain
ker(˜ψ)={((D11,D22),(E11,−D11−D22−E11))∣D11,D22,E11∈R}. |
4. We now consider the case 3≤k≤n−1. Then one has
(˜ψ(D,E))(V,W)=tr(V⊤1W1(D+E))+tr(V⊤2W2D)=⟨V1,W1⟩D+E|so(k)×so(k)+⟨V2,W2⟩DR(n−k)×k. |
By Lemma 3.10, we have ˜ψ(D,E)=0 iff D=0 and D+E=0 holds. Therefore the kernel of ψ is given by ker(˜ψ)={(D,E)∈Rk×kdiag×Rk×kdiag∣D=0=E}={0}.
5. It remains to consider the case k=n≥3. We obtain
(˜ψ(D,E))(V,W)=tr(V⊤W(D+E))=⟨V,W⟩D+E|so(k)×so(k). |
for all V,W∈TInStn,n=so(n). Thus ˜ψ(D,E)=0 holds iff D+E=0 is fulfilled by Lemma 3.10. Hence the kernel of ˜ψ is given by ker(˜ψ)={(D,−D)∣D∈Rk×kdiag}.
The equality ker(ψ)=ker(˜ψ) is satisfied according to (3.25). Moreover, we have
dim(im(ψ))=dim(Rk×kdiag×Rk×kdiag)−dim(ker(ψ))=2k−dim(ker(˜ψ)) |
as desired.
Remark 3.12. Lemma 3.7, Claim 3 shows that the set of all parameters
{(D,E)∈Rk×kdiag×Rk×kdiag∣⟨⋅,⋅⟩D,E(⋅) defines a pseudo-Riemannian metric on Stn,k} |
contains the non-empty subset {(D,E)∈Rk×kdiag×Rk×kdiag∣Dii>0 and Eii>0 for all i∈{1,…,k}} which is open in Rk×kdiag×Rk×kdiag. Moreover, the linear map ψ:Rk×kdiag×Rk×kdiag→Γ∞(S2(T∗Stn,k)) is injective for 2<k<n according to Lemma 3.11. This point of view justifies calling ⟨⋅,⋅⟩D,E(⋅) a 2k-parameter family at least for 2<k<n. For other choices of k and n one has rather a (dim(im(ψ)))-parameter family of metrics. However, ignoring this over parameterization, we call them 2k-parameter family, nevertheless.
The Stiefel manifold Stn,k endowed with ⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Stn,k)) can be viewed as a pseudo-Riemannian submanifold of (U,⟨⋅,⋅⟩D,E(⋅)) with some suitable open U⊆Rn×k by Lemma 3.8. Consequently, for any given point X∈Stn,k, we may consider the orthogonal projection
PX:TXRn×k→TXStn,k⊆Rn×k, |
where TXRn×k≅Rn×k is endowed with the scalar product ⟨⋅,⋅⟩D,EX. Moreover, it makes sense to consider the normal space NXStn,k=(TXStn,k)⊥⊆Rn×k with respect to ⟨⋅,⋅⟩D,EX:TXRn×k×TXRn×k→R.
Notation 3.13. From now on, unless indicated otherwise, we always assume that D,E∈Rk×k are both diagonal matrices such that ⟨⋅,⋅⟩D,EX defines a scalar product on Rn×k for each X∈Stn,k and ⟨⋅,⋅⟩D,E(⋅) induces a pseudo-Riemannian metric on Stn,k. In particular, we may assume that D and D+E are both invertible. In view of Lemma 3.7, Claim 1 this assumption is of no restriction. For the case k=n, we replace D by D+E and E by 0, if necessary.
Lemma 3.14. Let D=diag(D11,…,Dkk)∈Rk×k be invertible such that Dii+Djj≠0 holds for all i,j∈{1,…,k}. Then the following assertions are fulfilled:
1. The orthogonal complement of so(k) in Rk×k with respect to the scalar product ⟨⋅,⋅⟩D is given by
so(k)⊥D={A∈Rk×k∣AD=(AD)⊤}={ΛD−1∣Λ∈Rk×ksym}⊆Rk×k. | (3.28) |
Moreover, so(k)⊕so(k)⊥D=Rk×k holds.
2. The orthogonal projection
πD:Rk×k→so(k)⊆Rk×k,A↦πD(A) | (3.29) |
onto so(k) with respect ⟨⋅,⋅⟩D is entry-wise given by
πD(A)ij=1Dii+Djj(AD−DA⊤)ij=1Dii+Djj(AijDjj−AjiDii),i,j∈{1,…,k}. | (3.30) |
Proof. We first determine so(k)⊥D. To this end, we calculate
so(k)⊥D={A∈Rk×k∣⟨A,B⟩D=0 for all B∈so(n)}={A∈Rk×k∣tr((AD)⊤B)=0 for all B∈so(n)}={A∈Rk×k∣AD=(AD)⊤∈Rk×ksym is symmetric }. |
Let Λ∈Rk×ksym. Then (ΛD−1)D=Λ=Λ⊤=D(ΛD−1)⊤ showing {ΛD−1∣Λ∈Rk×ksym}⊆so(k)⊥D. The equality so(k)⊥D={ΛD−1∣Λ∈Rk×ksym} follows by counting dimensions. By Lemma 3.6, Claim 3 the assumptions on D ensure that ⟨⋅,⋅⟩D induces a scalar product on so(k). Hence so(k)⊕so(k)⊥D=Rk×k holds, see e.g. [17, Chap. 2, Lem. 23].
It remains to prove Claim 2. To this end, we show im(πD)=so(k) and ker(πD)=so(k)⊥D as well as πD|so(k)=idso(k). We first prove im(πD)⊆so(n). Let A=(Aij)∈Rk×k. We compute
((πD(A))⊤)ij=πD(A)ji=1Djj+Dii(AjiDii−AijDjj)=−1Dii+Djj(AijDjj−AjiDii)=−πD(A)ij. |
for i,j∈{1,…,k} showing im(πD)⊆so(k). Moreover, for A∈so(k), i.e. Aij=−Aji, we have
πD(A)ij=1Dii+Djj(AijDjj−(−Aij)Dii)=1Dii+DjjAij(Djj+Dii)=Aij. |
This yields πD(A)=A for all A∈so(k), i.e. πD|so(k)=idso(k). Moreover, the inclusion im(πD)⊆so(k) is in fact an equality. Next let A∈so(k)⊥D. Then AD=DA⊤ holds according to Claim 1 implying
πD(A)ij=1Dii+Djj(AD−DA⊤)ij=0. |
Thus πD|so⊥D=0 follows.
The formula for πD can be rewritten in terms of the so-called Hadamard or Schur product. For matrices A,B∈Rk×k, it is entry-wise defined by
(A⊚B)ij=AijBij,i,j∈{1,…,k}. | (3.31) |
Remark 3.15. Let μ∈Rk×k be defined entry-wise by
μij=1Dii+Djj,i,j∈{1,…,k}. | (3.32) |
Then the projection πD:Rn×k→so(k) from Lemma 3.14 can be rewritten as
πD(A)=μ⊚(AD−DA⊤),A∈Rk×k. | (3.33) |
Corollary 3.16. Let 0≠β∈R and define D=βIk. Then, for each A∈Rk×k the map πD from Lemma 3.14 simplifies to
πβIk(A)=12(A−A⊤)=skew(A). | (3.34) |
Proof. The desired result follows by a straightforward calculation exploiting Dii=β≠0 for all i∈{1,…,k}.
We determine the normal spaces of Stn,k with respect ⟨⋅,⋅⟩D,E(⋅) generalizing [19, Chap. 1, Lem. 3.15] and [14, Lem. 3].
Lemma 3.17. The normal space NXStn,k=(TXStn,k)⊥⊆TXRn×k≅Rn×k at X∈Stn,k with respect to ⟨⋅,⋅⟩D,EX is given by
NXStn,k={XΛ(D+E)−1∈Rn×k∣Λ=Λ⊤∈Rk×ksym}. | (3.35) |
Proof. Clearly, the set {XΛ(D+E)−1∈Rn×k∣Λ=Λ⊤∈Rk×ksym} is a linear subspace of Rn×k of dimension (k2+k)/2 being the image of the injective linear map
Rk×ksym→Rn×k,Λ↦XΛ(D+E)−1. |
Moreover, every matrix V=XΛ(D+E)−1 with Λ∈Rk×ksym is orthogonal to the tangent space TXStn,k. Indeed, we have for W∈TXStn,k
⟨V,W⟩D,EX=tr((XΛ(D+E)−1)⊤WD)+tr((XΛ(D+E)−1)⊤XX⊤WE)=tr(Λ⊤(X⊤W))=0 |
due to Λ=Λ⊤ and X⊤W=−W⊤X. Therefore {XΛ(D+E)−1∈Rn×k∣Λ=Λ⊤∈Rk×ksym}⊆NXStn,k follows. By counting dimensions, this inclusion is in fact an equality.
Theorem 3.18. Let X∈Stn,k. The orthogonal projection of TXRn×k≅Rn×k onto TXStn,k⊆Rn×k with respect to ⟨⋅,⋅⟩D,EX is given by
PX:Rn×k→TXStn,k⊆Rn×k,V↦PX(V)=V−XX⊤V+XπD+E(X⊤V). | (3.36) |
Proof. We first show im(PX)=TXStn,k. Let X∈Stn,k and V∈Rn×k. One calculates
X⊤(PX(V))=X⊤(V−XX⊤V+XπD+E(X⊤V))=X⊤V−X⊤V+πD+E(X⊤V)=πD+E(X⊤V). |
Moreover, using im(πD+E)=so(n), we obtain
(PX(V))⊤X=(V−XX⊤V+XπD+E(X⊤V))⊤X=V⊤X−V⊤X+(πD+E(X⊤V))⊤=−πD+E(X⊤V). |
Hence X⊤(PX(V))=πD+E(X⊤V)=−(PX(V))⊤X follows, i.e. im(PX)⊆TXStn,k as desired.
We now assume V∈TXStn,k. By using X⊤V=−V⊤X and πD|so(n)=idso(n), we calculate
PX(V)=V−XX⊤V+XπD(X⊤V)=V−XX⊤V+X(X⊤V)=V |
proving PX|TXStn,k=idTXStn,k and implying that im(PX)⊆TXStn,k is indeed an equality.
It remains to show ker(PX)=(TXStn,k)⊥. Let V∈NXStn,k. We may write V=XΛ(D+E)−1 with some suitable symmetric matrix Λ∈Rk×ksym by exploiting Lemma 3.17. Consequently, we have
PX(V)=PX(XΛ(D+E)−1)=XΛ(D+E)−1−XX⊤(XΛ(D+E)−1)+XπD+E(X⊤XΛ(D+E)−1)=XπD+E(Λ(D+E)−1)=0, |
by using Lemma 3.14, Claim 1 which shows πD+E(Λ(D+E)−1)=0.
Theorem 3.18 reproduces several results known in the literature.
Remark 3.19. Let X∈Stn,k. We obtain the following special cases for PX:Rn×k→TXStn,k by using Corollary 3.16:
1. For D=Ik and E=0 we get the formula
PX(V)=V−XX⊤V+Xskew(X⊤V)=(In−12XX⊤)V−12XV⊤X | (3.37) |
that can be found for example in [2, Ex. 3.6.2] or [10, Eq. (2.4)]
2. More generally, for D=2Ik and E=νIn with ν∈R∖{−2} one obtains
PX(V)=V−XX⊤V+Xskew(X⊤V)=V−12XX⊤V−12XV⊤X | (3.38) |
reproducing the orthogonal projection from [14, Prop. 2].
Next we determine an orthonormal basis of (TIn,kStn,k,⟨⋅,⋅⟩D,E(⋅)) which allows for computing the signature of ⟨⋅,⋅⟩D,E(⋅), as well.
Remark 3.20. We define the subsets B1,B2⊆Rn×k such that B=B1∪B2 is an orthonormal basis of (TIn,kStn,k,⟨⋅,⋅⟩D,EIn,k). To this end, let Eij∈Rn×k denote the matrix whose entries fulfill (Eij)fℓ=δifδjℓ as usual. We set B1=∅ for k=1 and define
B1={1√|sij|(Eij−Eji)|sij=Dii+Eii+Djj+Ejj, 1≤i<j≤k},2≤k≤n. | (3.39) |
Moreover, we set
B2={1√|Djj|Eij|k+1≤i≤n,1≤j≤k},1≤k<n. | (3.40) |
and B2=∅ for k=n. A straightforward calculation shows ⟨V,W⟩D,EIn,k=0 for all V,W∈B with V≠W. Moreover, for V=W∈B one obtains
⟨1√|sij|(Eij−Eji),1√|sij|(Eij−Eji)⟩D,EIn,k=sij|sij|=±1,1≤i<j≤k | (3.41) |
and
⟨1√|Djj|Eij,1√|Djj|Eij⟩D,EIn,k=Djj|Djj|=±1,k+1≤i≤n, 1≤j≤k. | (3.42) |
Hence B is in fact an orthonormal basis. Thus we may compute the signature of ⟨⋅,⋅⟩D,E(⋅). The number of negative signs associated with ⟨⋅,⋅⟩D,E(⋅), named index in [17, Chap. 2, Def. 18], is given by
s=♯{(i,j)∣1≤i<j≤k and sij<0}+(n−k)⋅♯{j∣1≤j≤k and Djj<0}, | (3.43) |
where ♯S denotes the number of elements in the finite set S.
Before we continue with the extrinsic approach, we briefly discuss the metric ⟨⋅,⋅⟩D,E(⋅) on Stn,k viewed as a pseudo-Riemannian reductive homogeneous SO(n)-space. This point of view allows for relating ⟨⋅,⋅⟩D,E(⋅) to the metrics investigated in [15]. For general properties of reductive homogeneous space we refer to [17, Chapter 11] as well as [18, Section 23.4].
Throughout this subsection, we assume 1≤k≤n−1 and n≥3. Then the Killing form on SO(n) given by
⟨ξ,η⟩=(n−2)tr(ξη),ξ,η∈so(n) |
is negative definite, see e.g. [18, Sec. 21.6]. In addition, Stn,k is diffeomorphic to the reductive homogeneous space SO(n)/SO(n−k), where SO(n−k) is realized as a closed subgroup of SO(n) via
SO(n−k)≅{[Ik00R]|R∈SO(n−k)}⊆SO(n) |
and a reductive split is given by so(n)=h⊕m, where
h={[000ξ22]|ξ22∈so(n−k)} and m={[ξ11−ξ⊤21ξ210]|ξ11∈so(k), ξ21∈R(n−k)×k}, |
see e.g. [18, Sec. 23.5]. In particular, since SO(n)×Stn,k∋(R,X)↦RX∈Stn,k is a transitive SO(n)-left action whose stabilizer subgroup of In,k coincides with SO(n−k)⊆SO(n), the map
pr:SO(n)→Stn,k≅SO(n)/SO(n−k),R↦RIn,k | (3.44) |
is a surjective submersion which induces a SO(n)-equivariant diffeomorphism
ˇpr:SO(n)/SO(n−k)→Stn,k,R⋅SO(n−k)↦RIn,k. | (3.45) |
Here R⋅SO(n−k)∈SO(n)/SO(n−k) denotes the coset defined by R∈SO(n). We refer to [20, Thm. 6.4] and [21, Thm. 21.18] for more details on diffeomorphisms associated with transitive actions.
In the sequel, we construct a scalar product
⟨⋅,⋅⟩red(D,E):so(n)×so(n)→R |
on so(n) which induces a left-invariant metric on SO(n) such that (3.44) becomes a pseudo-Riemannian submersion. In addition, equipping SO(n)/SO(n−k) with this submersion metric turns (3.45) into a SO(n)-equivariant isometry to (Stn,k,⟨⋅,⋅⟩D,E(⋅)).
Throughout this section we denote by D,E∈Rk×k diagonal matrices such that D and D+E are both invertible, see also Notation 3.13.
Lemma 3.21. Let Eij∈Rn×n be the matrix whose entries fulfill (Eij)fℓ=δifδjℓ and let F=D+E∈Rk×k. Then
A:so(n)→so(n),ξ=[ξ11−ξ⊤21ξ21ξ22]↦A(ξ)=[skew(ξ11(D+E))−12Dξ⊤2112ξ21Dξ22] | (3.46) |
is linear, where ξ11∈so(k), ξ22∈so(n−k) and ξ21∈R(n−k)×k. Moreover, evaluating A at the basis {(Eij−Eji)∣1≤i<j≤k} of so(n) yields
A(Eij−Eji)={Fii+Fjj2(Eij−Eji) if 1≤i<j≤k,12Djj(Eij−Eji) if k+1≤i≤n, 1≤j≤k,Eij−Eji if k+1≤i<j≤n. | (3.47) |
In particular, A:so(n)→so(n) as well as its restriction A|m:m→m are linear isomorphisms.
Proof. Clearly, A is linear. We show (3.47) by using the definition of A in (3.46). First we consider the case 1≤i<j≤k. Then Eij−Eji is mapped by A to
A(Eij−Eji)=[skew((ˆEij−ˆEji)F)000]=[skew(ˆEijFjj−ˆEjiFii)000]=Fii+Fjj2(Eij−Eji), |
with ˆEij∈Rk×k defined by (ˆEij)fℓ=δifδjℓ. Next assume k+1≤i≤n and 1≤j≤k. One obtains
A(Eij−Eji)=12Djj(Eij−Eji). |
The equality A(Eij−Eji)=Eij−Eji for k+1≤i<j≤n is obvious.
Lemma 3.22. Define
⟨⋅,⋅⟩red(D,E):so(n)×so(n)→R,(ξ,η)↦⟨ξ,η⟩red(D,E)=tr(ξ⊤A(η)), | (3.48) |
where A:so(n)→so(n) is the linear map from Lemma 3.21. Then the following assertions are fulfilled:
1. ⟨⋅,⋅⟩red(D,E) is a scalar product on so(n).
