Research article Special Issues

Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier


  • Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).

    Citation: Yingjian Yang, Wei Li, Yingwei Guo, Nanrong Zeng, Shicong Wang, Ziran Chen, Yang Liu, Huai Chen, Wenxin Duan, Xian Li, Wei Zhao, Rongchang Chen, Yan Kang. Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7826-7855. doi: 10.3934/mbe.2022366

    Related Papers:

    [1] Mansour Shrahili, Mohamed Kayid . Uncertainty quantification based on residual Tsallis entropy of order statistics. AIMS Mathematics, 2024, 9(7): 18712-18731. doi: 10.3934/math.2024910
    [2] Ramy Abdelhamid Aldallal, Haroon M. Barakat, Mohamed Said Mohamed . Exploring weighted Tsallis extropy: Insights and applications to human health. AIMS Mathematics, 2025, 10(2): 2191-2222. doi: 10.3934/math.2025102
    [3] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
    [4] Mohamed Said Mohamed, Najwan Alsadat, Oluwafemi Samson Balogun . Continuous Tsallis and Renyi extropy with pharmaceutical market application. AIMS Mathematics, 2023, 8(10): 24176-24195. doi: 10.3934/math.20231233
    [5] Mohamed Said Mohamed, Haroon M. Barakat, Aned Al Mutairi, Manahil SidAhmed Mustafa . Further properties of Tsallis extropy and some of its related measures. AIMS Mathematics, 2023, 8(12): 28219-28245. doi: 10.3934/math.20231445
    [6] Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat . Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052
    [7] Alaa M. Abd El-Latif, Hanan H. Sakr, Mohamed Said Mohamed . Fractional generalized cumulative residual entropy: properties, testing uniformity, and applications to Euro Area daily smoker data. AIMS Mathematics, 2024, 9(7): 18064-18082. doi: 10.3934/math.2024881
    [8] M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, A. H. Mansi, M. O. Mohamed . Inference and other aspects for qWeibull distribution via generalized order statistics with applications to medical datasets. AIMS Mathematics, 2024, 9(4): 8311-8338. doi: 10.3934/math.2024404
    [9] Areej M. AL-Zaydi . On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation. AIMS Mathematics, 2024, 9(8): 22002-22021. doi: 10.3934/math.20241069
    [10] G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. O. Mohamed . Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications. AIMS Mathematics, 2025, 10(5): 12689-12725. doi: 10.3934/math.2025572
  • Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).



    Let Z be a random variable (RV) having probability density function (PDF) gZ(z). Shannon [33] defined entropy for a RV Z as

    H(Z)=0gZ(z)loggZ(z)dz.

    The non-additive generalization of Shannon's entropy of order η, suggested by Tsallis [37], is known as Tsallis entropy. This measure plays an important role in the uncertainty measurements of an RV Z, which is defined as

    Hη(Z)=1η1(10gηZ(z)dz), (1.1)

    where 0<η1. When η1, Tsallis entropy approaches Shannon entropy.

    There are many applications of this new entropy, especially in physics [7], earthquakes [2], stock exchanges [20], plasma [23], and income distribution [35]. For more information about Tsallis entropy, we recommend reading Tsallis [38]. Several generalizations of Shannon entropy have been developed, which make these entropies sensitive to different kinds of probability distributions via the addition of a few additional parameters. A new measure of Shannon entropy, cumulative residual entropy (CRE), was introduced by Rao et al. [30] by taking into account the survival function instead of the probability density function. CRE is considered more stable and mathematically sound due to its more regular survival function (SF) than the PDF. Moreover, distribution functions exist even when probability density functions do not exist (e.g., Govindarajulu, power-Pareto, and generalized lambda distributions). CRE measure is based on SF ¯GZ(z). According to his definition, CRE is defined as

    J(Z)=0¯GZ(z)log¯GZ(z)dz.

    A cumulative residual Tsallis entropy (CRTE) of order η, which is represented by ζη(Z), was introduced by Sati and Gupta [32]. This CRTE is defined as

    ζη(Z)=1η1(10¯GηZ(z)dz),η>0,η1. (1.2)

    When η1, CRTE approaches CRE.