2. The restriction of ⟨⋅,⋅⟩red(D,E) to m defines a scalar product ⟨⋅,⋅⟩red(D,E):m×m→R on m.
3. Writing
ξ=[ξ11−ξ⊤21ξ21ξ22]∈so(n)andη=[η11−η⊤21η21η22]∈so(n) | (3.49) |
with ξ11,η11∈so(k) and ξ21,η21∈R(n−k)×k yields
⟨ξ,η⟩red(D,E)=tr(ξ⊤11skew(η11(D+E)))+tr(ξ⊤21η21D)+tr(ξ⊤22η22). | (3.50) |
4. ⟨⋅,⋅⟩red(D,E) is Ad(SO(k))-invariant.
5. Declaring Tepr:TeSO(n)→Tpr(e)(SO(n)/SO(n−k)) as an isometry defines a SO(n)-invariant pseudo-Riemannian metric on SO(n)/SO(n−k) such that pr:SO(n)→SO(n)/SO(n−k) is a pseudo-Riemannian submersion, where SO(n) is equipped with the left-invariant metric defined by ⟨⋅,⋅⟩red(D,E).
Proof. Obviously, ⟨⋅,⋅⟩red(D,E) is a bilinear form. Using the notation introduced in (3.49) one calculates
⟨ξ,η⟩red(D,E)=tr([ξ11−ξ⊤21ξ21ξ22]⊤[skew(η11(D+E))−12Dη⊤2112η21Dη22])=tr(ξ⊤11(skew(η11(D+E)))+tr(ξ⊤21η21D)+tr(ξ⊤22η22)=⟨η,ξ⟩red(D,E). | (3.51) |
Hence ⟨⋅,⋅⟩red(D,E) is symmetric. Claim 3 follows by (3.51), as well. Moreover, ⟨⋅,⋅⟩red(D,E) is a scalar product since A:so(n)→so(n) is a linear isomorphism by Lemma 3.21 showing Claim 1. Claim 2 follows since A|m:m→m is an isomorphism, too.
In order to show the Ad(SO(n−k))-invariance we calculate
Adg(ξ)=[Ik00R][ξ11−ξ21ξ21ξ22][Ik00R]⊤=[ξ11−(Rξ21)⊤Rξ21Rξ22R⊤] |
for ξ=[x11−ξ⊤21ξ21ξ22]∈so(n) and g=[Ik00R]∈SO(n−k)⊆SO(n) implying
⟨Adg(ξ),Adg(η)⟩red(D,E)=tr(ξ⊤11(skew(η11(D+E))))+tr(((Rξ21)⊤Rη21D)+tr((Rξ22R⊤)⊤Rη22R⊤)=⟨ξ,η⟩red(D,E) |
as desired.
It remains to prove Claim 5. By (3.50) the vector spaces m⊆so(n) and h⊆so(n) are orthogonal complements with respect to ⟨⋅,⋅⟩red(D,E). Moreover, by exploiting the Ad(SO(n−k))-invariance of ⟨⋅,⋅⟩red(D,E), this claim follows by [18, Prop. 23.23] which extends to the pseudo-Riemannian setting because its proof only relies on the non-degeneracy of the metric.
After this preparation, we are in the position to show that ⟨⋅,⋅⟩red(D,E) has indeed the desired property. To this end, the tangent map of (3.44) at In∈SO(n) is determined as
TInpr:so(n)→TIn,kStn,k,ξ↦ξIn,k. | (3.52) |
Proposition 3.23. Let SO(n)/SO(n−k) be equipped with the pseudo-Riemannian metric constructed by means of the scalar product ⟨⋅,⋅⟩red(D,E):m×m→R and let Stn,k be endowed with the metric ⟨⋅,⋅⟩D,E(⋅).
1. The restriction of (3.52) to m, i.e. the linear map
TInpr|m:m→TIn,kStn,k,ξ↦ξIn,k | (3.53) |
is an isometry, where TIn,kStn,k is equipped with the scalar product ⟨⋅,⋅⟩D,EIn,k.
2. The SO(n)-equivariant diffeomorphism (3.45) is an isometry.
Proof. We write ξ,η∈m as
ξ=[ξ11−ξ⊤21ξ210] andη=[η11−η⊤21η210] |
with ξ11,η11∈so(k) as well as ξ21,η21∈R(n−k)×k and compute
⟨TInprξ,TInprη⟩D,Epr(In)=⟨[ξ11ξ21],[η11η21]⟩D,EIn,k=tr(ξ⊤11(skew(η11(D+E))))+tr(ξ⊤21η21D)=⟨ξ,η⟩red(D,E), |
where the last equality holds by Lemma 3.22, Claim 3. It remains to show Claim 2. Since the metric on SO(n)/SO(n−k) induced by ⟨⋅,⋅⟩red(D,E) and the metric ⟨⋅,⋅⟩D,E(⋅) on Stn,k are both SO(n)-invariant, the map ˇpr:SO(n)/SO(n−k)→Stn,k is an isometry by Claim 1 due to its SO(n)-equivariance.
Proposition 3.23 allows for relating the metric ⟨⋅,⋅⟩D,E(⋅)∈Γ∞(S2(T∗Stn,k)) to the metrics on Stn,k defined in [15, Eq. (3.2)]. In order to compare these metrics we introduce some notation following [15]. We choose k1,…,ks∈N with
k1+⋯+ks=k and ki≥2 for all i∈{1,…,s} |
and write
D=diag(˜D11Ik1,…,˜DssIks) and E=diag(˜E11Ik1,…,˜EssIks), | (3.54) |
where ˜Dii,˜Eii∈R. Using the notation from [15] with p=m and t=1 we rewrite ⟨⋅,⋅⟩red(D,E) as
⟨⋅,⋅⟩red(D,E)=s∑i=1˜Dii+˜Eii+˜Dii+˜Eii2(n−2)⟨⋅,⋅⟩pi+∑1≤i<j≤s˜Dii+˜Eii+˜Djj+˜Ejj2(n−2)⟨⋅,⋅⟩pij+s∑i=1˜Dii2(n−2)⟨⋅,⋅⟩pi,s+1. |
Here ⟨⋅,⋅⟩pij=(n−2)tr((⋅)⊤(⋅))|pij×pij denotes the Killing form on so(n) scaled by −1 restricted to pij. Hence ⟨⋅,⋅⟩red(D,E) coincides with the inner product defined in [15, Eq. (3.2)], where xi=xii and
xij={˜Dii+˜Eii+˜Djj+˜Ejj2(n−2) if 1≤i≤j≤s˜Dii2(n−2) if j=s+1 and 1≤i≤s, |
provided that D and E are defined as in (3.54) as well as
˜Dii>0,i∈{1,…,s} and ˜Dii+˜Eii+˜Djj+˜Ejj>0,i,j∈{1,…,s} |
holds. This can be seen by observing that for ξ∈m=p the unique decomposition of ξ into sums of ξij∈pij can be rewritten in terms of block matrices as
![]() |
Finally, we point out that the Einstein metrics discussed in [15, Sec. 6] yield the following equations for D and E
x=˜Dii+˜Eiin−2 for 1≤i≤sy=˜Dii+˜Eii+˜Djj+˜Ejj2(n−2) for 1≤i<j≤s,z=˜Dii2(n−2) for 1≤i≤s, |
where x,y,z denote the parameters of the metric from [15, Eq. (6.2)]. Thus
D=2(n−2)zIk⟹D+E=2z(n−2)Ik+E=(n−2)xIk⟹E=(n−2)(x−2z)Ik |
and therefore y=(n−2)(2z+(x−2z)+2z+(x−2z))2(n−2)=x holds for x,z∈R. In particular, the metrics on Stn,k defined by ⟨⋅,⋅⟩D,E(⋅) contain only the two SO(n)×SO(k)-invariant Einstein metrics from [15], the so-called Jensen metrics. However, they do not contain the "new" Einstein metrics from that paper.
Remark 3.24. Although the "new" Einstein metrics form [15] are not contained in the family of metrics on Stn,k defined by ⟨⋅,⋅⟩D,E(⋅), we are not able to rule out that the family ⟨⋅,⋅⟩D,E(⋅) includes Einstein metrics different from the Jensen metrics. However, searching for Einstein metrics in ⟨⋅,⋅⟩D,E(⋅) is out of the scope of this text.
The goal of this section is to derive an explicit expression for the spray S∈Γ∞(T(TStn,k)) associated with the metric ⟨⋅,⋅⟩D,E(⋅). An expression for S yields an expression for the geodesic equation with respect to ⟨⋅,⋅⟩D,E(⋅) as an explicit second order ODE, as well.
First we recall the definition of a metric spray, also known as spray associated with a metric, from [22, Chap. 8, §4] whose existence and uniqueness is proven in [22, Chap. 8, Thm. 4.2]. For general properties of sprays we refer to [22, Chap. 4, §3-4]. Moreover, a discussion of the relation of sprays to torsion-free covariant derivatives can be found in [22, Chap. 8 §2].
Definition 4.1. Let (M,⟨⋅,⋅⟩) be a pseudo-Riemannian manifold. The metric spray S∈Γ∞(T(TM)) is the unique spray which is associated with the Levi-Civita covariant derivative defined by the pseudo-Riemannian metric ⟨⋅,⋅⟩.
An expression of a metric spray in local coordinates is given in (4.2) below. Next we discuss the relation of metric sprays to Lagrangian mechanics.
Let (M,⟨⋅,⋅⟩) be pseudo-Riemannian and let ω0∈Γ∞(Λ2T∗(T∗M)) denote the canonical symplectic form on T∗M. It is given by
ω0=−d θ0 |
with θ0∈Γ∞(T∗(T∗M)) being the canonical 1-form on T∗M. We refer to [16, Sec. 6.2] for the definition of ω0 and θ0. Consider the Lagrange function
L:TM→R,vx↦L(vx)=12⟨vx,vx⟩x. |
Let FL:TM→T∗M denote the fiber derivative of L defined by
((FL)(vx))(wx)=d d tL(vx+twx)|t=0,x∈M,vx,wx∈TxM, |
see e.g. [16, Eq. (7.2.1)]. The pullback
ωL=(FL)∗ω0 |
is a closed 2-from on TM, the so-called Lagrangian 2-form, see [16, Sec. 7.2]. In addition, ωL is non-degenerated, i.e. symplectic, since FL:TM→T∗M is a diffeomorphism due to
FL:TM→T∗M,vx↦FL(vx)=⟨vx,⋅⟩ | (4.1) |
by [16, Eq. (7.5.3)]. Moreover, the energy
EL:TM→R,vx↦((FL)(vx))(vx)−L(vx) |
associated with L fulfills EL=L, see e.g. [16, Sec. 7.3]. Let XEL∈Γ∞(T(TM)) denote the Lagrangian vector field and write iXELωL for the insertion of XEL into the first argument of ωL as usual. Then XEL is uniquely determined by
iXELωL=d EL⟺ωL(XEL,V)=d EL(V) for all V∈Γ∞(T(TM)). |
according to [16, Sec. 7.3]. Moreover, the Lagrangian vector field XEL coincides with the spray associated with the metric ⟨⋅,⋅⟩, see e.g. [16, Sec. 7.5]. It is exactly the so-called canonical spray from [22, Chap. 7, §7] which coincides with the metric spray, see [22, Chap. 8, Thm. 4.2]. Finally, we mention a local expression for sprays, see e.g. [22, Chap. 8, §4]. A metric spray S:TM→T(TM) can be represented in a chart (TU,(x,v)) of TM induced by a chart (U,x) of M by
S(x,v)=(x,v,v,−Γx(v,v)). | (4.2) |
Here Γx denotes the quadratic map defined by (Γx(v,v))k=Γkij(x)vivj using Einstein summation convention, where Γkij are the Christoffel symbols of the Levi-Civita covariant derivative with respect to the chart (U,x). In order to apply these general results to our particular situation, we introduce some notation.
Notation 4.2. Throughout this section U⊆Rn×k denotes an open subset of Rn×k with the property from Lemma 3.8. Moreover, we denote by ˜L the Lagrange function
˜L:TU→R,(X,V)↦˜L(X,V)=12⟨V,V⟩D,EX, | (4.3) |
where we identify TU≅U×Rn×k as usual.
We use the formula for ω0∈Γ∞(Λ2T∗(T∗U)) on T∗U given in the next remark.
Remark 4.3. The canonical symplectic form ω0∈Γ∞(Λ2T∗(T∗U)) on T∗U is given by
ω0|(X,V)((X,V,Y,Z),(X,V,˜Y,˜Z))=tr(Y⊤˜Z)−tr(˜Y⊤Z), | (4.4) |
for (X,V,Y,Z),(X,V,˜Y,˜Z)∈T(T∗U) identifying T(T∗U)≅U×(Rn×k)∗×Rn×k×(Rn×k)∗ as well as Rn×k≅(Rn×k)∗ via V↦tr(V⊤(⋅)). Indeed, Equation (4.4) follows by the local formula for the canonical symplectic form ω0 on T∗U, see e.g. [16, Sec. 6.2], applied to the gobal chart (U,idU)=(U,Xij).
We now calculate the Lagrangian 2-from ω˜L=(F˜L)∗ω0. To this end, we first determine the fiber derivative F˜L:TU→T∗U and its tangent map.
Lemma 4.4. For (X,V)∈TU the fiber derivative F˜L:TU→T∗U of ˜L is given by
F˜L(X,V)=(X,tr((VD+XX⊤VE)⊤(⋅))). | (4.5) |
Proof. Let (X,V),(X,W)∈TU. We have (F˜L(X,V))(X,W)=⟨V,W⟩D,EX by the Definition of ˜L and (4.1). Using the definition of ⟨⋅,⋅⟩D,E(⋅) and exploiting properties of the trace we obtain
(F˜L(X,V))(X,W)=tr(V⊤WD)+tr(V⊤XX⊤WE)=tr((VD+XX⊤VE)⊤W) |
as desired.
Lemma 4.5. The tangent map T(F˜L):T(TU)→T(T∗U) is given by
(T(F˜L))(X,V,Y,Z)=(F˜L(X,V),Y,tr((ZD+YX⊤VE+XY⊤VE+XX⊤ZE)⊤(⋅))) |
for (X,V,Y,Z)∈T(TU)≅U×(Rn×k)3, where we identify T(T∗U)≅U×(Rn×k)∗×Rn×k×(Rn×k)∗.
Proof. Let (X,V,Y,Z)∈T(TU). The smooth curve γ:(−ϵ,ϵ)∋t↦(X+tY,V+tZ)∈TU, for ϵ>0 sufficiently small, fulfills γ(0)=(X,V) with ˙γ(0)=(Y,Z). Then
d d tF˜L(γ(t))|t=0=(Y,tr((ZD+YX⊤VE+XY⊤VE+XX⊤ZE)⊤(⋅))). |
This yields the desired result.
Lemma 4.6. The Lagrangian 2-form ω˜L=(F˜L)∗ω0∈Γ∞(Λ2T∗(TU)) is given by
ω˜L|(X,V)((X,V,Y,Z),(X,V,˜Y,˜Z)=tr(Y⊤(˜ZD+˜YX⊤VE+X˜Y⊤VE+XX⊤˜ZE))−tr(˜Y⊤(ZD+YX⊤VE+XY⊤VE+XX⊤ZE)) | (4.6) |
with (X,V)∈TU≅U×Rn×k and (X,V,Y,Z),(X,V,˜Y,˜Z)∈T(X,V)TU.
Proof. Using the formula for ω0∈Γ∞(Λ2T∗(T∗U)) from Remark 4.3, a straightforward calculation shows that ω˜L=(F˜L)∗ω0 is given by (4.6). To this end, the formulas from Lemma 4.4 and Lemma 4.5 are plugged into the definition of the pull-back (F˜L)∗ω0.
Next the spray ˜S∈Γ∞(T(TU)) associated with ⟨⋅,⋅⟩D,E(⋅) is calculated exploiting ˜S=XE˜L, where XE˜L is the Lagrangian vector field. A closed form expression for ˜S(X,V) is obtained for all (X,V)∈Stn,k×Rn×k⊆TU.
Lemma 4.7. For (X,V)∈TU and (X,V,Y,Z)∈T(X,V)TU one has
d E˜L|(X,V)(X,V,Y,Z)=tr(V⊤ZD)+tr(Z⊤XX⊤VE)+tr(V⊤YX⊤VE). | (4.7) |
Proof. Let (X,V),(Y,Z)∈TU. We calculate
d d tE˜L(X+tY,V+tZ)|t=0=12(tr(Z⊤VD+V⊤ZD)+tr(Z⊤XX⊤VE+V⊤YX⊤VE+V⊤XY⊤VE+V⊤XX⊤ZE)). |
Using properties of the trace yields the desired result.
Next we consider a linear matrix equation of a certain form. We need to solve this equation for computing the metric spray on TU, see Proposition 4.9. Moreover, one encounters this equation in the proof of Proposition 5.2 on pseudo-Riemannian gradients below.
Lemma 4.8. Let D,E∈Rk×kdiag such that D and D + E are both invertible and let W \in \mathbb{{{R}}}^{{{n}} \times {{k}}} . Moreover, let U \subseteq \mathbb{{{R}}}^{{{n}} \times {{k}}} be open with the property from Lemma 3.8. Then for X \in U the linear equation
\begin{equation} \widetilde{\Gamma} D + X X^{\top} \widetilde{\Gamma} E = W \end{equation} | (4.8) |
has a unique solution in terms of \widetilde{\Gamma} . Moreover, for X \in \mathrm{St}_{{{n}}, {{k}}} , it is explicitly given by
\begin{equation} \widetilde{\Gamma} = \big(W - X X^{\top} W (D + E)^{-1} E \big) D^{-1} . \end{equation} | (4.9) |
Proof. For each X \in U the linear map \phi \colon \mathbb{{{R}}}^{{{n}} \times {{k}}} \ni \widetilde{\Gamma} \mapsto \widetilde{\Gamma} D + X X^{\top} \widetilde{\Gamma} E \in \mathbb{{{R}}}^{{{n}} \times {{k}}} is an isomorphism since the bilinear form
\begin{equation*} \mathbb{{{R}}}^{{{n}} \times {{k}}} \times \mathbb{{{R}}}^{{{n}} \times {{k}}} \to \mathbb{{{R}}}, \quad (Y, Z) \mapsto {\rm{tr}}(V^{\top} \phi(W)) = \langle V, W \rangle_X^{D, E} \end{equation*} |
is non-degenerated by assumption. Hence (4.8) admits a unique solution. Now assume X \in \mathrm{St}_{{{n}}, {{k}}} . We briefly explain how (4.9) can be derived. By exploiting X^{\top} X = I_k , Equation (4.8) implies
\begin{equation*} X^{\top} W = X^{\top} \widetilde{\Gamma} D + X^{\top} \widetilde{\Gamma} E = X^{\top} \widetilde{\Gamma} (D + E) \quad \iff \quad X^{\top} \widetilde{\Gamma} = X^{\top} W (D + E)^{-1} . \end{equation*} |
Plugging X^{\top} \widetilde{\Gamma} = X^{\top} W (D + E)^{-1} into (4.8) yields
\begin{equation*} \widetilde{\Gamma} D + X ( X^{\top} W (D + E)^{-1}) E = W \quad \iff \quad \widetilde{\Gamma} = \big( W - X ( X^{\top} W (D + E)^{-1}) E \big) D^{-1}. \end{equation*} |
A straightforward calculation shows that \widetilde{\Gamma} is indeed a solution of (4.8).
Proposition 4.9. The spray \widetilde{S} \in \Gamma^{\infty}\big(T (TU) \big) associated with the metric \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} is given by
\begin{equation} \widetilde{S}(X, V) = \big(X, V, V, - \widetilde{\Gamma}) = \big(X, V, V, - \widetilde{\Gamma}_X(V, V) \big) \end{equation} | (4.10) |
for all (X, V) \in T U \cong U \times \mathbb{{{R}}}^{{{n}} \times {{k}}} . Here \widetilde{\Gamma} = \widetilde{\Gamma}_X(V, V) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} depending on (X, V) \in TU is the unique solution of the linear equation
\begin{equation} \widetilde{\Gamma} D + X X^{\top} \widetilde{\Gamma} E = V X^{\top} V E + X V^{\top} V E - V E V^{\top} X \end{equation} | (4.11) |
in terms of \widetilde{\Gamma} with fixed (X, V) \in TU . Moreover, for (X, V) \in \mathrm{St}_{{{n}}, {{k}}} \times \mathbb{{{R}}}^{{{n}} \times {{k}}} one has
\begin{equation} \begin{split} \widetilde{\Gamma}_X(V, V) & = \big( V X^{\top} V E + X V^{\top} V E - V E V^{\top} X \big) D^{-1} \\ &\quad + \big( X X^{\top} V E V^{\top} X - X (X^{\top} V)^2 E - X V^{\top} V E \big)(D + E)^{-1} E D^{-1} . \end{split} \end{equation} | (4.12) |
Proof. Using \widetilde{S} = X_{E_{\widetilde{L}}} we compute \widetilde{S} via solving i_{X_{E_{\widetilde{L}}}} \omega_{\widetilde{L}} = {\rm{d}}\ E_{\widetilde{L}} for X_{E_{\widetilde{L}}} , i.e. \widetilde{S} = X_{E_{\widetilde{L}}} fulfills
\begin{equation} \omega_{\widetilde{L}}\big(X_{E_{\widetilde{L}}}(X, V), (X, V, Y, Z) \big) = {\rm{d}}\ E_{\widetilde{L}}\big\vert_{{(X, V)}}(X, V, Y, Z) . \end{equation} | (4.13) |
for all (X, V, Y, Z) \in T(T U) . Since \omega_{\widetilde{L}} is non-degenerated, X_{E_{\widetilde{L}}} is uniquely determined by (4.13). The local form of a metric spray, see (4.2), motivates the Ansatz
\begin{equation*} X_{E_{\widetilde{L}}}(X, V) = \big(X, V, V, - \widetilde{\Gamma}_X(V, V) \big) = \big(X, V, V, - \widetilde{\Gamma} \big) \end{equation*} |
with \widetilde{\Gamma} = \widetilde{\Gamma}_X(V, V) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} depending on (X, V) \in T U . Inserting X_{E_{\widetilde{L}}} into \omega_{\widetilde{L}} from Lemma 4.6 yields the 1 -form
\begin{equation} \begin{split} (i_{X_{E_{\widetilde{L}}}} \omega_{\widetilde{L}} )\big\vert_{{(X, V)}}(X, V, Y, Z) & = \omega_{\widetilde{L}}\big\vert_{{(X, V)}}\big( X_{E_{\widetilde{L}}}(X, V), (X, V, Y, Z) \big) \\ & = {\rm{tr}}\Big( V^{\top} \Big( Z D + Y X^{\top} V E + X Y^{\top} V E + X X^{\top} Z E \Big) \\ &\quad -{\rm{tr}}\Big( Y^{\top} \Big( - \widetilde{\Gamma} D + V X^{\top} V E + X V^{\top} V E - X X^{\top} \widetilde{\Gamma} E \Big) \Big) \end{split} \end{equation} | (4.14) |
with (X, V) \in TU and (X, V, Y, Z) \in T(TU) . Using (4.14) and the formula for {\rm{d}}\ E_{\widetilde{L}} from Lemma 4.7, the equation i_{X_{E_{\widetilde{L}}}} \omega_{\widetilde{L}} = {\rm{d}}\ E_{\widetilde{L}} becomes
\begin{equation} \begin{split} &{\rm{tr}}(V^{\top} Z D) + {\rm{tr}}(Z^{\top} X X^{\top} V E) + {\rm{tr}}(V^{\top} Y X^{\top} V E) \\ &\quad = {\rm{tr}}\Big( V^{\top} \Big( Z D + Y X^{\top} V E + X Y^{\top} V E + X X^{\top} Z E \Big) \\ &\quad\quad -{\rm{tr}}\Big( Y^{\top} \Big( - \widetilde{\Gamma} D + V X^{\top} V E + X V^{\top} V E - X X^{\top} \widetilde{\Gamma} E \Big) \Big) \end{split} \end{equation} | (4.15) |
for all (X, V, Y, Z) \in TU . Clearly, Equation (4.15) is equivalent to
\begin{equation*} {\rm{tr}}(Y^{\top} (V E V^{\top} X)) = {\rm{tr}}\big( Y^{\top} ( - \widetilde{\Gamma} D + V X^{\top} V E + X V^{\top} V E - X X^{\top} \widetilde{\Gamma} E ) \big) \end{equation*} |
for all Y \in \mathbb{{{R}}}^{n \times k} . This can be equivalently rewritten as
\begin{equation} \widetilde{\Gamma} D + X X^{\top} \widetilde{\Gamma} E = V X^{\top} V E + X V^{\top} V E - V E V^{\top} X \end{equation} | (4.16) |
showing the first claim.
We now assume X \in \mathrm{St}_{{{n}}, {{k}}} . Writing W = V X^{\top} V E + X V^{\top} V E - V E V^{\top} X and invoking Lemma 4.8 in order to solve (4.16) for \widetilde{\Gamma} yields
\begin{equation*} \begin{split} \widetilde{\Gamma} & = W D^{-1} - X X^{\top} W (D + E)^{-1} E D^{-1} \\ & = \big( V X^{\top} V E + X V^{\top} V E - V E V^{\top} X \big) D^{-1} \\ &\quad + \big( X X^{\top} V E V^{\top} X - X (X^{\top} V)^2 E - X V^{\top} V E \big)(D + E)^{-1} E D^{-1} \end{split} \end{equation*} |
as desired.
Remark 4.10. Obviously, for E = 0 , Proposition 4.9 implies \widetilde{\Gamma}_X(V, V) = 0 for all (X, V) \in TU .
Proposition 4.9 admits a relatively simple expression for \widetilde{S} \! \in \Gamma^{\infty}\big(T (TU)\big) evaluated at (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} for a subfamily of \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} . Since this subfamily will be discussed several times below, it deserves its own notation.
Notation 4.11. We write \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} for the covariant 2 -tensor \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} which is obtained by specifying E = \nu I_k with \nu \in \mathbb{{{R}}} , i.e.
\begin{equation*} \big\langle V, W \big\rangle^{D, \nu}_X = {\rm{tr}}\big(V^{\top} W D \big) + \nu {\rm{tr}}\big( V^{\top} X X^{\top} W \big), \quad X \in \mathbb{{{R}}}^{{{n}} \times {{k}}} \ {\text{and}}\ V, W \in T_X \mathbb{{{R}}}^{{{n}} \times {{k}}} \cong \mathbb{{{R}}}^{{{n}} \times {{k}}} . \end{equation*} |
Unless indicated otherwise, pull-backs of \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} \in \Gamma^{\infty}\big(\mathrm{S}^2 (T^* \mathbb{{{R}}}^{{{n}} \times {{k}}}) \big) to submanifolds of \mathbb{{{R}}}^{{{n}} \times {{k}}} are omitted in the notation. Moreover, we assume that D and \nu are chosen such that \mathrm{St}_{{{n}}, {{k}}} \subseteq \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} \big) is a pseudo-Riemannian submanifold. In particular, we assume that D and D + \nu I_k are both invertible.
Corollary 4.12. The spray \widetilde{S} \in \Gamma^{\infty}\big(T (T U) \big) on TU associated with \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} \in \Gamma^{\infty}\big(\mathrm{S}^2 (T^* U)\big) evaluated at (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} is given by
\begin{equation} \widetilde{S}(X, V) = \big(X, V, V, - \widetilde{\Gamma}_X(V, V) \big), \end{equation} | (4.17) |
where
\begin{equation} \widetilde{\Gamma}_X(V, V) = \Big( 2 \nu V X^{\top} V + \nu X V^{\top} V \big( D \big(D + \nu I_k \big)^{-1} \big) - 2 \nu^2 X (X^{\top} V)^2 (D + \nu I_k)^{-1} \Big) D^{-1} . \end{equation} | (4.18) |
Proof. Let (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} and write \widetilde{\Gamma} = \widetilde{\Gamma}_X(V, V) for short. Plugging E = \nu I_k into Formula (4.12) from Proposition 4.9 and using X^{\top} V = - V^{\top} X we obtain
\begin{equation*} \begin{split} \widetilde{\Gamma} & = \Big( V X^{\top} V E + X V^{\top} V E - V E V^{\top} X \Big) D^{-1} \\ &\quad + \Big( X X^{\top} V E V^{\top} X - X (X^{\top} V)^2 E - X V^{\top} V E \Big)(D + E)^{-1} E D^{-1} \\ & = \nu \Big( V X^{\top} V + X V^{\top} V - V V^{\top} X \Big) D^{-1} + \nu^2 \Big( X X^{\top} V V^{\top} X - X (X^{\top} V)^2 - X V^{\top} V \Big)(D + \nu I_k)^{-1} D^{-1} \\ & = \nu \Big( V X^{\top} V + X V^{\top} V + V X^{\top} V \Big) D^{-1} + \nu^2 \Big( - X (X^{\top} V)^2 - X (X^{\top} V)^2 - X V^{\top} V \Big)(D + \nu I_k)^{-1} D^{-1} \\ & = \Big( 2 \nu V X^{\top} V + X V^{\top} V \big(\nu I_k \big) - 2 \nu^2 X (X^{\top} V)^2 \big(D + \nu I_k \big)^{-1} - X V^{\top} V \big( \nu^2 (D + \nu I_k)^{-1} \big) \Big) D^{-1} \\ & = \Big( 2 \nu V X^{\top} V + X V^{\top} V \big( \nu I_k - \nu^2 (D + \nu I_k)^{-1} \big) - 2 \nu^2 X (X^{\top} V)^2 (D + \nu I_k)^{-1} \Big) D^{-1} \\ & = \Big( 2 \nu V X^{\top} V + \nu X V^{\top} V \big( D \big(D + \nu I_k \big)^{-1} \big) - 2 \nu^2 X (X^{\top} V)^2 (D + \nu I_k)^{-1} \Big) D^{-1} , \end{split} \end{equation*} |
where the last equality holds due to
\begin{equation*} \big( \nu I_k - \nu^2 (D + \nu I_k)^{-1}\big)_{ii} = \nu - \tfrac{\nu^2}{D_{ii} + \nu} = \tfrac{\nu(D_{ii} + \nu) - \nu^2}{D_{ii} + \nu} = \nu (D \big(D + \nu I_k \big)^{-1})_{ii} \end{equation*} |
for i \in \{1, \ldots, k\} .
We now determine the spray S \in \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}})\big) associated with the metric \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} . To this end, a result from [16, Prop. 8.4.1] is exploited which is stated for Riemannian manifolds. The proof works for pseudo-Riemannian manifolds, as well, since it only exploits the non-degeneracy of the metric. We reformulate it in the following proposition.
Proposition 4.13. Let M \subseteq \widetilde{M} be a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold \big(\widetilde{M}, \langle \cdot, \cdot \rangle\big) and let \widetilde{S} \in \Gamma^{\infty}\big(T (T\widetilde{M}) \big) denote the metric spray on T\widetilde{M} . Then the spray S \in \Gamma^{\infty}\big(T (TM) \big) on TM associated with the induced pseudo-Riemannian metric is given by
\begin{equation} S = T P \circ \widetilde{S} \big\vert_{{TM}}\colon TM \to T(TM), \end{equation} | (4.19) |
where P \colon T\widetilde{M}\big\vert_{{M}}\to TM denotes the vector bundle morphism that is defined fiber-wise by the orthogonal projections P_x \colon T_x \widetilde{M} \to T_x M \subseteq T_x \widetilde{M} with respect to \langle \cdot, \cdot \rangle , where x \in M .
Lemma 4.14. The tangent map T P \colon T (\mathrm{St}_{{{n}}, {{k}}} \times \mathbb{{{R}}}^{{{n}} \times {{k}}}) \to T(T \mathrm{St}_{{{n}}, {{k}}}) of
\begin{equation} P \colon \mathrm{St}_{{{n}}, {{k}}} \times \mathbb{{{R}}}^{{{n}} \times {{k}}} \to T \mathrm{St}_{{{n}}, {{k}}}, \quad (X, V) \mapsto (X, P_X(V) ), \end{equation} | (4.20) |
where P_X(V) = V - X X^{\top} V + X \pi^{D + E}(X^{\top} V) is the orthogonal projection from Theorem 3.18, is given by
\begin{equation} T P(X, V, Y, Z) = \big( X, V, Y, Z - X Y ^{\top} V - X X^{\top} Z + X \pi^{D + E}(Y^{\top} V + X^{\top} Z) )\big) \end{equation} | (4.21) |
for all (X, V, Y, Z) \in T(\mathrm{St}_{{{n}}, {{k}}} \times \mathbb{{{R}}}^{n \times k}) \cong T \mathrm{St}_{{{n}}, {{k}}} \times (\mathbb{{{R}}}^{n \times k})^2 .
Proof. By exploiting \pi^{D + E}(X^{\top} V) = X^{\top} V due to X^{\top} V = - V^{\top} X \in \mathfrak{{{so}}}(k) for (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} one calculates
\begin{equation*} \begin{split} T_{(X, V)} P( Y, Z) & = \big( Y, Z - Y X^{\top} V - X Y^{\top} V - X X^{\top} Z + Y \pi^{D + E}(X^{\top} V) + X \pi^{D + E}(Y^{\top} V + X^{\top} Z) \big) \\ & = \big( Y, Z - X Y ^{\top} V - X X^{\top} Z + X \pi^{D + E}(Y^{\top} V + X^{\top} Z) \big) , \end{split} \end{equation*} |
where (X, V, Y, Z) \in T(\mathrm{St}_{{{n}}, {{k}}} \times \mathbb{{{R}}}^{{{n}} \times {{k}}}) .
Theorem 4.15. The spray S \in \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}})\big) associated with \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} is given by
\begin{equation} S(X, V) = \big(X, V, V, -\widetilde{\Gamma}_X(V, V) - X V^{\top} V + X X^{\top} \widetilde{\Gamma}_X(V, V) + X \pi^{D + E}\big(V^{\top} V - X^{\top} \widetilde{\Gamma}_X(V, V) \big) \big) \end{equation} | (4.22) |
for all (X, V) \in T\mathrm{St}_{{{n}}, {{k}}} . Here \widetilde{\Gamma}_X(V, V) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} depending on (X, V) \in T\mathrm{St}_{{{n}}, {{k}}} is given by
\begin{equation} \begin{split} \widetilde{\Gamma}_X(V, V) & = \big( V X^{\top} V E + X V^{\top} V E - V E V^{\top} X \big) D^{-1} \\ &\quad + \big( X X^{\top} V E V^{\top} X - X (X^{\top} V)^2 E - X V^{\top} V E \big)(D + E)^{-1} E D^{-1} . \end{split} \end{equation} | (4.23) |
Proof. One can view \mathrm{St}_{{{n}}, {{k}}} equipped with \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} as a pseudo-Riemannian submanifold of \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E}\big) according to Lemma 3.8. Let \widetilde{S} \in \Gamma^{\infty}\big(T (TU)\big) be the metric spray on TU determined in Proposition 4.9. Then S = TP \circ \widetilde{S}\big\vert_{{T \mathrm{St}_{{{n}}, {{k}}}}} holds by Proposition 4.13. Using Lemma 4.14 yields
\begin{equation*} \begin{split} S(X, V) & = TP \circ \widetilde{S} \big\vert_{{T \mathrm{St}_{{{n}}, {{k}}}}}(X, V) = TP \big(X, V, V, - \widetilde{\Gamma}_X(V, V) \big) \\ & = \big(X, V, V, - \widetilde{\Gamma}_X(V, V) - X V ^{\top} V + X X^{\top} \widetilde{\Gamma}_X(V, V) + X \pi^{D + E}\big(V^{\top} V - X^{\top} \widetilde{\Gamma}_X(V, V) \big)\big) \end{split} \end{equation*} |
for all (X, V) \in T\mathrm{St}_{{{n}}, {{k}}} as desired.