    The CRTE may also be represented in terms of the mean residual life function of Z, which is another useful representation defined as

    ζη(Z)=1ηE[m(Zη)]. (1.3)

    Rajesh and Sunoj [31] unveiled an alternative measure for CRTE denoted by the order η, which is defined as

    ξη(Z)=1η1(0(¯GZ(z)¯GηZ(z))dz),η>0,η1. (1.4)

    The characteristics of the residual Tsallis entropy for order statistics (OSs) were studied by Shrahili and Kayid [34]. Mohamed [24] recently conducted a study on the CRTE and its dynamic form, which is based on the Farlie-Gumbel-Morgenstern (FGM) family. When prior information is presented in the form of marginal distributions, it is advantageous to model bivariate data using marginal distributions. The FGM family is one of these families that has been the subject of a significant amount of study. The FGM family is represented by the bivariate cumulative distribution function (CDF) GZ,X(z,x)=GZ(z)GX(x)[1+θ(1GZ(z))(1GX(x))], 1θ1, where GZ(z) and GX(x) are the marginal CDFs of two RVs Z and X, respectively. Literature indicates that several modifications have been implemented in the FGM family to increase the correlation between its marginals. Extensive families have been the subject of a great number of studies, each of which has a unique point of view. Examples of these studies are Barakat et al. [6], Abd Elgawad and Alawady [1], Alawady et al. [4], Chacko and Mary [10], Husseiny et al. [17,18], and Nagy et al. [26]. It was demonstrated by Huang and Kotz [15] that a single iteration may result in a doubling of the correlation between marginals in FGM. This was established through the use of a single iteration. The joint CDF iterated FGM (IFGM) family with a single iteration is denoted by IFGM(γ,ω) and defined as

    GZ,X(z,x)=GZ(z)GX(x)[1+γ¯GZ(z)¯GX(x)+ωGZ(z)GX(x)¯GZ(z)¯GX(x)]. (1.5)

    The corresponding joint PDF (JPDF) is given by

    gZ,X(z,x)=gZ(z)gX(x)[1+γ(12GZ(z))(12GX(x))+ωGZ(z)GX(x)(23GZ(z))(23GX(x))]. (1.6)

    Classical FGM can clearly be regarded as a special case of the IFGM(γ,ω) family (1.5)–(1.6) by putting ω=0. If the two marginals GZ(z) and GX(x) are continuous, Huang and Kotz [15] showed that the natural parameter space Ω (which is the admissible set of the parameters γ and ω that makes GZ,X(z,x) is a genuine CDF) is convex, where Ω={(γ,ω):1γ1;1γ+ω;ω3γ+96γ3γ22}. Additionally, if the marginals are uniform, the correlation coefficient is ρ=γ3+ω12. Finally, the maximal correlation coefficient attained for this family is maxρ=0.434, versus maxρ=13=0.333 achieved for γ=1 in the original FGM [16]. The JPDF of the IFGM copula is plotted in Figure 1. Figure 1 illustrates subfigures that exhibit unique parameter values. Each subfigure from (a) to (f) had the parameter values arranged in a vector form (γ,ω).

    Figure 1.  The JPDF for IFGM copula.

    As a unifying model for ascendingly ordered RVs, generalized order statistics (GOSs) have drawn more and more attention. The GOSs model was first presented by Kamps [21]. It is made up of several pertinent models of ordered RVs, such as order statistics (OSs), record values, sequential OSs (SOSs), and progressive censored type-Ⅱ OSs (POS-II). The RVs Z(r,n,˜m,κ),r=1,2,...,n, are called GOSs based on a continuous CDF GZ(z) with the PDF gZ(z), if their JPDF has the form

    f(˜m,κ)1,...,n:n(z1,...,zn)=κGγn1Z(zn)gZ(zn)n1i=1γiGγiγi+11Z(zi)gZ(zi),

    where G1(0)z1...znG1(1), κ>0,γi=n+κi+n1t=imt>0,i=1,,n1, and ˜m=(m1,m2,,mn1)R. In this paper, we assume that the parameters γ1,,γn1, and γn=κ, are pairwise different, i.e., γtγs,ts,t,s=1,2,...,n. We obtain a very wide subclass of GOSs that contains m-GOSs (where m1=...=mn1=m), OSs, POS-II, and SOSs. The PDF of the rth GOS and the JPDF of the rth and sth GOSs, 1r<sn, respectively, are given by Kamps and Cramer [22].