Remark 4.16. We often denote the spray on T\mathrm{St}_{{{n}}, {{k}}} associated with \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} from Theorem 4.15 by
\begin{equation*} S(X, V) = \big(X, V, V, - \Gamma \big) = \big(X, V, V, - \Gamma_X(V, V) \big), \end{equation*} |
i.e. we write - \Gamma or - \Gamma_X(V, V) for the fourth component of S . For (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} it is given by
\begin{equation} - \Gamma_X(V, V) = -\widetilde{\Gamma}_X(V, V) - X V^{\top} V + X X^{\top} \widetilde{\Gamma}_X(V, V) + X \pi^{D + E}\big(V^{\top} V - X^{\top} \widetilde{\Gamma}_X(V, V) \big) \end{equation} | (4.24) |
according to Theorem 4.15, where \widetilde{\Gamma}_X(V, V) is determined by (4.23). Obviously, Equation (4.24) yields a well-defined expression for all X \in \mathbb{{{R}}}^{{{n}} \times {{k}}} and V \in \mathbb{{{R}}}^{{{n}} \times {{k}}} which is quadratic in V . Hence, by polarization, (4.24) can be viewed as the definition of the smooth map
\begin{equation} \Gamma \colon U \to \mathrm{S}^2\big( (\mathbb{{{R}}}^{{{n}} \times {{k}}})^*\big) \otimes \mathbb{{{R}}}^{{{n}} \times {{k}}}, \quad X \mapsto \big( (V, W) \mapsto \Gamma_X(V, W) \big) . \end{equation} | (4.25) |
Clearly, Equation (4.25) yields a smooth extension of the fourth component of the metric spray S \! \in \! \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}})\big) . This extension is used in Proposition 6.5 and Proposition 6.8 below.
Corollary 4.17. The spray S \in \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}}) \big) associated with the metric \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} from Theorem 4.15 has the following properties:
1. The spray S \in \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}}) \big) is complete.
2. The maximal integral curve \mathbb{{{R}}} \ni t \mapsto \Phi^S_t\big((X_0, V_0) \big) = \big(X(t), V(t) \big) \in T \mathrm{St}_{{{n}}, {{k}}} of S through the point (X_0, V_0) \in T \mathrm{St}_{{{n}}, {{k}}} at t = 0 fulfills the explicit non-linear first order ODE
\begin{equation} \begin{split} \dot{X} & = V \\ \dot{V} & = -\widetilde{\Gamma}_X(V, V) - X V^{\top} V + X X^{\top} \widetilde{\Gamma}_X(V, V) + X \pi^{D + E}\big(V^{\top} V - X^{\top} \widetilde{\Gamma}_X(V, V) \big), \end{split} \end{equation} | (4.26) |
with initial condition \big(X(0), V(0) \big) = \big(X_0, V_0 \big) \in T \mathrm{St}_{{{n}}, {{k}}} writing X = X(t) and V = V(t) for short.
3. Let {\rm{pr}} \colon T \mathrm{St}_{{{n}}, {{k}}} \to \mathrm{St}_{{{n}}, {{k}}} be the canonical projection. The curve \mathbb{{{R}}} \! \ni \! t \! \mapsto \! {\rm{pr}} \! \circ \Phi^S_t(X_0, V_0) \! = \! X(t) \! \in \mathrm{St}_{{{n}}, {{k}}} is a geodesic with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} through the point X(0) = X_0 \in \mathrm{St}_{{{n}}, {{k}}} with initial velocity \dot{X}(0) = V_0 \in T_{X_0} \mathrm{St}_{{{n}}, {{k}}} .
4. The geodesic equation on \mathrm{St}_{{{n}}, {{k}}} with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} is given by the non-linear explicit second order ODE
\begin{equation} \ddot{X} = -\widetilde{\Gamma}_X(\dot{X}, \dot{X}) - X \dot{X}^{\top} \dot{X} + X X^{\top} \widetilde{\Gamma}_X(\dot{X}, \dot{X}) + X \pi^{D + E}(\dot{X}^{\top} \dot{X} - X^{\top} \widetilde{\Gamma}_X(\dot{X}, \dot{X}) \big) \end{equation} | (4.27) |
with initial conditions X(0) = X_0 \in \mathrm{St}_{{{n}}, {{k}}} and \dot{X}(0) = \dot{X}_0 \in T_{X_0} \mathrm{St}_{{{n}}, {{k}}} .
Proof. We first show that S is complete. The transitive O(n) -action \Psi acts on \big(\mathrm{St}_{{{n}}, {{k}}}, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) by isometries according to Lemma 3.1, i.e. \big(\mathrm{St}_{{{n}}, {{k}}}, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E}\big) is a compact pseudo-Riemannian homogeneous manifold. Hence completeness follows by [23].
The other statements are well-known consequences of general properties of sprays associated with a metric, see e.g. [16, Sec. 7.5], combined with the explicit formula for S \in \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}}) \big) from Theorem 4.15.
The formula for the metric spray S from Theorem 4.15 admits a simplification for \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} .
Corollary 4.18. For \big(\mathrm{St}_{{{n}}, {{k}}}, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} \big) the metric spray is given by S(X, V) = \big(X, V, V, - \Gamma_X(V, V)\big) with
\begin{equation} -\Gamma_X(V, V) = 2 \nu V V^{\top} X D^{-1} + 2 \nu X (X^{\top} V)^2 D^{-1} - X V^{\top} V + X \pi^{D + \nu I_k}(V^{\top} V) \end{equation} | (4.28) |
for (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} . Moreover, the geodesic equation reads
\begin{equation} \ddot{X} = 2 \nu \dot{X} \dot{X}^{\top} X D^{-1} + 2 \nu X (X^{\top} \dot{X})^2 D^{-1} - X \dot{X}^{\top} \dot{X} + X \pi^{D + \nu I_k}(\dot{X}^{\top} \dot{X}) . \end{equation} | (4.29) |
Proof. Let (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} . Using the formula for \widetilde{\Gamma}_X(V, V) from Corollary 4.12 we calculate
\begin{equation*} \begin{split} X^{\top} \widetilde{\Gamma}_X(V, V) & = X^{\top} \Big( 2 \nu V X^{\top} V + \nu X V^{\top} V \big( D \big(D + \nu I_k \big)^{-1} \big) - 2 \nu^2 X (X^{\top} V)^2 (D + \nu I_k)^{-1} \Big) D^{-1} \\ & = 2 \nu X^{\top} V X^{\top} V D^{-1} + \nu V^{\top} V \big(\big(D + \nu I_k \big)^{-1} D \big) D^{-1} - 2 \nu^2 (X^{\top} V)^2 (D + \nu I_k)^{-1} D^{-1} \\ & = 2 \nu (X^{\top} V)^2 D^{-1} - 2 \nu^2 (X^{\top} V)^2 (D + \nu I_k)^{-1} D^{-1} + \nu V^{\top} V \big(\big(D + \nu I_k \big)^{-1} \big) \\ & = (X^{\top} V)^2 \Big( 2 \nu D^{-1} -2 \nu^2 (D + \nu I_k)^{-1} D^{-1} \Big) + \nu V^{\top} V \big(\big(D + \nu I_k \big)^{-1} \big) \\ & = 2 \nu (X^{\top} V)^2 (D + \nu I_k)^{-1} + \nu V^{\top} V (D + \nu I_k)^{-1} \\ & = \nu \Big( V^{\top} V + 2 (X^{\top} V)^2\Big) (D + \nu I_k)^{-1} , \end{split} \end{equation*} |
where the identity
\begin{equation*} \big(2 \nu D^{-1} - 2 \nu^2 (D + \nu I_k)^{-1} D^{-1} \big)_{ii} = \tfrac{2 (\nu D_{ii} + \nu^2) - 2 \nu^2}{(D_{ii} + \nu) D_{ii} } = \tfrac{2 \nu}{D_{ii} + \nu} = 2 \nu \big((D + \nu I_k)^{-1} \big)_{ii} \end{equation*} |
is used. This yields
\begin{equation*} X X^{\top} \widetilde{\Gamma}_X(V, V) = \nu X \Big( V^{\top} V + 2 (X^{\top} V)^2\Big) (D + \nu I_k)^{-1} . \end{equation*} |
Moreover, using the symmetry of \nu\big(V^{\top} V + 2 (X^{\top} V)^2 \big) \in \mathbb{{{R}}}^{{{k}} \times {{k}}}_{\mathrm{sym}} we obtain by Lemma 3.14, Claim 1
\begin{equation*} \pi^{D + \nu I_k}\big(X^{\top} \widetilde{\Gamma}_X(V, V) \big) = \pi^{D + \nu I_k}\big( \nu \big( V^{\top} V + 2 (X^{\top} V)^2\big) (D + \nu I_k)^{-1} \big) = 0 . \end{equation*} |
Therefore \Gamma_X(V, V) can be obtained by Theorem 4.15 via calculating
\begin{equation*} \begin{split} - \Gamma_X(V, V) & = -\widetilde{\Gamma}_X(V, V) - X V^{\top} V + X X^{\top} \widetilde{\Gamma}_X(V, V) + X \pi^{D + \nu I_k}\big(V^{\top} V - X^{\top} \widetilde{\Gamma}_X(V, v) \big) \\ & = \Big( - 2 \nu V X^{\top} V D^{-1} - \nu X V^{\top} V \big(D + \nu I_k \big)^{-1} + 2 \nu^2 X (X^{\top} V)^2 (D + \nu I_k)^{-1} D^{-1} \Big) - X V^{\top} V \\ &\quad + \Big( \nu X V^{\top} V (D + \nu I_k)^{-1} + 2 \nu X (X^{\top} V)^2 (D + \nu I_k)^{-1} \Big) + X \pi^{D + \nu I_k}(V^{\top} V) \\ & = 2 \nu V V^{\top} X D^{-1} + 2 X (X^{\top} V)^2 (D + \nu I_k)^{-1} (\nu^2 D^{-1} + \nu I_k) - X V^{\top} V + X \pi^{D + \nu I_k}(V^{\top} V) \\ & = 2 \nu V V^{\top} X D^{-1} + 2 \nu X (X^{\top} V)^2 D^{-1} - X V^{\top} V + X \pi^{D + \nu I_k}(V^{\top} V) , \end{split} \end{equation*} |
where the last equality follows due to
\begin{equation*} \big((D + \nu I_k)^{-1} (\nu^2 D^{-1} + \nu I_k)\big)_{ii} = \tfrac{ (\nu^2 / D_{ii} ) + \nu}{D_{ii} + \nu} = \tfrac{\nu (\nu + D_{ii})}{ D_{ii} (\nu + D_{ii})} = \nu \big( D^{-1} \big)_{ii}. \end{equation*} |
This yields the desired result.
Remark 4.19. Corollary 4.18 generalizes the geodesic equation from [13]. Indeed, setting D = 2 I_k and \nu = - \frac{2 \alpha + 1}{\alpha + 1} with \alpha \in \mathbb{{{R}}}\setminus \{-1\} yields
\begin{equation} - \Gamma_X(V, V) = \nu V V^{\top} X + \nu X (X^{\top} V)^2 - X V^{\top} V \end{equation} | (4.30) |
due to \pi^{(2 + \nu) I_k}(V^{\top} V) = {\rm{skew}}(V^{\top} V) = 0 in accordance with [13, Eq. (65)].
Remark 4.20. We are not aware of an explicit solution of the geodesic equation for general diagonal matrices D and E . To our best knowledge, an explicit solution is only known for the special case D = 2 I_k and E = \nu I_k , see [13]. Nevertheless, one could exploit that \big(T\mathrm{St}_{{{n}}, {{k}}}, \omega_{(T\iota)^* \widetilde{L}}, (T\iota)^* \widetilde{L}\big) defines a Hamiltonian system whose Hamiltonian vector field is given by the metric spray S \in \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}}) \big) . This point of view would allow to study the geodesic equation using the theory of integrable systems. However, investigating these aspects in detail is out of the scope of this paper. In this context, we only refer to [24], where geodesic flows on the cotangent bundle T^* \mathrm{St}_{{{n}}, {{k}}} and their integrability are studied.
We now determine pseudo-Riemannian gradients and pseudo-Riemannian Hessians of smooth functions on \mathrm{St}_{{{n}}, {{k}}} . Specific results from [14] are generalized, where similar ideas were used to obtain the gradients and Hessians of smooth function on \mathrm{St}_{{{n}}, {{k}}} with respect to the one-parameter family of metrics from [13]. Moreover, similar formulas for gradients and Hessians on \mathrm{St}_{{{n}}, {{k}}} with respect to a family of metrics corresponding to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} , where D = \alpha_0 I_k and E = (\alpha_1 - \alpha_0) I_k with \alpha_0, \alpha_1 \in \mathbb{{{R}}} , i.e. a scaled version of the metrics introduced in [13], are independently obtained in [25].
Notation 5.1. From now on, unless indicated otherwise, we denote by U \subseteq \mathbb{{{R}}}^{{{n}} \times {{k}}} an open subset with the property from Lemma 3.8.
We first determine the gradient of a smooth function on f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} with respect to the metric \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \in \Gamma^{\infty}\big(\mathrm{S}^2 (T^* \mathrm{St}_{{{n}}, {{k}}}) \big) . Let \sharp_{D, E} \colon T_X^* \mathrm{St}_{{{n}}, {{k}}} \to T_X \mathrm{St}_{{{n}}, {{k}}} denote the sharp map associated with \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} , i.e. the inverse of the flat map \flat \colon T_X \mathrm{St}_{{{n}}, {{k}}} \ni V \mapsto \langle V, \cdot \rangle_X^{D, E} \in T_X^* \mathrm{St}_{{{n}}, {{k}}} . Then \mathrm{grad} f \in \Gamma^{\infty}(T \mathrm{St}_{{{n}}, {{k}}}) is the unique vector field that fulfills
\begin{equation} \big\langle \mathrm{grad} f(X) , V \big\rangle_X^{D, E} = {\rm{d}}\ f\big\vert_{{X}}(V) \quad \iff \quad \mathrm{grad} f(X) = \big( {\rm{d}}\ f\big\vert_{{X}}(\cdot)\big)^{\sharp_{D, E}} \end{equation} | (5.1) |
for all X \in \mathrm{St}_{{{n}}, {{k}}} and V \in T_X \mathrm{St}_{{{n}}, {{k}}} , see e.g. [26, Sec. 8.1] for the Riemannian case, which clearly extends to the pseudo-Riemannian case.
Proposition 5.2. Let f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} be smooth with some smooth extension F \colon U \to \mathbb{{{R}}} . Then the gradient of f at X \in \mathrm{St}_{{{n}}, {{k}}} with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} is given by
\begin{equation} \mathrm{grad} f(X) = \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) D^{-1} + X \pi^{D + E}\big(X^{\top} \nabla F(X) \big( D^{-1} - (D + E)^{-1} E D^{-1}\big)\big) . \end{equation} | (5.2) |
Proof. We first compute the gradient of F \colon U \to \mathbb{{{R}}} with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} . Let X \in U . Then \mathrm{grad} F(X) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} fulfills
\begin{equation} \big\langle \mathrm{grad} F(X) , V \big\rangle_X^{D, E} = {\rm{d}}\ F\big\vert_{{X}}(V) = {\rm{tr}}\big( \big( \nabla F(X) \big)^{\top} V \big) \end{equation} | (5.3) |
for all V \in T_X \mathbb{{{R}}}^{{{n}} \times {{k}}} \cong \mathbb{{{R}}}^{{{n}} \times {{k}}} . Using the definition of \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} , Equation (5.3) can be rewritten as
\begin{equation*} {\rm{tr}}\big( V^{\top} \big( \mathrm{grad} F(X) D + X X^{\top} \mathrm{grad} F(X) E\big)\big) = {\rm{tr}}\big(V^{\top} \nabla F(X) \big). \end{equation*} |
Since \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} is non-degenerated, this is equivalent to the linear equation
\begin{equation} \mathrm{grad} F(X) D + X X^{\top} \mathrm{grad} F(X) E = \nabla F(X) \end{equation} | (5.4) |
in terms of \mathrm{grad} F(X) . Now assume X \in \mathrm{St}_{{{n}}, {{k}}} . Then the unique solution of (5.4) is given by
\begin{equation*} \mathrm{grad} F(X) = \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) (D + E)^{-1} E D^{-1} \end{equation*} |
according to Lemma 4.8. Next, we use the well-known formula \mathrm{grad} f(X) = P_X \big(\mathrm{grad} F(X) \big) , where P_X \colon \mathbb{{{R}}}^{{{n}} \times {{k}}} \to T_X \mathrm{St}_{{{n}}, {{k}}} is determined in Theorem 3.18. One calculates
\begin{equation*} \begin{split} \mathrm{grad} f(X) & = P_X\big( \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) (D + E)^{-1} E D^{-1} \big) \\ & = \Big( \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) D^{-1} + X \pi^{D + E}\big(X^{\top} \nabla F(X) D^{-1}\big) \Big) \\ &\quad - \Big( X X^{\top} \nabla F(X) (D + E)^{-1} E D^{-1} - X X^{\top} \big( X X^{\top} \nabla F(X) (D + E)^{-1} E D^{-1} \big) \\ &\qquad + X \pi^{D + E}\big( X^{\top} X X^{\top} \nabla F(X) (D + E)^{-1} E D^{-1} \big)\Big) \\ & = \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) D^{-1} + X \pi^{D + E}\big(X^{\top} \nabla F(X) \big( D^{-1} - (D + E)^{-1} E D^{-1}\big)\big) \end{split} \end{equation*} |
for X \in \mathrm{St}_{{{n}}, {{k}}} as desired.
Next we specialize the formula for the gradient to the subfamily \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} .
Proposition 5.3. Let f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} be smooth with some smooth extension F \colon U \to \mathbb{{{R}}} . Then the gradient of f with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} is given by
\begin{equation} \mathrm{grad} f(X) = \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) D^{-1} + X \pi^{D + \nu I_k}\big(X^{\top} \nabla F(X) (D + \nu I_k)^{-1}\big) \end{equation} | (5.5) |
for all X \in \mathrm{St}_{{{n}}, {{k}}} .
Proof. Using Proposition 5.2 we obtain for X \in T_X \mathrm{St}_{{{n}}, {{k}}}
\begin{equation*} \begin{split} \mathrm{grad} f(X) & = \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) D^{-1} + X \pi^{D + \nu I_k}\big(X^{\top} \nabla F(X) \big( D^{-1} - \nu (D + \nu I_k)^{-1} D^{-1} \big)\big) \\ & = \nabla F(X) D^{-1} - X X^{\top} \nabla F(X) D^{-1} + X \pi^{D + \nu I_k}\big(X^{\top} \nabla F(X) (D + \nu I_k)^{-1}\big), \end{split} \end{equation*} |
where the identity
\begin{equation*} \big( D^{-1} - \nu (D + \nu I_k)^{-1} D^{-1} \big)_{ii} = \tfrac{1 }{D_{ii}} - \tfrac{\nu}{(D_{ii} + \nu) D_{ii}} = \tfrac{D_{ii} + \nu - \nu }{(D_{ii} + \nu)D_{ii}} = \big((D + \nu I_k)^{-1} \big)_{ii} \end{equation*} |
is used to obtain the last equality.