    fZ(r,n,˜m,κ)(z)=Crri=1αi;r¯Gγi1Z(z)gZ(z),zR,1rn, (1.7)
    fZ(r,n;˜m,κ),Z(s,n;˜m,κ)(z,x)=Cs[si=r+1αi;r;s(¯GZ(x)¯GZ(z))γi][ri=1αi;r¯GγiZ(z)]gZ(z)¯GZ(z)gZ(x)¯GZ(x),z<x, (1.8)

    where ¯G=1G is (SF) of G, Cr=ri=1γi,αi;r=rj=1ji1γjγi,1irn, and αi;r;s=sj=r+1ji1γjγi,r+1isn.

    When dealing with selection and prediction difficulties, the meaning of concomitants is a vital tool. The idea of concomitants of OSs (COSs) was first proposed by David [11]. Refer to David and Nagaraja [12] for a comprehensive understanding of the COS. Many studies have been published on the concomitants of the GOSs (CGOSs) model. Researchers such as Alawady et al. [5], Beg and Ahsanullah [8], and Domma and Giordano [13] have studied this issue. The CGOSs models, however, have only been studied in a restricted number of studies when γtγs,ts,t,s=1,2,...,n. These include Abd Elgawad and Alawady [1], and Mohie El-Din et al. [25].

    Let (Zi,Xi),i=1,2,...,n, be a random sample from a continuous bivariate CDF GZ,X(z,x). If we denote Z(r,n,˜m,κ) as the rth GOS of the Z sample values, then the X values associated with Z(r,n,˜m,κ) is called the concomitant of the rth GOS and is denoted by X[r,n,˜m,κ],r=1,2,...,n. The PDF of the concomitant of rth GOS is given by

    g[r,n,˜m,κ](x)=gX|Z(x|z)fZ(r,n,˜m,κ)(z)dz. (1.9)

    More generally, for 1r<sn, the JPDF of the concomitants of rth and sth GOSs is given by

    g[r,s,n,˜m,κ](x1,x2)=x1gX|Z(x1|z1)gX|Z(x2|z2)fZ(r,n,˜m,κ),Z(s,n,˜m,κ)(z1,z2)dz2dz1. (1.10)

    Motivation and the purpose of the work

    Mohamed [24] exhibited CRTE features in CGOSs that were based on FGM. Suter et al. [36] conducted another study that examined Tsallis entropy in CGOSs resulting from FGM. We generalize the previous articles by investigating Tsallis measures in CGOS from IFGM in more general scenarios. The objectives that inspired this study are as follows: Tsallis entropy measures based on CGOSs with interesting features are introduced in a broad framework. We considered sub models through a comprehensive numerical analysis, including OSs, record values, and k-record values. An in-depth analysis of reaching satisfactory results using the nonparametric estimate of these measures. More sophistication and flexibility are provided by the suggested distribution (IFGM) for modeling complicated data sets. This is why we used actual data in our analysis.

    The arrangement of this paper is organized as follows: In Section 2, we obtain some characterization results on concomitants X[r,n,˜m,k] based on IFGM(γ,ω) as Tsallis entropy, CRTE, and alternate measure of CRTE. In Section 3, we extend and compute some examples of information measures for the concomitants X[r,n,˜m,k] from IFGM(γ,ω). We use the empirical method in combination with CGOS based on the IFGM family, to estimate the CRTE in Section 4. Finally, in Section 5, a bivariate real-world data set has been probed, and we examine the Tsallis entropy and CRTE. Finally, Section 6 concludes the work.