Corollary 5.4. Let \alpha \in T_X^* \mathrm{St}_{{{n}}, {{k}}} be given by
\begin{equation} \alpha = {\rm{tr}}\big( V^{\top} (\cdot) \big) \colon T_X \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}}, \quad W \mapsto {\rm{tr}}(V^{\top} W) \in \mathbb{{{R}}}, \end{equation} | (5.6) |
where V \in \mathbb{{{R}}}^{{{n}} \times {{k}}} is some matrix. The sharp map \sharp_{D, E} \colon T_X^* \mathrm{St}_{{{n}}, {{k}}} \to T_X \mathrm{St}_{{{n}}, {{k}}} associated with \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} applied to \alpha is given by
\begin{equation} \alpha^{\sharp_{D, E}} = \big({\rm{tr}}\big(V^{\top}(\cdot)\big) \big)^{\sharp_{D, \nu I_k}} = V D^{-1} - X X^{\top} V D^{-1} + X \pi^{D + E}\big(X^{\top} V \big( D^{-1} - (D + E)^{-1} E D^{-1}\big) \big). \end{equation} | (5.7) |
Specializing E = \nu I_k yields the sharp map with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} applied to \alpha , namely
\begin{equation} \alpha^{\sharp_{D, \nu I_k}} = \big({\rm{tr}}\big(V^{\top}(\cdot)\big) \big)^{\sharp_{D, \nu I_k}} = V D^{-1} - X X^{\top} V D^{-1} + X \pi^{D + \nu I_k}\big(X^{\top} V (D + \nu I_k)^{-1}\big) . \end{equation} | (5.8) |
Proof. Consider the smooth function F \colon \mathbb{{{R}}}^{{{n}} \times {{k}}} \ni X \mapsto {\rm{tr}}\big(V^{\top} X \big) \in \mathbb{{{R}}} and set f = F\big\vert_{{\mathrm{St}_{{{n}}, {{k}}}}}\colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} . Then {\rm{d}}\ F\big\vert_{{X}}(W) = {\rm{tr}}(V^{\top} W) and thus \nabla F(X) = V follows. Applying Proposition 5.2 and Proposition 5.3, respectively, yields the desired result because of (5.1).
Corollary 5.5. Proposition 5.3 reproduces some results known from the literature as special cases:
1. For D = I_k and \nu = 0 one has
\begin{equation} \mathrm{grad} f(X) = \nabla F(X) - \tfrac{1}{2} X X^{\top} \nabla F(X) - \tfrac{1}{2} X \big(\nabla F(X) \big)^{\top} X . \end{equation} | (5.9) |
This coincides with the gradient with respect to the Euclidean metric, see e.g. [2].
2. For D = I_k and \nu = - \tfrac{1}{2} , one has
\begin{equation} \mathrm{grad} f(X) = \nabla f(X) - X \big(\nabla F(X) \big)^{\top} X \end{equation} | (5.10) |
reproducing the formula for the gradient from [10, Eq. (2.53)].
3. For D = 2 I_k and -2 \neq \nu \in \mathbb{{{R}}} the gradient of f simplifies to
\begin{equation} \mathrm{grad} f(X) = \tfrac{1}{2} \big( \nabla f(X) - \tfrac{\nu + 1}{2 + \nu} X X^{\top} \nabla F(X) - \tfrac{1}{2 + \nu} X \big(\nabla F(X) \big)^{\top} X \big) \end{equation} | (5.11) |
reproducing the expression for the gradient from [14, Thm. 1].
Proof. These formulas follow by straightforward calculations by plugging the particular choices for D and \nu into the expression for \mathrm{grad} f from Proposition 5.3.
Next we determine the pseudo-Riemannian Hessian of a smooth function f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} . Here we only consider the subfamily \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} in order to obtain formulas which are not too complicated.
Lemma 5.6. Let X \in \mathrm{St}_{{{n}}, {{k}}} , V \in T_X \mathrm{St}_{{{n}}, {{k}}} and let f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} be smooth with some smooth extension F \colon U \to \mathbb{{{R}}} . The Hessian of f with respect \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} considered as quadratic form is given by
\begin{equation} \begin{split} \mathrm{Hess}(f)\big\vert_{{X}}(V, V) & = {\rm{D}}^2 F(X)(V, V) \\ &\quad + {\rm{D}} F(X) \big( 2 \nu V V^{\top} X D^{-1} + 2 \nu X (X^{\top} V)^2 D^{-1} - X V^{\top} V + X \pi^{D + \nu I_k}\big(V^{\top} V \big) \big) , \end{split} \end{equation} | (5.12) |
where X \in \mathrm{St}_{{{n}}, {{k}}} and V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} .
Proof. The geodesic \gamma \colon \mathbb{{{R}}} \to \mathrm{St}_{{{n}}, {{k}}} through \gamma(0) = X \in \mathrm{St}_{{{n}}, {{k}}} with initial velocity \dot{\gamma}(0) = V \in T_X \mathrm{St}_{{{n}}, {{k}}} fulfills the explicit second order ODE
\begin{equation} \begin{split} \ddot{\gamma}(t) & = 2 \nu \dot{\gamma}(t) \dot{\gamma}(t)^{\top} \gamma(t) D^{-1} + 2 \nu \gamma(t) \big(\gamma(t)^{\top} \dot{\gamma}(t) \big)^2 D^{-1} \\ &\quad - \gamma(t) \dot{\gamma}(t)^{\top} \dot{\gamma}(t) + \gamma(t) \pi^{D + \nu I_k}\big(\dot{\gamma}(t)^{\top} \dot{\gamma}(t) \big) \end{split} \end{equation} | (5.13) |
according to Corollary 4.18. Evaluating (5.13) at t = 0 yields
\begin{equation} \ddot{\gamma}(0) = 2 \nu V V^{\top} X D^{-1} + 2 \nu X (X^{\top} V)^2 D^{-1} - X V^{\top} V + X \pi^{D + \nu I_k}\big(V^{\top} V \big) \end{equation} | (5.14) |
due to the initial conditions \gamma(0) = X and \dot{\gamma}(0) = V . The Hessian of f considered as quadratic form can be determined as
\begin{equation} \mathrm{Hess}(f)\big\vert_{{X}}(V, V) = \tfrac{{\rm{d}}\ ^2}{{\rm{d}}\ t^2} (f \circ \gamma)(t) \big\vert_{{t = 0}}, \end{equation} | (5.15) |
see e.g. [26, Prop. 8.3] for the Riemannian case, which clearly extends to pseudo-Riemannian manifolds. Using f = F\big\vert_{{\mathrm{St}_{{{n}}, {{k}}}}} , Formula (5.15) yields
\begin{equation} \mathrm{Hess}(f)\big\vert_{{X}}(V, V) = {\rm{D}}^2 F(X)\big(\dot{\gamma}(0), \dot{\gamma}(0)\big) + {\rm{D}} F(X) \ddot{\gamma}(0) \end{equation} | (5.16) |
by the chain rule. Plugging (5.14) into (5.16) yields the desired result.
Theorem 5.7. Let X \in \mathrm{St}_{{{n}}, {{k}}} and V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} . Moreover, define \widetilde{D} = D + \nu I_k . The Hessian of a smooth function f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} with smooth extension F \colon U \to \mathbb{{{R}}} with respect \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} is given by
\begin{equation} \begin{split} \mathrm{Hess}(f)\big\vert_{{X}}(V, W) & = {\rm{tr}}\big( \big( {\rm{D}} (\nabla F)(X) V \big)^{\top} W \big) \\ &\quad +\nu {\rm{tr}} \big( \big( X D^{-1} (\nabla F(X))^{\top} V + \nabla F(X) D^{-1} X^{\top} V \big)^{\top} W \big) \\ &\quad +\nu {\rm{tr}}\big( \big( X V^{\top} X X^{\top} \nabla F(X) D^{-1} + X X^{\top} \nabla F(X) D^{-1} V^{\top} X \big)^{\top} W \big) \\ &\quad - \tfrac{1}{2} {\rm{tr}}\big( \big( V X^{\top} \nabla F(X) + V \big( \nabla F(X) \big)^{\top} X \big)^{\top} W \big) \\ &\quad + \tfrac{1}{2} {\rm{tr}}\big( \big( V \pi^{\widetilde{D}} (X^{\top} \nabla F(X) \widetilde{D}^{-1}) \widetilde{D} - V \widetilde{D} \pi^{\widetilde{D}}(X^{\top} \nabla F(X) \widetilde{D}^{-1}) \big)^{\top} W \big) . \end{split} \end{equation} | (5.17) |
Proof. Let (X, V), (X, W) \in T \mathrm{St}_{{{n}}, {{k}}} . We obtain for the Hessian of f as symmetric 2 -tensor
\begin{equation} \begin{split} \mathrm{Hess}(f)\big\vert_{{X}}(V, W) & = {\rm{tr}}\big( \big( {\rm{D}} (\nabla F)(X) V \big)^{\top} W\big) \\ &\quad +\nu {\rm{tr}}\big( \big(\nabla F(X)\big)^{\top} \big(V W^{\top} + W V^{\top}\big) X D^{-1} \big) \\ &\quad +\nu {\rm{tr}}\big( \big(\nabla F(X)\big)^{\top} X \big( X^{\top} V X^{\top} W + X^{\top} W X^{\top} V \big) D^{-1} \big) \\ &\quad - \tfrac{1}{2} {\rm{tr}}\big( \big(\nabla F(X)\big)^{\top} X \big(V^{\top} W + W^{\top} V\big) \big) \\ &\quad + \tfrac{1}{2} {\rm{tr}}\big( \big(\nabla F(X) \big)^{\top} X \pi^{D + \nu I_k}(V^{\top} W + W^{\top} V) \big) \end{split} \end{equation} | (5.18) |
by applying polarization to the quadratic form obtained in Lemma 5.6 and using the identities
\begin{equation*} {\rm{D}} F(X) V = {\rm{tr}} \big( \big(\nabla F(X))^{\top} V \big) \quad \ {\text{and}} \quad {\rm{D}}^2 F(X)(V, W) = {\rm{tr}} \big( \big({\rm{D}} (\nabla F) (X) V \big)^{\top} W \big) . \end{equation*} |
Next, we set \widetilde{D} = D + \nu I_k which is invertible according to Notation 3.13. Since the orthogonal projection \pi^{\widetilde{D}} \colon \mathbb{{{R}}}^{{{k}} \times {{k}}} \to \mathfrak{{{so}}}(k) \subseteq \mathbb{{{R}}}^{{{k}} \times {{k}}} is self-adjoint with respect to the scalar product
\begin{equation*} \langle \cdot, \cdot \rangle^{\widetilde{D}} \colon \mathbb{{{R}}}^{{{k}} \times {{k}}} \times \mathbb{{{R}}}^{{{k}} \times {{k}}} \to \mathbb{{{R}}}, \quad (V, W) \mapsto {\rm{tr}}\big(V^{\top} W \widetilde{D} \big) \end{equation*} |
on \mathbb{{{R}}}^{{{k}} \times {{k}}} , we calculate
\begin{equation} \begin{split} {\rm{tr}}\big( \big(\nabla F(X) \big)^{\top} X \pi^{\widetilde{D}}\big(V^{\top} W + W^{\top} V \big) \big) & = {\rm{tr}}\big( \big( X^{\top} \nabla F(X) \widetilde{D}^{-1} \big)^{\top} \pi^{\widetilde{D}}\big(V^{\top} W + W^{\top} V \big) \widetilde{D} \big) \\ & = \big\langle X^{\top} \nabla F(X) \widetilde{D}^{-1}, \pi^{\widetilde{D}}\big(V^{\top} W + W^{\top} V \big) \big\rangle^{\widetilde{D}} \\ & = \big\langle \pi^{\widetilde{D}}\big( X^{\top} \nabla F(X) \widetilde{D}^{-1}\big), V^{\top} W + W^{\top} V \big\rangle^{\widetilde{D}} \\ & = {\rm{tr}}\big( \big( V \pi^{\widetilde{D}}\big( X^{\top} \nabla F(X) \widetilde{D}^{-1} \big) \widetilde{D} - V \widetilde{D} \pi^{\widetilde{D}}\big( X^{\top} \nabla F(X) \widetilde{D}^{-1} \big) \big)^{\top} W \big) \end{split} \end{equation} | (5.19) |
by exploiting {\rm{im}}(\pi^{\widetilde{D}}) = \mathfrak{{{so}}}(k) . The desired result follows by rewriting (5.18) using well-known properties of the trace and applying (5.19) to the last summand of (5.18).
Corollary 5.8. 5.7: Let D = 2 I_k and - 2 \neq \nu \in \mathbb{{{R}}} . Then the Hessian of the smooth function f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} reads
\begin{equation} \begin{split} \mathrm{Hess}(f)\big\vert_{{X}}(V, W) & = {\rm{tr}}\big( \big( {\rm{D}} (\nabla F)(X) V \big)^{\top} W \big) \\ &\quad +\tfrac{\nu}{2} {\rm{tr}}\big( \big( X \big(\nabla F(X) \big)^{\top} V + \nabla F(X) X^{\top} V \big)^{\top} W \big) \\ &\quad +\tfrac{\nu}{2} {\rm{tr}}\big( \big( X V^{\top} X X^{\top} \nabla F(X) + X X^{\top} \nabla F(X) V^{\top} X \big)^{\top} W \big) \\ &\quad - \tfrac{1}{2} {\rm{tr}}\big( \big( V X^{\top} \nabla F(X) + V \big( \nabla F(X) \big)^{\top} X \big)^{\top} W \big) \end{split} \end{equation} | (5.20) |
with X \in \mathrm{St}_{{{n}}, {{k}}} and V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} reproducing the formula from [14, Thm. 2].
Proof. We set D = 2 I_k in Theorem 5.7. Obviously, \widetilde{D} = (2 + \nu) I_k holds. Hence
\begin{equation*} \pi^{\widetilde{D}} \big(X^{\top} \nabla F(X) \widetilde{D}^{-1} \big) \widetilde{D} = \pi^{\widetilde{D}} \big(X^{\top} \nabla F(X) \big) = \widetilde{D} \pi^{\widetilde{D}} \big(X^{\top} \nabla F(X) \widetilde{D}^{-1} \big) \end{equation*} |
is fulfilled by the linearity of \pi^{\widetilde{D}} \colon \mathbb{{{R}}}^{{{n}} \times {{k}}} \to \mathfrak{{{so}}}(k) \subseteq \mathbb{{{R}}}^{{{n}} \times {{k}}} . Thus the last summand of (5.17) vanishes.
Theorem 5.7 yields an expression for the Hessian of f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} as covariant 2 -tensor. However, for applications, see e.g. [2, Chap. 6], an expression for the Hessian of f viewed as section of \mathrm{End}(T \mathrm{St}_{{{n}}, {{k}}}) is desirable. Thus, following [14, Re. 6], we state the next remark and the next corollary.
Remark 5.9. In [2, Eq. (6.3)] the Hessian of a smooth function f \colon M \to \mathbb{{{R}}} on a Riemannian manifold \big(M, \langle \cdot, \cdot \rangle\big) endowed with a covariant derivative \nabla is defined as
\begin{equation*} \widetilde{ \mathrm{Hess}}(f)\big\vert_{{x}}(v_x) = \nabla_{v_x} \mathrm{grad} f\big\vert_{{x}} \end{equation*} |
for x \in M and v_x \in T_x M . In particular, \widetilde{ \mathrm{Hess}}(f) \in \Gamma^{\infty}\big(\mathrm{End}(T M) \big) holds. If \nabla is chosen as the Levi-Civita covariant derivative \nabla^{\mathrm{LC}} , then \widetilde{ \mathrm{Hess}}(f) is related to \mathrm{Hess}(f) \in \Gamma^{\infty}\big(\mathrm{S}^2 (T^* M)\big) via
\begin{equation} \big\langle \widetilde{ \mathrm{Hess}}(f)\big\vert_{{x}}(v), w \big\rangle = \big\langle \nabla^{\mathrm{LC}}_{v_x} \mathrm{grad} f \big\vert_{{x}}, w_x \big\rangle = \mathrm{Hess}(f)\big\vert_{{x}}(v_x, w_x), \end{equation} | (5.21) |
where x \in M and v_x, w_x \in T_x M , see e.g. [26, Prop. 8.1] for a proof for the Riemannian case. Clearly, Equation (5.21) holds in the pseudo-Riemannian case, too. We rewrite (5.21) equivalently as
\begin{equation} \big\langle \widetilde{ \mathrm{Hess}}(f)\big\vert_{{x}}(v_x), \cdot \big\rangle = \mathrm{Hess}(f)\big\vert_{{x}}(v_x, \cdot) . \end{equation} | (5.22) |
Applying the sharp map \sharp \colon T_x^* M \to T_x M associated with \langle \cdot, \cdot \rangle on both sides of (5.22) yields
\begin{equation} \widetilde{ \mathrm{Hess}}(f)\big\vert_{{x}}(v_x) = \big( \mathrm{Hess}(f)\big\vert_{{x}}(v_x, \cdot)\big)^{\sharp} . \end{equation} | (5.23) |
Corollary 5.10. Let f \colon \mathrm{St}_{{{n}}, {{k}}} \to \mathbb{{{R}}} be smooth with some smooth extension F \colon U \to \mathbb{{{R}}} . The Hessian of f with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} considered as a section of \mathrm{End}(T \mathrm{St}_{{{n}}, {{k}}}) is given by
\begin{equation*} \begin{split} \widetilde{ \mathrm{Hess}}(f)\big\vert_{{X}}(V) & = L_X^{D, \nu} \Big( {\rm{D}} (\nabla F)(X) V +\nu \big( X D^{-1} (\nabla F(X))^{\top} V + \nabla F(X) D^{-1} X^{\top} V \big) \\ &\quad +\nu \big( X V^{\top} X X^{\top} \nabla F(X) D^{-1} + X X^{\top} \nabla F(X) D^{-1} V^{\top} X \big) \\ &\quad - \tfrac{1}{2} \big( V X^{\top} \nabla F(X) + V \big( \nabla F(X) \big)^{\top} X \big) \\ &\quad + \tfrac{1}{2} \big( V \pi^{\widetilde{D}}\big(X^{\top} \nabla F(X) \widetilde{D}^{-1} \big) \widetilde{D} - V \widetilde{D}\pi^{\widetilde{D}} \big(X^{\top} \nabla F(X) \widetilde{D}^{-1} \big) \big) \Big) \end{split} \end{equation*} |
for X \in \mathrm{St}_{{{n}}, {{k}}} and V \in T_X \mathrm{St}_{{{n}}, {{k}}} , where \widetilde{D} = D + \nu I_k and L_X^{D, \nu} \colon \mathbb{{{R}}}^{{{n}} \times {{k}}} \to T_X \mathrm{St}_{{{n}}, {{k}}} \subseteq \mathbb{{{R}}}^{{{n}} \times {{k}}} is the linear map given by
\begin{equation*} L_X^{D, \nu}(V) = V D^{-1} - X X^{\top} V D^{-1} + X \pi^{D + \nu I_k}\big(X^{\top} V (D + \nu I_k)^{-1}\big) . \end{equation*} |
Proof. We have already obtained \mathrm{Hess}(f) in Theorem 5.7 in such a form that the formula for the sharp map from Corollary 5.4 can be applied to \mathrm{Hess}(f)\big\vert_{{X}}(V, \cdot) \in T_X^*\mathrm{St}_{{{n}}, {{k}}} . Now Remark 5.9 yields the desired result.