    In this section, we derived Tsallis entropy, CRTE, and an alternative measure CRTE for CGOS based on the IFGM(γ,ω) family. First, we will point out some important results that we will use in deducing these measures. Husseiny et al. [17] derived the PDF, CDF, and SF for the concomitant X[r,n,˜m,k] of the rth GOS, respectively, as follows:

    g[r,n,˜m,k](x)=(1+δ(˜m,k)r,n:1)gX(x)+(δ(˜m,k)r,n:2δ(˜m,k)r,n:1)gV1(x)δ(˜m,k)r,n:2gV2(x), (2.1)
    G[r,n,˜m,k](x)=GX(x)[1+δ(˜m,k)r,n:1(1GX(x))+δ(˜m,k)r,n:2(GX(x)G2X(x))], (2.2)

    and

    ¯G[r,n,˜m,k](x)=¯GX(x)[1δ(˜m,k)r,n:1GX(x)δ(˜m,k)r,n:2G2X(x)], (2.3)

    where ViGi+1X,i=1,2, δ(˜m,k)r,n:1=γCr1ri=1ai(r)(1γi1+γi) and δ(˜m,k)r,n:2=ωCr1ri=1ai(r)(1γi1+γi)(3γi2+γi).

    Theorem 2.1. Tsallis entropy of concomitants of the rth GOS based on the IFGM(γ,ω) is given by

    Hη[r,n,˜m,k](x)=1η1(1N(η)j=0jp=0(ηj)(jp)(δ(˜m,k)r,n:1)jp(δ(˜m,k)r,n:2)pEU[(gX(G1X(U)))η1(12U)jp(2U3U2)p]),

    where N(x)=, if x is non-integer, and N(x)=x, if x is integer, and U is a uniform RV on (0, 1).

    Proof. Using (1.1) and (2.1), Tsallis entropy is provided by

    Hη[r,n,˜m,k](x)=1η1(10gη[r,n,˜m,k](x)dx)=1η1(10gηX(x)(1+δ(˜m,k)r,n:1(12GX(x))+δ(˜m,k)r,n:2GX(x)(23GX(x)))ηdx)=1η1(1N(η)j=0jp=0(ηj)(jp)(δ(˜m,k)r,n:1)jp(δ(˜m,k)r,n:2)pE[gη1X(x)(12GX(x))jp(2GX(x)3GX(x)2)p]). (2.4)

    Remark 2.1. If ˜m=0 and k=1. The Tsallis entropy of the concomitant of the rth OS based on the IFGM(γ,ω) is given by

    Hη[r:n](x)=1η1(1N(η)j=0jp=0(ηj)(jp)(Ω1,r:n)jp(Ω2,r:n)pE[gη1X(x)(12GX(x))jp(2GX(x)3GX(x)2)p])

    where Ω1,r:n=γ(n2r+1)n+1 and Ω2,r:n=ω[r(2n3r+1)(n+1)(n+2)], (cf. Husseiny et al. [17]).

    Remark 2.2. If ˜m=1 and k=1. Tsallis entropy of the concomitant of the nth upper record value based on IFGM(γ,ω) is given by

    Hη[n](x)=1η1(1N(η)j=0jp=0(ηj)(jp)(Δn:1)jp(Δn:2)pE[gη1X(x)(12GX(x))jp(2GX(x)3GX(x)2)p]),

    where Δn:1=γ(2(n1)1) and Δn:2=ω(2(n2)3(n1)1).

    Remark 2.3. Tsallis entropy for the concomitant of the nth upper k-record value based on IFGM(γ,ω) is given by

    Hη[n,k](x)=1η1(1N(η)j=0jp=0(ηj)(jp)(n,k:1)jp(n,k:2)pE[gη1X(x)(12GX(x))jp(2GX(x)3GX(x)2)p]),

    where n,k:1=γ(2(kk+1)n1) and n,k:2=ω(4(kk+1)n3(kk+2)n1). (cf. Nagy and Alrasheedi [27]).

    Theorem 2.2. CRTE for CGOS based on the IFGM(γ,ω) is given by

    ζη[r,n,˜m,k](x)=1η1(1N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isEU[(U)2is(1U)ηgX(G1X(U))]),

    where U is a uniform RV on (0, 1).

    Proof. Using (1.2) and (2.3), then CRTE is provided by

    ζη[r,n,˜m,k](x)=1η1(10¯Gη[r,n,˜m,k](x)dx)=1η1(10¯GηX(x)[1GX(x)(δ(˜m,k)r,n:1δ(˜m,k)r,n:2GX(x))]ηdx)=1η1(1N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isE[g1X(x)(1GX(x))η(GX(x))2is]). (2.5)

    Remark 2.4. If ˜m=0 and k=1. The CRTE of the concomitant of the rth OS based on the IFGM(γ,ω) is given by

    ζη[r:n](x)=1η1(1N(η)i=0is=0(ηi)(is)(1)2is(Ω1,r:n)s(Ω2,r:n)isE[g1X(x)(1GX(x))η(GX(x))2is]).

    Remark 2.5. If ˜m=1 and k=1. CRTE of the concomitant of the nth upper record value based on the IFGM(γ,ω) is given by

    ζη[n](x)=1η1(1N(η)i=0is=0(ηi)(is)(1)2is(Δn:1)s(Δn:2)isE[g1X(x)(1GX(x))η(GX(x))2is]).

    Remark 2.6. CRTE of the concomitant of the nth upper k-record value based on the IFGM(γ,ω) is given by

    ζη[n,k](x)=1η1(1N(η)i=0is=0(ηi)(is)(1)2is(n,k:1)s(n,k:2)isE[g1X(x)(1GX(x))η(GX(x))2is]).

    For the concomitant X[r,n,˜m,k] of the rth GOS, the moment of X[r,n,˜m,k] based on the IFGM(γ,ω) (cf. Husseiny et al. [17]) is given by

    μ[r,n,˜m,k](x)=(1+δ(˜m,k)r,n:1)μX+(δ(˜m,k)r,n:2δ(˜m,k)r,n:1)μV1δ(˜m,k)r,n:2μV2. (2.6)

    Theorem 2.3. The alternative measure of CRTE for CGOS based on IFGM(γ,ω) is given by

    ξη[r,n,˜m,k](x)=1η1(μ[r,n,˜m,k](x)N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isEU[(U)2is(1U)ηgX(G1X(U))]),

    where U is a uniform RV on (0, 1).

    Proof. Using (1.4) and (2.6), the alternative measure of CRTE is provided by

    ξη[r,n,˜m,k](x)=1η1(0(¯G[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x))dx)=1η1(μ[r,n,˜m,k](x)0¯GηX(x)[1GX(x)(δ(˜m,k)r,n:1δ(˜m,k)r,n:2GX(x))]ηdx)=1η1(μ[r,n,˜m,k](x)N(η)i=0is=0(ηi)(sp)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isE[g1X(x)(1GX(x))η(GX(x))2is]). (2.7)

    Theorem 2.4. Let X[r,n,˜m,k] be a CGOS based on a continuous CDF GX(x) with the PDF gX(x). For all η>0, we have

    ξη[r,n,˜m,k](x)=E(Xη[r,n,˜m,k])+E(Hη[r,n,˜m,k](X)),

    where

    Hη[r,n,˜m,k](u)=u0m[r,n,˜m,k](x)¯Gη1[r,n,˜m,k](x)dx,u>0.

    Proof. Using (1.3) and m[r,n,˜m,k](x)λ[r,n,˜m,k](x)=1+m[r,n,˜m,k](x), where

    λ[r,n,˜m,k](x)=g[r,n,˜m,k](x)¯G[r,n,˜m,k](x).