In this section, we compute the second fundamental form of \mathrm{St}_{{{n}}, {{k}}} considered as pseudo-Riemannian submanifold of \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E}\big) . Moreover, an expression for the Levi-Civita covariant derivative on \mathrm{St}_{{{n}}, {{k}}} is derived. We first recall Notation 5.1. Unless indicated otherwise, we denote by U \subseteq \mathbb{{{R}}}^{{{n}} \times {{k}}} an open neighbourhood of \mathrm{St}_{{{n}}, {{k}}} with the property from Lemma 3.8.
We consider the Levi-Civita covariant derivative \widetilde{ \nabla^{\mathrm{LC}}} on U with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} . Recall Proposition 4.9. For (X, V) \in TU the spray \widetilde{S} \in \Gamma^{\infty}\big(T (TU)\big) associated with the metric \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} on U is given by
\begin{equation} \widetilde{S}(X, V) = \big(X, V, V, - \widetilde{\Gamma}_X(V, V) \big) \end{equation} | (6.1) |
where \widetilde{\Gamma}_X(V, V) is the unique solution of the linear equation (4.11). We now discuss how \widetilde{\Gamma}_X(V, V) \! \in \! \mathbb{{{R}}}^{{{n}} \times {{k}}} is related to the Christoffel symbols of the Levi-Civita covariant derivative \widetilde{ \nabla^{\mathrm{LC}}} on \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) . To this end, we view \mathrm{id}_U \colon U \ni X \mapsto X \in U as the global chart \big(U, \mathrm{id}_U \big) = \big(U, X_{ij} \big) of U and identify the coordinate vector fields \frac{\partial}{\partial X_{ij}} with the constant functions U \ni X \mapsto E_{ij} \in \mathbb{{{R}}}^{{{n}} \times {{k}}} . Then (6.1) is a coordinate expression for the metric spray \widetilde{S} with respect to the global chart \big(TU, (X_{ij}, V_{ij}) \big) induced by the chart (U, X_{ij}) , see also Proposition 4.9. Thus the local form of metric sprays, see (4.2), implies that the entry \big(\widetilde{\Gamma}_X(V, V)\big)_{ij} fulfills
\begin{equation} \big(\widetilde{\Gamma}_X(V, V)\big)_{ij} = \sum\limits_{a, c = 1}^n \sum\limits_{b, d = 1}^k \widetilde{\Gamma}_{(a, b), (c, d)}^{(i, j)} \big\vert_{{X}}V_{a b} V_{c d}, \end{equation} | (6.2) |
where V = (V_{ij}) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} and the functions \widetilde{\Gamma}_{(a, b), (c, d)}^{(i, j)} \colon U \ni X \mapsto \widetilde{\Gamma}_{(a, b), (c, d)}^{(i, j)}\big\vert_{{X}}\in \mathbb{{{R}}} denote the Christoffel symbols of \widetilde{ \nabla^{\mathrm{LC}}} with respect to \big(U, (X_{ij}) \big) . Hence \widetilde{ \nabla^{\mathrm{LC}}} can be expressed with respect to the global chart (U, X_{ij}) as
\begin{equation} \widetilde{ \nabla^{\mathrm{LC}}_{\widetilde{V}}} \widetilde{W} \big\vert_{{X}} = {\rm{D}} \widetilde{W}(X) \widetilde{V}\big\vert_{{X}}+ \widetilde{\Gamma}_X\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big), \end{equation} | (6.3) |
for vector fields \widetilde{V}, \widetilde{W} \in \Gamma^{\infty}(T U) and X \in U , see e.g. [27, Chap. 4]. A similar "matrix notation" for Christoffel symbols has already appeared in [10, Sec. 2.2.3], where, in addition, it is mentioned that (for fixed X \in U ) the symmetric bilinear map \mathbb{{{R}}}^{{{n}} \times {{k}}} \times \mathbb{{{R}}}^{{{n}} \times {{k}}} \ni (V, W) \mapsto \widetilde{\Gamma}_X(V, W) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} can be obtained from the quadratic map \mathbb{{{R}}}^{{{n}} \times {{k}}} \ni V \mapsto \widetilde{\Gamma}_X(V, V) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} by polarization. Hence the Christoffel symbols on U can be identified with the smooth map
\begin{equation} \widetilde{\Gamma} \colon U \to \mathrm{S}^2\big((\mathbb{{{R}}}^{{{n}} \times {{k}}})^* \big) \otimes \mathbb{{{R}}}^{{{n}} \times {{k}}} , \quad X \mapsto \big((V, W) \mapsto \widetilde{\Gamma}_X(V, W) \big) . \end{equation} | (6.4) |
The "Christoffel symbols" from [10, Sec. 2.2.3] will be discussed in Remark 6.11 below.
Next we give an expression for the Levi-Civita covariant derivative \nabla^{\mathrm{LC}} on \mathrm{St}_{{{n}}, {{k}}} with respect \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} . We refer to Proposition 6.8 as well as Corollary 6.9 below for an alternative formula for \nabla^{\mathrm{LC}} .
Proposition 6.1. Let V, W \in \Gamma^{\infty}(T \mathrm{St}_{{{n}}, {{k}}}) . The Levi-Civita covariant derivative on \big(\mathrm{St}_{{{n}}, {{k}}}, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) is given by
\begin{equation} \nabla^{\mathrm{LC}}_V W \big\vert_{{X}} = P_X\Big( {\rm{D}} \widetilde{W}(X) V \big\vert_{{X}}+ \widetilde{\Gamma}_X\big( V\big\vert_{{X}}, W\big\vert_{{X}}\big) \Big) \end{equation} | (6.5) |
for all X \in \mathrm{St}_{{{n}}, {{k}}} , where \widetilde{V} \in \Gamma^{\infty}(T U) is a smooth extensions of V . Here \widetilde{\Gamma} is defined by (6.4). Moreover, P_X \colon \mathbb{{{R}}}^{{{n}} \times {{k}}} \to T_X \mathrm{St}_{{{n}}, {{k}}} is the orthogonal projection with respect to \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} from Theorem 3.18.
Proof. Since \mathrm{St}_{{{n}}, {{k}}} is a pseudo-Riemannian submanifold of \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) , the result follows by (6.3) due to
\begin{equation*} \nabla^{\mathrm{LC}}_V W \big\vert_{{X}} = P_X \Big(\widetilde{ \nabla^{\mathrm{LC}}_{V}} \widetilde{W}\big\vert_{{X}}\Big) , \end{equation*} |
see e.g. [17, Chap. 4, Lem. 3].
We now consider the second fundamental form, also called shape operator, of \mathrm{St}_{{{n}}, {{k}}} \subseteq \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) . We refer to [17, Chap. 4] for general properties of pseudo-Riemanian submanifolds and the second fundamental form, see also [27, Chap. 8] for the Riemannian case. Using these references, we briefly introduce the notation which is used in the sequel subsections.
Let M be a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold \big(\widetilde{M}, \langle \cdot, \cdot \rangle \big) . The corresponding Levi-Civita covariant derivatives on M and \widetilde{M} are denoted by \nabla^{\mathrm{LC}} and \widetilde{ \nabla^{\mathrm{LC}}} , respectively. Moreover, let N M \to M be the normal bundle of M and let \mathrm{II} \in \Gamma^{\infty}\big((\mathrm{S}^2 (T^* M)) \otimes N M \big) be the second fundamental form of M , see e.g. [17, Chap. 4, Lem. 4], defined by
\begin{equation} \mathrm{II}(V, W)\big\vert_{{x}} = P_x^{\perp}\Big(\widetilde{ \nabla^{\mathrm{LC}}_{\widetilde{V}}} \widetilde{W}\big\vert_{{x}}\Big), \quad x \in M, \quad V, W \in \Gamma^{\infty}(T M) , \end{equation} | (6.6) |
where \widetilde{V}, \widetilde{W} \in \Gamma^{\infty}(T \widetilde{M}) are smooth extensions of V, W \in \Gamma^{\infty}(T M) , respectively, and P_x^{\perp} \colon T_x \widetilde{M} \to N_x M denotes the orthogonal projection onto the normal space N_x M = (T_x M)^{\perp} . The Levi-Civita covariant derivative on M fulfills
\begin{equation} \nabla^{\mathrm{LC}}_V W = \widetilde{ \nabla^{\mathrm{LC}}_V} \widetilde{W} - \mathrm{II}(V, W) \end{equation} | (6.7) |
for all V, W \in \Gamma^{\infty}(TM) by [17, Chap. 4]. Here \widetilde{W} is again some smooth extension of W to \widetilde{M} . The identity (6.7) is named Gauß formula in [27, Thm. 8.2], which includes a proof for the Riemannian case, as well.
Lemma 6.2. Define \nabla \colon \Gamma^{\infty}(T \widetilde{M}) \times \Gamma^{\infty}(T \widetilde{M}) \to \Gamma^{\infty}(T \widetilde{M}) by
\begin{equation} \nabla_{\widetilde{V}} \widetilde{W} = \widetilde{ \nabla^{\mathrm{LC}}_{\widetilde{V}}} \widetilde{W} - \widetilde{ \mathrm{II}}(\widetilde{V}, \widetilde{W}), \quad \widetilde{V}, \widetilde{W} \in \Gamma^{\infty}(T \widetilde{M}), \end{equation} | (6.8) |
where \widetilde{ \mathrm{II}} \in \Gamma^{\infty}\big((\mathrm{S}^2 T^* \widetilde{M}) \otimes T \widetilde{M} \big) denotes a smooth extension of the second fundamental form \mathrm{II} on M to \widetilde{M} . Then \nabla is a covariant derivative on \widetilde{M} whose restriction to M coincides with \nabla^{\mathrm{LC}} , i.e.
\begin{equation} \nabla^{\mathrm{LC}}_V W \big\vert_{{x}} = \nabla_{\widetilde{V}} \widetilde{W} \big\vert_{{x}} \end{equation} | (6.9) |
holds for all x \in M and V, W \in \Gamma^{\infty}(TM) with smooth extensions \widetilde{V}, \widetilde{W} \in \Gamma^{\infty}(T \widetilde{M}) . Moreover, the Christoffel symbols of \nabla with respect to the local chart (U, x) of \widetilde{M} are given by
\begin{equation} \Gamma_{ij}^k = \widetilde{\Gamma}_{ij}^k - \widetilde{ \mathrm{II}}_{ij}^k . \end{equation} | (6.10) |
Here \widetilde{ \mathrm{II}}_{ij}^k is defined by \widetilde{ \mathrm{II}}\big(\tfrac{\partial}{\partial x^i}, \tfrac{\partial}{\partial x^j} \big) = \widetilde{ \mathrm{II}}_{ij}^k \tfrac{\partial}{\partial x^k} using Einstein summation convention and \widetilde{\Gamma}_{ij}^k denote the Christoffel symbols of \widetilde{ \nabla^{\mathrm{LC}}} with respect to the chart (U, x) .
Proof. Obviously, the definition of \nabla yields a covariant derivative on M . Moreover, the Gauß formula (6.7) implies
\begin{equation*} ´ \nabla^{\mathrm{LC}}_{\widetilde{V}} \widetilde{W}\big\vert_{{x}} = \widetilde{ \nabla^{\mathrm{LC}}_{\widetilde{V}}} \widetilde{W} \big\vert_{{x}}- \mathrm{II}\big\vert_{{x}}\big(\widetilde{V}\big\vert_{{x}}, \widetilde{W}\big\vert_{{x}}\big) = \nabla_{\widetilde{V}} \widetilde{W}\big\vert_{{x}} \end{equation*} |
for all x \in M and all V, W \in \Gamma^{\infty}(T M) with smooth extensions \widetilde{V}, \widetilde{W} \in \Gamma^{\infty}(T \widetilde{M}) , respectively.
It remains to show the formula for the Christoffel symbols. Let (U, x) be a local chart of \widetilde{M} . Using Einstein summation convention one obtains
\begin{equation*} \nabla_{\tfrac{\partial}{\partial x^i}} \tfrac{\partial}{\partial x^j} = \widetilde{ \nabla^{\mathrm{LC}}_{\tfrac{\partial}{\partial x^i}}} \tfrac{\partial}{\partial x^j} - \widetilde{ \mathrm{II}}\big( \tfrac{\partial}{\partial x^i}, \tfrac{\partial}{\partial x^j} \big) = \widetilde{\Gamma}_{ij}^k \tfrac{\partial}{\partial x^k} - \widetilde{ \mathrm{II}}_{ij}^k \tfrac{\partial}{\partial x^k} = \big( \widetilde{\Gamma}_{ij}^k - \widetilde{ \mathrm{II}}_{ij}^k \big) \tfrac{\partial}{\partial x^k} \end{equation*} |
showing the desired result.
Remark 6.3. The definition of the covariant derivative \nabla on \widetilde{M} in Lemma 6.2 depends on the choice of the smooth extension \widetilde{ \mathrm{II}} of \mathrm{II} . Nevertheless, Equation (6.9) is independent of the extension \widetilde{ \mathrm{II}} of \mathrm{II} .
Reformulating [16, Cor. 8.4.2] yields the next lemma which allows for computing the second fundamental form of \mathrm{St}_{{{n}}, {{k}}} \subseteq \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E}\big) .
Lemma 6.4. Let M \subseteq \widetilde{M} be a pseudo-Riemannian submanifold of \big(\widetilde{M}, \langle \cdot, \cdot \rangle \big) . Moreover, we denote by \widetilde{S} \in \Gamma^{\infty}\big(T (T \widetilde{M})\big) and S \in \Gamma^{\infty}\big(T (TM) \big) the metric sprays on TM and T \widetilde{M} , respectively. Then
\begin{equation} \big(S - \widetilde{S} \big)(v_x) = \big( \mathrm{II}\big\vert_{{x}}(v_x, v_x)\big)^ \mathrm{ver}\big\vert_{{v_x}}, \end{equation} | (6.11) |
holds for all x \in M and v_x \in T_x M , where
\begin{equation*} (\cdot)^ \mathrm{ver}\big\vert_{{v_x}}\colon T_x M \to \mathrm{Ver}_{v_x}(TM) \subseteq T_{v_x}(T M) \end{equation*} |
is the vertical lift and \mathrm{II} \in \Gamma^{\infty}\big((\mathrm{S}^2 (T^* M)) \otimes N M \big) is the second fundamental form of M \subseteq \widetilde{M} .
Proof. This is a direct consequence of [16, Cor. 8.4.2] as well as the definition \mathrm{II} recalled in (6.6).
Lemma 6.4 applied to \mathrm{St}_{{{n}}, {{k}}} \subseteq \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) yields an expression for the second fundamental form.
Proposition 6.5. Consider \mathrm{St}_{{{n}}, {{k}}} \subseteq \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) as pseudo-Riemannian submanifold. Then the following assertions are fulfilled:
1. The second fundamental form of \mathrm{St}_{{{n}}, {{k}}} \subseteq \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E} \big) is given by
\begin{equation} \mathrm{II}\big\vert_{{X}}(V, W) = \widetilde{\Gamma}_X(V, W) - \Gamma_X(V, W) \end{equation} | (6.12) |
for all X \in \mathrm{St}_{{{n}}, {{k}}} and V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} , where \Gamma_X and \widetilde{\Gamma}_X denote the symmetric bilinear maps associated with the quadratic maps defined by the sprays S \in \Gamma^{\infty}\big(T (T \mathrm{St}_{{{n}}, {{k}}}) \big) and \widetilde{S} \in \Gamma^{\infty}\big(T (TU) \big) , respectively.
2. A smooth extension \widetilde{ \mathrm{II}} \in \Gamma^{\infty}\big((\mathrm{S}^2 (T^*U)) \otimes T U \big) of \mathrm{II} is given
\begin{equation} \widetilde{ \mathrm{II}}\big\vert_{{X}}(V, W) = \tilde{\Gamma}_X(V, W) - \Gamma_X(V, W), \end{equation} | (6.13) |
for all X \in U and V, W \in T_X U \cong \mathbb{{{R}}}^{{{n}} \times {{k}}} , Here we view \Gamma_X(V, W) as in Remark 4.16, i.e. as the smooth map \Gamma \colon U \to \mathrm{S}^2\big((\mathbb{{{R}}}^{{{n}} \times {{k}}})^*\big) \otimes \mathbb{{{R}}}^{{{n}} \times {{k}}} defined in (4.25).