    Then, we obtain

    ξη[r,n,˜m,k](x)=0m[r,n,˜m,k](x)λ[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx=E(Xη[r,n,˜m,k])+0m[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx,

    for all η>0. Upon using Fubini's theorem, we obtain

    0m[r,n,˜m,k](x)¯Gη[r,n,˜m,k](x)dx=0m[r,n,˜m,k](x)dxxg[r,n,˜m,k](u)¯Gη1[r,n,˜m,k](x)dudx=0g[r,n,˜m,k](u)u0m[r,n,˜m,k](x)¯Gη1[r,n,˜m,k](x)dxdu.

    This gives the desired result.

    Remark 2.7. If ˜m=0 and k=1. The alternative measure of CRTE for concomitant of the rth OSs based on the IFGM(γ,ω) is given by

    ξη[r:n](x)=1η1(μ[r:n](x)N(η)i=0is=0(ηi)(is)(1)2is(Ω1,r:n)s(Ω2,r:n)isE[g1X(x)(1GX(x))η(GX(x))2is]).

    Remark 2.8. If ˜m=1 and k=1. The alternative measure of CRTE for concomitant of the nth upper record value based on the IFGM(γ,ω) is given by

    ξη[n](x)=1η1(μ[n](x)N(η)i=0is=0(ηi)(is)(1)2is(Δn:1)s(Δn:2)isE[g1X(x)(1GX(x))η(GX(x))2is]).

    Remark 2.9. The alternative measure of CRTE for concomitant of the nth upper k-record value based on the IFGM(γ,ω) is given by

    ξη[n,k](x)=1η1(μ[n,k](x)N(η)i=0is=0(ηi)(is)(1)2is(n,k:1)s(n,k:2)isE[g1X(x)(1GX(x))η(GX(x))2is]).

    In this section, we study the Tsallis entropy, CRTE, and alternate measure of CRTE for CGOS in IFGM(γ,ω) for some popular distributions. We consider the extended Weibull (EW) family of distributions, which was developed by Gurvich et al. [14], as a case study. The CDF of EW is given by

    GX(x)=1eτH(x;ε),x>0,τ>0,

    where H(x;ε) is a differentiable, nonnegative, continuous, and monotonically increasing function when x depends on the parameter vector ε. Also, H(x;ε)0+ as x0+ and H(x;ε)+ as x+. This CDF is denoted by EW (τ,ε) and has the following PDF:

    gX(x)=τh(x;ε)eτH(x;ε),x>0,

    where h(x;ε) is the derivative of H(x;ε) with respect to x. Several important models are included in the EW, including the Rayleigh, Pareto, Weibull, uniform, and exponential distributions (ED). For further details about this family, see Jafari et al. [19].

    Example 3.1. Consider two variables, Z and X, that possess ED from IFGM (represented by IFGM-ED) (i.e. GX(x)=1eθx,x,θ>0). Based on (2.4), we get the Tsallis entropy in X[r,n,˜m,k] as follows:

    Hη[r,n,˜m,k](x)=1η1(1N(η)j=0jp=0jpl=0pu=0(ηj)(jp)(jpl)(pu)(1)l+u(2)jpl(3)pu(δ(˜m,k)r,n:1)jp(δ(˜m,k)r,n:2)pθη1β(1+p,η+ju1)).

    Example 3.2. Consider Z and X to be power distributions derived from IFGM (i.e. GX(x)=xc,0x1,c>0). Then Hη[r,n,˜m,k](x) is given by

    Hη[r,n,˜m,k](x)=1η1(1N(η)j=0jp=0jpt=0pw=0(ηj)(jp)(jpt)(pw)(1)t(2)t+pw(3)w(δ(˜m,k)r,n:1)jp(δ(˜m,k)r,n:2)pcη1η+c(t+p+w+η)).

    Example 3.3. Suppose that Z and X have EW based on IFGM with (i.e. GX(x)=1eτH(x;ε),x>0,τ>0,). Then, we have the Tsallis entropy in X[r,n,˜m,k] as follows:

    H(EW)η[r,n,˜m,k](x)=1η1(1N(η)j=0jp=0(ηj)(jp)(δ(˜m,k)r,n:1)jp(δ(˜m,k)r,n:2)pE[[(τh(x;ε))e(τH(x;ε))]η1(2e(τH(x;ε))1)jp(4e(τH(x;ε))3(e(τH(x;ε)))21)p]).

    Example 3.4. Assume that Z and X both possess IFGM-ED. Based on (2.5), we obtain the CRTE in X[r,n,˜m,k] as follows:

    ζη[r,n,˜m,k](x)=1θ(η1)(1N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isβ(2is+1,η)).

    Example 3.5. Assume that the uniform distributions of Z and X come from an IFGM (i.e. GX(x)=x,0x1). Based on (2.5), we obtain the CRTE in X[r,n,˜m,k] as follows:

    ζη[r,n,˜m,k](x)=1η1(1N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isβ(2is+1,η+1)).

    Example 3.6. Let us say that Z and X have EW according to IFGM. From (2.5), we get the CRTE in X[r,n,˜m,k] as follows:

    ζ(EW)η[r,n,˜m,k](x)=1η1(1N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isE[(τh(x;ε)eτH(x;ε))1(eτH(x;ε))η(1eτH(x;ε))2is]).

    Example 3.7. Assume that Z and X both possess IFGM-ED. Based on (2.7), we have the alternate measure of CRTE in X[r,n,˜m,k] as follows:

    ξη[r,n,˜m,k](x)=1θ(η1)((1δ(˜m,k)r,n:12δ(˜m,k)r,n:23)N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isβ(2is+1,η)).

    Example 3.8. Assume that the uniform distributions of Z and X come from IFGM. Based on (2.7), we obtain the alternate measure of CRTE in X[r,n,˜m,k] as follows:

    ξη[r,n,˜m,k](x)=1(η1)(12(1δ(˜m,k)r,n:13δ(˜m,k)r,n:26)N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isβ(2is+1,η+1)).

    Example 3.9. Let us say that Z and X have EW, according to IFGM. Based on (2.7), we obtain the alternate measure of CRTE in X[r,n,˜m,k] as follows:

    ξη[r,n,˜m,k](x)=1η1(μEW[r,n,˜m,k](x)N(η)i=0is=0(ηi)(is)(1)2is(δ(˜m,k)r,n:1)s(δ(˜m,k)r,n:2)isE[(τh(x;ε)eτH(x;ε))1(eτH(x;ε))η(1eτH(x;ε))2is]).

    As shown in Tables 14 of the IFGM-ED, the Tsallis entropy and the CRTE for X[r:n] and X[n] are presented. After running the numbers through MATHEMATICA version 12, we can deduce the following properties from Tables 14.

    Table 1.  Tsallis entropy for X[r:n] based on IFGM-ED.
    γ=0.9,η=5,θ=0.5 γ=0.5,η=10,θ=1
    n r ω=1.8 ω=1.4 ω=1.2 ω=1.4 n r ω=0.4 ω=1.4 ω=2.5 ω=3
    3 1 0.23536 0.23456 0.22795 0.22733 3 1 0.11068 0.10937 0.10798 0.10707
    3 2 0.24673 0.2466 0.24559 0.24551 3 2 0.09946 0.09588 0.09301 0.09149
    3 3 0.24888 0.24907 0.24972 0.24974 3 3 0.00306 0.04804 0.06282 0.06771
    7 1 0.22023 0.21907 0.21008 0.20928 7 1 0.11495 0.11308 0.11223 0.11183
    7 2 0.23621 0.23526 0.22701 0.2262 7 2 0.11074 0.109 0.1068 0.10522
    7 3 0.24371 0.2432 0.23845 0.23797 7 3 0.10794 0.10384 0.09844 0.09471
    7 4 0.2471 0.2469 0.24523 0.24506 7 4 0.09989 0.09348 0.08732 0.08372
    7 5 0.24852 0.24852 0.24852 0.24852 7 5 0.0751 0.0751 0.0751 0.0751
    7 6 0.24902 0.24916 0.24969 0.24971 7 6 0.00542 0.04396 0.05796 0.06282
    7 7 0.24903 0.24935 0.24993 0.24993 7 7 -0.17228 -0.0084 0.02783 0.03836
    9 1 0.21557 0.21442 0.20583 0.20508 9 1 0.1167 0.11456 0.11364 0.11326
    9 2 0.23139 0.23026 0.22071 0.21979 9 2 0.11187 0.11031 0.10888 0.1079
    9 3 0.24007 0.23928 0.23201 0.23126 9 3 0.10984 0.10723 0.10341 0.10059
    9 4 0.24474 0.24428 0.24 0.23955 9 4 0.10703 0.10192 0.09523 0.09064
    9 5 0.24717 0.24696 0.24514 0.24496 9 5 0.09999 0.09288 0.08576 0.08151
    9 6 0.24838 0.24834 0.24803 0.24801 9 6 0.0826 0.07875 0.07607 0.07475
    9 7 0.24893 0.24901 0.24938 0.2494 9 7 0.04208 0.05741 0.06448 0.06724
    9 8 0.2491 0.24929 0.24985 0.24986 9 8 -0.04679 0.02525 0.04694 0.05386
    9 9 0.24901 0.24937 0.24994 0.24993 9 9 -0.22959 -0.02309 0.01896 0.03111