Proof. Lemma 6.4 applied to \mathrm{St}_{{{n}}, {{k}}} \subseteq (U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E}) implies that
\begin{equation} S(X, V) - \widetilde{S}(X, V) = \big( \mathrm{II}\big\vert_{{X}}(V, V) \big)^{ \mathrm{ver}}\big\vert_{{(X, V)}} \end{equation} | (6.14) |
holds for all (X, V) \in T \mathrm{St}_{{{n}}, {{k}}} . The vertical lift for fixed (X, V) \in TU is the linear isomorphism
\begin{equation*} (\cdot)^{ \mathrm{ver}}\big\vert_{{(X, V)}}\colon T U \to \mathrm{Ver}(T U)_{(X, V)} , \quad (X, W) \mapsto (X, W)^{ \mathrm{ver}}\big\vert_{{(X, V)}} = (X, V, 0, W) , \end{equation*} |
according to its local expression, see e.g. [20, Sec. 8.12]. Thus
\begin{equation*} \mathrm{II}\big\vert_{{X}}(V, V) = -\Gamma_X(V, V) - \big( - \widetilde{\Gamma}_X(V, V) \big) = \widetilde{\Gamma}_X(V, V) -\Gamma_X(V, V) \end{equation*} |
follows by (6.14). Since the quadratic map T_X \mathrm{St}_{{{n}}, {{k}}} \ni V \mapsto \widetilde{\Gamma}_X(V, V) - \Gamma_X(V, V) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} determines uniquely the associated symmetric billinear map, Claim 1 is shown. Now Claim 2 is obvious.
The second fundamental from can be simplified for all metrics in the subfamily \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} .
Corollary 6.6. The second fundamental form of \mathrm{St}_{{{n}}, {{k}}} \subseteq \big(U, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} \big) is given by
\begin{equation} \begin{split} \mathrm{II}\big\vert_{{X}}(V, W) & = - \tfrac{1}{2}X\big( V^{\top} W + W^{\top} V \big) D \big(D + \nu I_k \big)^{-1} + \nu X \big(X^{\top} V X^{\top} W + X^{\top} W X^{\top} V\big) \big(D + \nu I_k \big)^{-1} \\ &\quad + \tfrac{1}{2} X \pi^{D + \nu I_k}\big(V^{\top} W + W^{\top} V\big) \\ \end{split} \end{equation} | (6.15) |
for all X \in \mathrm{St}_{{{n}}, {{k}}} and V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} .
Proof. Let X \in \mathrm{St}_{{{n}}, {{k}}} and V \in T_X \mathrm{St}_{{{n}}, {{k}}} . We first compute the quadratic map associated with \mathrm{II} . Using Corollary 4.12 and Corollary 4.18, Proposition 6.5 implies
\begin{equation} \begin{split} \mathrm{II}\big\vert_{{X}}(V, V) & = \widetilde{\Gamma}_X(V, V) - \Gamma_X(V, V) \\ & = \Big( 2 \nu V X^{\top} V D^{-1} + \nu X V^{\top} V \big(D + \nu I_k \big)^{-1} - 2 \nu^2 X (X^{\top} V)^2 (D + \nu I_k)^{-1} D^{-1} \Big) \\ &\quad + \Big( 2 \nu V V^{\top} X D^{-1} + 2 \nu X (X^{\top} V)^2 D^{-1} - X V^{\top} V + X \pi^{D + \nu I_k}(V^{\top} V) \Big) \\ & = X V^{\top} V \Big( \nu \big(D + \nu I_k \big)^{-1} - I_k \Big) + 2 \nu X (X^{\top} V)^2 \Big( D^{-1} - \nu(D + \nu I_k)^{-1} D^{-1} \Big) + X \pi^{D + \nu I_k}(V^{\top} V) \\ & = - X V^{\top} V D \big(D + \nu I_k \big)^{-1} + 2 \nu X (X^{\top} V)^2 \big(D + \nu I_k \big)^{-1} + X \pi^{D + \nu I_k}(V^{\top} V) . \end{split} \end{equation} | (6.16) |
Here we exploited
\begin{equation*} \big( \nu (D + \nu I_k)^{-1} - I_k \big)_{ii} = \tfrac{\nu}{D_{ii} + \nu} - 1 = \tfrac{\nu - (D_{ii} + \nu)}{D_{ii} + \nu} = - \tfrac{D_{ii}}{D_{ii} + \nu} = - \big( D (D + \nu)^{-1} \big)_{ii} \end{equation*} |
as well as
\begin{equation*} \big( D^{-1} - \nu(D + \nu I_k)^{-1} D^{-1} \big)_{ii} = \tfrac{1}{D_{ii}} \big( 1 - \tfrac{\nu}{D_{ii} + \nu} \big) = \tfrac{1}{D_{ii}} \tfrac{D_{ii} + \nu - \nu}{D_{ii} + \nu} = \big((D + \nu I_k)^{-1}\big)_{ii} . \end{equation*} |
The desired result follows by polarization.
Corollary 6.7. For D = 2 I_k and E = \nu I_k the second fundamental form is given by
\begin{equation} \mathrm{II}\big\vert_{{X}}(V, W) = - \tfrac{1}{2 + \nu}X\big( V^{\top} W + W^{\top} V \big) + \tfrac{\nu}{2 + \nu} X \big(X^{\top} V X^{\top} W + X^{\top} W X^{\top} V\big) \end{equation} | (6.17) |
for X \in \mathrm{St}_{{{n}}, {{k}}} and V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} .
Proof. Plugging D = 2 I_k into the formula from Corollary 6.6 the claim follows by a straightforward calculation by exploiting \pi^{2 I_k + \nu I_k} = {\rm{skew}} \colon \mathbb{{{R}}}^{{{k}} \times {{k}}} \to \mathfrak{{{so}}}(k) .
Next we derive an alternative expression for the Levi-Civita covariant derivative on \big(\mathrm{St}_{{{n}}, {{k}}}, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, E}\big) .
Proposition 6.8. The covariant derivative \nabla on U from Lemma 6.2 fulfills for \widetilde{V}, \widetilde{W} \in \Gamma^{\infty}(T U) and X \in U
\begin{equation} \nabla_{\widetilde{V}} \widetilde{W} \big\vert_{{X}} = \widetilde{ \nabla^{\mathrm{LC}}_{\widetilde{V}}} \widetilde{W}\big\vert_{{X}}- \widetilde{ \mathrm{II}}\big\vert_{{X}}\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big) = {\rm{D}} \widetilde{W}(X) \widetilde{V}\big\vert_{{X}}+ \Gamma_X\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big) , \end{equation} | (6.18) |
where \Gamma denotes the smooth map U \to \mathrm{S}^2\big((\mathbb{{{R}}}^{{{n}} \times {{k}}})^*\big) \otimes \mathbb{{{R}}}^{{{n}} \times {{k}}} defined in (4.25). If \widetilde{V}, \widetilde{W} \in \Gamma^{\infty}(TU) are smooth extensions of V, W \in \Gamma^{\infty}(T \mathrm{St}_{{{n}}, {{k}}}) , respectively, then
\begin{equation} \nabla^{\mathrm{LC}}_V W \big\vert_{{X}} = {\rm{D}} \widetilde{W}(X) V\big\vert_{{X}}+ \Gamma_X\big(V\big\vert_{{X}}, W\big\vert_{{X}}\big) \end{equation} | (6.19) |
is satisfied for all X \in \mathrm{St}_{{{n}}, {{k}}} .
Proof. Using Lemma 6.2 and Proposition 6.5 we compute
\begin{equation*} \begin{split} \nabla_{\widetilde{V}} \widetilde{W}\big\vert_{{X}}& = \widetilde{ \nabla^{\mathrm{LC}}_{\widetilde{V}}} \widetilde{W} \big\vert_{{X}}- \widetilde{ \mathrm{II}}\big\vert_{{X}}\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big) \\ & = \Big( {\rm{D}} \widetilde{W}(X) \widetilde{V}\big\vert_{{X}}+ \widetilde{\Gamma}_X\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big) \Big) - \Big( \widetilde{\Gamma}_X\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big) -\Gamma_X\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big) \Big) \\ & = {\rm{D}} \widetilde{W}(X) \widetilde{V}\big\vert_{{X}}+ \Gamma_X\big(\widetilde{V}\big\vert_{{X}}, \widetilde{W}\big\vert_{{X}}\big) \end{split} \end{equation*} |
for V, W \in \Gamma^{\infty}(TU) and X \in U showing (6.18). If \widetilde{V}, \widetilde{W} are smooth extensions of V, W \in \Gamma^{\infty}(T \mathrm{St}_{{{n}}, {{k}}}) , respectively, we obtain
\begin{equation*} \nabla_{\widetilde{V}} \widetilde{W} \big\vert_{{X}} = \nabla^{\mathrm{LC}}_V W \big\vert_{{X}} = {\rm{D}} \widetilde{W}(X) V\big\vert_{{X}}+ \Gamma_X\big(V\big\vert_{{X}}, W\big\vert_{{X}}\big) \end{equation*} |
for all X \in \mathrm{St}_{{{n}}, {{k}}} by Lemma 6.2 proving (6.19).
Proposition 6.8 yields a more explicit formula for the subfamily \langle \cdot, \cdot \rangle_{(\cdot)}^{\nu} .
Corollary 6.9. Let V, W \in \Gamma^{\infty}(T \mathrm{St}_{{{n}}, {{k}}}) and let \widetilde{W} \in \Gamma^{\infty}(T U) be smooth extension of W . The Levi-Civita covariant derivative on \mathrm{St}_{{{n}}, {{k}}} with respect to the metric \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu} is given by
\begin{equation} \nabla^{\mathrm{LC}}_V W \big\vert_{{X}} = {\rm{D}} \widetilde{W}(X) V\big\vert_{{X}}+ \Gamma_X\big(V\big\vert_{{X}}, W\big\vert_{{X}}\big) \end{equation} | (6.20) |
for X \in \mathrm{St}_{{{n}}, {{k}}} , where
\begin{equation} \begin{split} \Gamma_X(V, W) & = - \nu \big(V W^{\top} + W V^{\top} \big) X D^{-1} - \nu X \big(X^{\top} V X^{\top} W + X^{\top} W X^{\top} V\big) D^{-1} \\ &\quad + \tfrac{1}{2} X \big( V^{\top} W + W^{\top} V \big) -\tfrac{1}{2} X \pi^{D + \nu I_k}\big(V^{\top} W + W^{\top} V \big) \end{split} \end{equation} | (6.21) |
writing V = V\big\vert_{{X}} and W = W\big\vert_{{X}} for short.
Proof. The quadratic map \Gamma_X \colon T_X \mathrm{St}_{{{n}}, {{k}}} \ni V \mapsto \Gamma_X(V, V) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} is determined in Corollary 4.18. The associated symmetric bilinear map T_X \mathrm{St}_{{{n}}, {{k}}} \times T_X \mathrm{St}_{{{n}}, {{k}}} \ni (V, W) \mapsto \Gamma_X(V, W) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} can be obtained by polarization. Now Proposition 6.8 yields the desired result.
Corollary 6.9 yields an expression for the covariant derivative with respect to the family of metrics introduced in [13].
Corollary 6.10. Using the notation from Corollary 6.9 one obtains for \nabla^{\mathrm{LC}} on \big(\mathrm{St}_{{{n}}, {{k}}}, \langle \cdot, \cdot \rangle_{(\cdot)}^{D, \nu}\big) with D = 2 I_k and -2 \neq \nu \in \mathbb{{{R}}}
\begin{equation} \nabla^{\mathrm{LC}}_V W \big\vert_{{X}} = {\rm{D}} \widetilde{W}(X) V - \tfrac{\nu}{2} \big(V W^{\top} + W V^{\top} \big) X - \tfrac{\nu}{2} X \big(X^{\top} V X^{\top} W + X^{\top} W X^{\top} V\big) + \tfrac{1}{2} X \big( V^{\top} W + W^{\top} V \big) . \end{equation} | (6.22) |
Proof. Plugging D = 2 I_k into the formula from Corollary 6.9 yields the desired result by exploiting \pi^{2 I_k + \nu I_k}(V^{\top} W + W^{\top} V) = {\rm{skew}}(V^{\top} W + W^{\top} V) = 0 for all V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} .
By setting D = \alpha_0 I_k and E = (\alpha_1 - \alpha_0) I_k for \alpha_0, \alpha_1 \in \mathbb{{{R}}} , Corollary 6.9 reproduces [25, Eq. (5.4)], where this expression has been obtained independently. Formulas for \nabla^{\mathrm{LC}} of a similar form as in Proposition 6.8 or Corollary 6.9 have already appeared in the literature in [10,25], see also [28, Sec. 4]. In the next remark we relate the summand \Gamma_X(V, W) in these formulas to the Christoffel symbols of the covariant derivative \nabla on the open U \subseteq \mathbb{{{R}}}^{{{n}} \times {{k}}} .
Remark 6.11. Consider the smooth map \Gamma \colon U \ni X \mapsto \big((V, W) \mapsto \Gamma_X(V, W) \big) \in \mathrm{S}^2\big((\mathbb{{{R}}}^{{{n}} \times {{k}}})^*\big) \otimes \mathbb{{{R}}}^{{{n}} \times {{k}}} from (4.25) in Remark 4.16. The Christoffel symbols of the covariant derivative \! \nabla_{V} W \! = \! \widetilde{ \nabla^{\mathrm{LC}}_V} W \! \! - \! \widetilde{ \mathrm{II}}(V, W) on U with respect to (U, \mathrm{id}_U) = (U, X_{ij}) corresponds to the entries of the matrix \Gamma_X(V, W) by Proposition 6.8. More precisely, we again identify the coordinate vector field \tfrac{\partial}{\partial X_{ij}} with the map U \ni X \mapsto E_{ij} \in \mathbb{{{R}}}^{{{n}} \times {{k}}} . Then the (i, j) -entry of \Gamma_X(V, W) \in \mathbb{{{R}}}^{{{n}} \times {{k}}} is given by a formula similar to (6.2), namely
\begin{equation} \big(\Gamma_X(V, W)\big)_{ij} = \sum\limits_{a, c = 1}^n \sum\limits_{b, d = 1}^k \Gamma_{(a, b), (c, d)}^{(i, j)} V_{ab} W_{c d} , \end{equation} | (6.23) |
where \Gamma_{(a, b), (c, d)}^{(i, j)} \colon U \to \mathbb{{{R}}} are the Christoffel symbols of \nabla with respect to the global chart (U, X_{ij}) , see Lemma 6.2 and Proposition 6.8. We point out that the map \Gamma in (4.25) corresponds to the Christoffel symbols of the covariant derivative \nabla on U but it cannot correspond to the Christoffel symbols of \nabla^{\mathrm{LC}} on \mathrm{St}_{{{n}}, {{k}}} due to \dim(\mathrm{St}_{{{n}}, {{k}}}) < n k = \dim(U) . Nevertheless, if \nabla is applied to vector fields which are tangent to \mathrm{St}_{{{n}}, {{k}}} evaluated at points X \in \mathrm{St}_{{{n}}, {{k}}} , it yields the same result as \nabla^{\mathrm{LC}} by Proposition 6.8.
A similar expression for "Christoffel symbols" has already appeared in [10] for the so-called canonical metric as well as for the Euclidean metric, however, without relating them to the Christoffel symbols of the covariant derivative \nabla on U . Indeed, by exploiting Corollary 6.9, for D = I_k and \nu = 0 we obtain
\begin{equation*} \Gamma_X(V, W) = \tfrac{1}{2} X (V^{\top} W + W^{\top} V) \end{equation*} |
reproducing \Gamma_e in [10, Sec. 2.2.3]. Analogously, setting D = I_k and \nu = - \tfrac{1}{2} in Corollary 6.9 yields
\begin{equation*} \Gamma_X(V, W) = \tfrac{1}{2} \big(V W^{\top} + W V^{\top} \big) X + \tfrac{1}{2} X V^{\top} (I_n - X X^{\top}) W + \tfrac{1}{2} X W^{\top} (I_n - X X^{\top}) V \end{equation*} |
for X \in \mathrm{St}_{{{n}}, {{k}}} and V, W \in T_X \mathrm{St}_{{{n}}, {{k}}} . This expression coincides with [10, Eq. (2.49)].
We investigated a multi-parameter family of metrics on an open U \subseteq \mathbb{{{R}}}^{{{n}} \times {{k}}} such that \mathrm{St}_{{{n}}, {{k}}} \subseteq U becomes a pseudo-Riemannian submanifold. The corresponding geodesic equation for \mathrm{St}_{{{n}}, {{k}}} as explicit matrix-valued second order ODE was derived by computing the metric spray on T \mathrm{St}_{{{n}}, {{k}}} . In principle, this approach to determine the geodesic equation is not limited to \mathrm{St}_{{{n}}, {{k}}} . It seems to be applicable to a pseudo-Riemannian submanifold of an open subset of a vector space as soon as the metric spray on the open subset and the tangent map of the orthogonal projection are known. Beside the geodesic equation, several other quantities related to the geometry of the pseudo-Riemannian submanifold \mathrm{St}_{{{n}}, {{k}}} \subseteq U were determined in terms of explicit matrix-type formulas. In particular, the expressions for pseudo-Riemannian gradients and pseudo-Riemannian Hessians could pave the way for designing new optimization methods on \mathrm{St}_{{{n}}, {{k}}} . Moreover, we reproduced several well-known results from the literature putting them into a new perspective.
This work has been supported by the German Federal Ministry of Education and Research (BMBF-Projekt 05M20WWA: Verbundprojekt 05M2020 - DyCA).
The author declares there is no conflict of interest.
[1] |
A. K. Chakraborty, A. Kosmrlj, Statistical mechanical concepts in immunology, Annu. Rev. Phys. Chem., 61 (2010), 283–303. https://doi.org/10.1146/annurev.physchem.59.032607.093537 doi: 10.1146/annurev.physchem.59.032607.093537
![]() |
[2] |
P. Nieuwenhuis, D. Opstelten, Functional anatomy of germinal centers, Dev. Dynam., 170 (1984), 421–435. https://doi.org/10.1002/aja.1001700315 doi: 10.1002/aja.1001700315
![]() |
[3] |
D. M. Tarlinton, K. G. C. Smith, Dissecting affinity maturation: a model explaining selection of antibody-forming cells and memory b cells in the germinal centre, Immunol. Today, 21 (2000), 436–441. https://doi.org/10.1016/S0167-5699(00)01687-X doi: 10.1016/S0167-5699(00)01687-X
![]() |
[4] | I. C. Maclennan, Germinal centers, Annu. Rev. Immunol., 12 (1994), 117–139. https://doi.org/10.1146/annurev.immunol.12.1.117 |
[5] |
T. A. Schwickert, R. L. Lindquist, G. Shakhar, G. Livshits, M. C. Nussenzweig, in vivo imaging of germinal centres reveals a dynamic open structure, Nature, 446 (2007), 83–87. https://doi.org/10.1038/nature05573 doi: 10.1038/nature05573
![]() |
[6] |
Y. Natkunam, The biology of the germinal center, Hematology, 2007 (2007), 210–215. https://doi.org/10.1182/asheducation-2007.1.210 doi: 10.1182/asheducation-2007.1.210
![]() |
[7] |
C. D. C. Allen, T. Okada, H. Tang, J. G. Cyster, Imaging of germinal center selection events during affinity maturation, Science, 315 (2007), 528–531. https://doi.org/10.1126/science.1136736 doi: 10.1126/science.1136736
![]() |
[8] | G. D. Victora, M. C. Nussenzweig, Germinal centers, Annu. Rev. Immunol., 30 (2012), 429–457. https://doi.org/10.1146/annurev-immunol-020711-075032 |
[9] |
A. S. Perelson, G. F. Oster, Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination, J. Theor. Biol., 81 (1979), 645–670. https://doi.org/10.1016/0022-5193(79)90275-3 doi: 10.1016/0022-5193(79)90275-3
![]() |
[10] |
T. B. Kepler, A. S. Perelson, Cyclic re-entry of germinal center B cells and the efficiency of affinity maturation, Immunol. Today, 14 (1993), 412–415. https://doi.org/10.1016/0167-5699(93)90145-B doi: 10.1016/0167-5699(93)90145-B
![]() |
[11] |
A. S. Perelson, G. Weisbuch, Immunology for physicists, Rev. Mod. Phys., 69 (1997), 1219–1267. https://doi.org/10.1103/RevModPhys.69.1219 doi: 10.1103/RevModPhys.69.1219
![]() |
[12] |
M. Oprea, Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts, J. Immunol., 158(1997), 5155–5162. https://doi.org/10.1016/S0165-2478(97)85162-0 doi: 10.1016/S0165-2478(97)85162-0
![]() |
[13] |
S. Erwin, S. M. Ciupe, Germinal center dynamics during acute and chronic infection, Math. Biosci. Eng., 14 (2017), 655–671. https://doi.org/10.3934/mbe.2017037 doi: 10.3934/mbe.2017037
![]() |
[14] |
M. Meyer-Hermann, M. T. Figge, K. M. Toellner, Germinal centres seen through the mathematical eye: B-cell models on the catwalk, Trends Immunol., 30 (2009), 157–164. https://doi.org/10.1016/j.it.2009.01.005 doi: 10.1016/j.it.2009.01.005
![]() |
[15] |
L. Buchauer, H. Wardemann, Calculating germinal centre reactions, Curr. Opin. Syst. Biol., 18 (2019), 1–8. https://doi.org/10.1016/j.coisb.2019.10.004 doi: 10.1016/j.coisb.2019.10.004
![]() |
[16] |
M. J. Shlomchik, F. Weisel, Germinal center selection and the development of memory B and plasma cells, Immunol. Rev., 247 (2012), 52–63. https://doi.org/10.1111/j.1600-065X.2012.01124.x doi: 10.1111/j.1600-065X.2012.01124.x
![]() |
[17] |
M. Meyer-Hermann, P. K. Maini, Interpreting two-photon imaging data of lymphocyte motility, Phys. Rev. E, 71 (2005), 061912. https://doi.org/10.1103/PhysRevE.71.061912 doi: 10.1103/PhysRevE.71.061912
![]() |
[18] |
M. T. Figge, A. Garin, M. Gunzer, M. Kosco-Vilbois, K. M. Toellner, M. Meyer-Hermann, Deriving a germinal center lymphocyte migration model from two-photon data, J. Exp. Med., 205 (2008), 3019–3029. https://doi.org/10.1084/jem.20081160 doi: 10.1084/jem.20081160
![]() |
[19] |
T. Beyer, M. Meyer-Hermann, G. Soff, A possible role of chemotaxis in germinal center formation, Int. Immunol., 14 (2003), 1369–1381. https://doi.org/10.1016/j.celrep.2012.05.010 doi: 10.1016/j.celrep.2012.05.010
![]() |
[20] |
M. Meyer-Hermann, A mathematical model for the germinal center morphology and affinity maturation, J. Theor. Biol., 216 (2002), 273–300. https://doi.org/10.1016/j.coisb.2019.10.004 doi: 10.1016/j.coisb.2019.10.004
![]() |
[21] |
M. Meyer-Hermann, A concerted action of b cell selection mechanisms, Adv. Complex. Syst., 10 (2007), 557–580. https://doi.org/10.1142/S0219525907001276 doi: 10.1142/S0219525907001276
![]() |
[22] |
S. Crotty, T follicular helper cell biology: A decade of discovery and diseases, Immunity, 50 (2019), 1132–1148. https://doi.org/10.1016/j.immuni.2019.04.011 doi: 10.1016/j.immuni.2019.04.011
![]() |
[23] |
M. Meyer-Hermann, P. K. Maini, A. D. Iber, An analysis of B cell selection mechanisms in germinal centres, Math. Med. Biol., 23 (2006), 255–277. https://doi.org/10.1007/s11538-009-9408-8 doi: 10.1007/s11538-009-9408-8
![]() |
[24] | M. J. Thomas, U. Klein, J. Lygeros, M. R. Martínez, A probabilistic model of the germinal center reaction, Front. Immunol., 10 (2019). https://doi.org/10.3389/fimmu.2019.00689 |
[25] |
M. Meyer-Hermann, E. Mohr, N. Pelletier, Y. Zhang, G. D. Victora, K. M. Toellner, A theory of germinal center B cell selection, division, and exit, Cell Rep., 2 (2012), 162–174. https://doi.org/10.1016/j.celrep.2012.05.010 doi: 10.1016/j.celrep.2012.05.010
![]() |
[26] |
P. A. Robert, A. L. Marschall, M. Meyer-Hermann, Induction of broadly neutralizing antibodies in germinal centre simulations, Curr. Opin. Biotechnol., 51 (2018), 137–145. https://doi.org/10.1016/j.copbio.2018.01.006 doi: 10.1016/j.copbio.2018.01.006
![]() |
[27] | M. Molari, K. Eyer, J. Baudry, S. Cocco, R. Monasson, Quantitative modeling of the effect of antigen dosage on b-cell affinity distributions in maturating germinal centers, Elife, 9 (2020). https://doi.org/10.7554/elife.55678 |
[28] | E. M. Tejero, D. Lashgari, R. García-Valiente, X. Gao, F. Crauste, P. A. Robert, et al., Multiscale modeling of germinal center recapitulates the temporal transition from memory B cells to plasma cells differentiation as regulated by antigen affinity-based tfh cell help, Front. Immunol., 11 (2021). https://doi.org/10.3389/fimmu.2020.620716 |
[29] |
S. Wang, J. Mata-Fink, B. Kriegsman, M. Hanson, D. Irvine, H. Eisen, et al., Manipulating the selection forces during affinity maturation to generate cross-reactive hiv antibodies, Cell, 160 (2015), 785–797. https://doi.org/10.1016/j.cell.2015.01.027 doi: 10.1016/j.cell.2015.01.027
![]() |
[30] |
N. Wittenbrink, T. S. Weber, A. Klein, A. A. Weiser, W. Zuschratter, M. Sibila, et al., Broad volume distributions indicate nonsynchronized growth and suggest sudden collapses of germinal center B cell populations, J. Immunol., 184 (2010), 1339–1347. https://doi.org/10.4049/jimmunol.0901040 doi: 10.4049/jimmunol.0901040
![]() |
[31] |
N. Wittenbrink, A. Klein, A. A. Weiser, J. Schuchhardt, M. Or-Guil, Is there a typical germinal center? a large-scale immunohistological study on the cellular composition of germinal centers during the hapten-carrier-driven primary immune response in mice, J. Immunol., 187 (2011), 6185–6196. https://doi.org/10.4049/jimmunol.1101440 doi: 10.4049/jimmunol.1101440
![]() |
[32] |
P. Wang, C. M. Shih, H. Qi, Y. H. Lan, A stochastic model of the germinal center integrating local antigen competition, individualistic T-B interactions, and B cell receptor signaling, J. Immunol., 197 (2016), 1169–1182. https://doi.org/10.4049/jimmunol.1600411 doi: 10.4049/jimmunol.1600411
![]() |
[33] |
D. T. Gillespie, Exact stochastic simulation of coupled chemical-reactions, J. Phys. Chem., 81 (1977), 2340–2361. https://doi.org/10.1021/j100540a008 doi: 10.1021/j100540a008
![]() |
[34] |
A. D. Gitlin, C. T. Mayer, T. Y. Oliveira, Z. Shulman, M. J. K. Jones, A. Koren, et al., T cell help controls the speed of the cell cycle in germinal center B cells, Science, 349 (2015), 643–646. https://doi.org/10.1126/science.aac4919 doi: 10.1126/science.aac4919
![]() |
[35] |
H. Qi, J. G. Egen, A. Y. C. Huang, R. N. Germain, Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells, Science, 312 (2006), 1672–1676. https://doi.org/10.1126/science.1125703 doi: 10.1126/science.1125703
![]() |
[36] |
H. Qi, J. L. Cannons, F. Klauschen, P. L. Schwartzberg, R. N. Germain, Sap-controlled T-B cell interactions underlie germinal centre formation, Nature, 455 (2008), 764–769. https://doi.org/10.1038/nature07345 doi: 10.1038/nature07345
![]() |
[37] |
J. G. Cyster, Chemokines and cell migration in secondary lymphoid organs, Science, 286 (1999), 2098–2102. https://doi.org/10.1126/science.286.5447.2098 doi: 10.1126/science.286.5447.2098
![]() |
[38] |
H. Qi, X. Chen, C. Chu, P. Lu, H. Xu, J. Yan, Follicular t-helper cells: controlled localization and cellular interactions, Immunol. Cell Biol., 92 (2014), 28–33. https://doi.org/10.1038/icb.2013.59 doi: 10.1038/icb.2013.59
![]() |
[39] |
H. Qi, W Kastenmüller, R. N. Germain, Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue, Annu. Rev. Cell Dev. Biol., 30 (2014), 141–167. https://doi.org/10.1146/annurev-cellbio-100913-013254 doi: 10.1146/annurev-cellbio-100913-013254
![]() |
[40] |
Z. Shulman, A. D. Gitlin, S. Targ, M. Jankovic, G. Pasqual, M. C. Nussenzweig, et al., T follicular helper cell dynamics in germinal centers, Science, 341 (2013), 673–677. https://doi.org/10.1126/science.1241680 doi: 10.1126/science.1241680
![]() |
[41] |
J. S. Shaffer, P. L. Moore, M. Kardar, A. K. Chakraborty, Optimal immunization cocktails can promote induction of broadly neutralizing abs against highly mutable pathogens, PNAS, 113 (2016), 7039–7048. https://doi.org/10.1073/pnas.1614940113 doi: 10.1073/pnas.1614940113
![]() |
[42] |
B. J. C. Quah, V. P. Barlow, V. Mcphun, K. I. Matthaei, M. D. Hulett, C. R. Parish, Bystander B cells rapidly acquire antigen receptors from activated B cells by membrane transfer, PNAS, 105 (2008), 4259–4264. https://doi.org/10.1073/pnas.0800259105 doi: 10.1073/pnas.0800259105
![]() |
[43] |
O. Bannard, R. Horton, C. C. Allen, J. An, T. Nagasawa, J. Cyster, Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection, Immunity, 39 (2013), 1182. https://doi.org/10.1016/j.immuni.2013.11.006 doi: 10.1016/j.immuni.2013.11.006
![]() |
[44] |
D. Liu, H. Xu, C. M. Shih, Z. Wan, X. P. Ma, W. Ma et al., T–B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction, Nature, 517 (2015), 214–218. https://doi.org/10.1038/nature13803 doi: 10.1038/nature13803
![]() |
[45] |
J. Shi, S. Hou, Q. Fang, X. Liu, X. Liu, H. Qi, Pd-1 controls follicular t helper cell positioning and function, Immunity, 49 (2018), 264–274. https://doi.org/10.1016/j.immuni.2018.06.012 doi: 10.1016/j.immuni.2018.06.012
![]() |
[46] |
J. Jacob, R. Ksssir, G. Kelsoe, In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. I. the architecture and dynamics of responding cell populations, J. Exp. Med., 173 (1991), 1165–1175. https://doi.org/10.1084/jem.173.5.1165 doi: 10.1084/jem.173.5.1165
![]() |
[47] |
F. Kroese, A. S. Wubbena, H. G. Seijen, P. Nieuwenhuis, Germinal centers develop oligoclonally, Eur. J. Immunol., 17 (1987), 1069–1072. https://doi.org/10.1002/eji.1830170726 doi: 10.1002/eji.1830170726
![]() |
[48] |
A. Lapedes, R. Farber, The geometry of shape space: application to influenza, J. Theor. Biol., 212 (2001), 57–69. https://doi.org/10.1006/jtbi.2001.2347 doi: 10.1006/jtbi.2001.2347
![]() |
[49] |
G. Kelsoe, The germinal center: a crucible for lymphocyte selection, Semin. Immunol., 8 (1996), 179–184. https://doi.org/10.1006/smim.1996.0022 doi: 10.1006/smim.1996.0022
![]() |
[50] |
M. J. Miller, S. H. Wei, I. Parker, M. D. Cahalan, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node, Science, 296 (2002), 1869–1873. https://doi.org/10.1126/science.1070051 doi: 10.1126/science.1070051
![]() |
[51] |
S. H. Wei, I. Parker, M. J. Miller, M. D. Cahalan, A stochastic view of lymphocyte motility and trafficking within the lymph node, Immunol. Rev., 195 (2003), 136–159. https://doi.org/10.1034/j.1600-065x.2003.00076.x doi: 10.1034/j.1600-065x.2003.00076.x
![]() |
[52] |
Y. J. Liu, J. Zhang, P. J. L. Lane, Y. T. Chan, I. C. M. Maclennan, Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens, Eur. J. Immunol., 21 (1991), 2951–2962. https://doi.org/10.1002/eji.1830211209 doi: 10.1002/eji.1830211209
![]() |
[53] |
S. Han, In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. IV. affinity-dependent, antigen-driven B cell apoptosis in germinal centers as a mechanism for maintaining self-tolerance, J. Exp. Med., 182 (1995), 1635–1644. https://doi.org/10.1084/jem.173.5.1165 doi: 10.1084/jem.173.5.1165
![]() |
[54] |
C. D. C. Allen, T. Okada, J. G. Cyster, Germinal center organization and cellular dynamics, Immunity, 27 (2007), 190–202. https://doi.org/10.1016/j.immuni.2007.07.009 doi: 10.1016/j.immuni.2007.07.009
![]() |
[55] |
S. A. Camacho, M. H. Kosco-Vilbois, C. Berek, The dynamic structure of the germinal center, Immunol. Today, 19 (1998), 511–514. https://doi.org/10.1016/S0167-5699(98)01327-9 doi: 10.1016/S0167-5699(98)01327-9
![]() |
[56] |
N. S. De Silva, U. Klein, Dynamics of B cells in germinal centres, Nat. Rev. Immunol., 15 (2015), 137–148. https://doi.org/10.1038/nri3804 doi: 10.1038/nri3804
![]() |
[57] | C. T. Mayer, A. Gazumyan, E. E. Kara, A. D. Gitlin, J. Golijanin, C. Viant, et al., The microanatomic segregation of selection by apoptosis in the germinal center, Science, 358 (2017). https://doi.org/10.1126/science.aao2602 |
[58] |
J. M. J. Tas, L. Mesin, G. Pasqual, S. Targ, J. T. Jacobsen, Y. M. Mano, et al., Visualizing antibody affinity maturation in germinal centers, Science, 351 (2016), 1048–1054. https://doi.org/10.1126/science.aad3439 doi: 10.1126/science.aad3439
![]() |
[59] | R. Murugan, L. Buchauer, G. Triller, C. Kreschel, H. Wardemann, Clonal selection drives protective memory B cell responses in controlled human malaria infection, Sci. Immunol., 3 (2018). https://doi.org/10.1126/sciimmunol.aap8029 |
[60] | K. Kwak, N. Quizon, H. Sohn, A. Saniee, J. Manzella-Lapeira, P. Holla, et al., Intrinsic properties of human germinal center B cells set antigen affinity thresholds, Sci. Immunol., 3 (2018). https://doi.org/10.1126/sciimmunol.aau6598 |
[61] |
T. A. Schwickert, G. D. Victora, D. R. Fooksman, A. O. Kamphorst, M. R. Mugnier, A. D. Gitlin, et al., A dynamic t cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center, J. Exp. Med., 208 (2011), 1243–1252. https://doi.org/10.1084/jem.20102477 doi: 10.1084/jem.20102477
![]() |
[62] |
M. Meyer-Hermann, T. Beyer, Conclusions from two model concepts on germinal center dynamics and morphology, Dev. immunol., 9 (2002), 203–214. https://doi.org/10.1080/1044-6670310001597060 doi: 10.1080/1044-6670310001597060
![]() |
[63] |
P. A. Robert, T Arulraj, M. Meyer-Hermann, Ymir: A 3d structural affinity model for multi-epitope vaccine simulations, IScience, 24 (2021), 102979. https://doi.org/10.1016/j.isci.2021.102979 doi: 10.1016/j.isci.2021.102979
![]() |
1. | Markus Schlarb, Knut Hüper, Fátima Silva Leite, A universal approach to interpolation on reductive homogeneous spaces, 2025, 02, 2972-4589, 1, 10.1142/S2972458925500030 |