     | Show Table
    DownLoad: CSV
    Table 2.  Tsallis entropy for X[n] based on IFGM-ED.
    γ=0.9,η=5,θ=0.5 γ=0.5,η=10,θ=1
    n ω=1.8 ω=1.4 ω=1.2 ω=1.4 n ω=0.4 ω=1.4 ω=2.5 ω=3
    2 0.24877 0.249 0.24973 0.24976 2 0.00145 0.05054 0.06565 0.07051
    3 0.24895 0.24931 0.24993 0.24993 3 -0.1754 -0.00544 0.03056 0.04099
    4 0.24888 0.24934 0.24994 0.24993 4 -0.33831 -0.04564 0.00606 0.0216
    5 0.24878 0.24933 0.24994 0.24992 5 -0.44823 -0.06915 -0.00781 0.01218
    6 0.24872 0.24932 0.24993 0.24992 6 -0.51214 -0.0817 -0.01496 0.00829
    7 0.24868 0.24931 0.24993 0.24992 7 -0.54667 -0.08814 -0.01851 0.00677
    8 0.24866 0.2493 0.24993 0.24991 8 -0.56464 -0.09139 -0.02027 0.00617
    9 0.24865 0.2493 0.24993 0.24991 9 -0.57382 -0.09301 -0.02113 0.00593
    10 0.24864 0.2493 0.24993 0.24991 10 -0.57846 -0.09382 -0.02156 0.00582
    11 0.24864 0.2493 0.24993 0.24991 11 -0.58079 -0.09423 -0.02177 0.00577
    12 0.24864 0.2493 0.24993 0.24991 12 -0.58196 -0.09443 -0.02188 0.00575
    13 0.24864 0.2493 0.24993 0.24991 13 -0.58255 -0.09453 -0.02193 0.00574
    14 0.24864 0.2493 0.24993 0.24991 14 -0.58284 -0.09458 -0.02196 0.00573
    15 0.24864 0.2493 0.24993 0.24991 15 -0.58299 -0.09461 -0.02197 0.00573
    16 0.24864 0.2493 0.24993 0.24991 16 -0.58306 -0.09462 -0.02198 0.00573
    17 0.24864 0.2493 0.24993 0.24991 17 -0.5831 -0.09463 -0.02198 0.00573
    18 0.24864 0.2493 0.24993 0.24991 18 -0.58312 -0.09463 -0.02198 0.00573
    19 0.24864 0.2493 0.24993 0.24991 19 -0.58313 -0.09463 -0.02198 0.00573
    20 0.24864 0.2493 0.24993 0.24991 20 -0.58313 -0.09463 -0.02198 0.00573
    21 0.24864 0.2493 0.24993 0.24991 21 -0.58314 -0.09463 -0.02198 0.00573

     | Show Table
    DownLoad: CSV
    Table 3.  CRTE for X[r:n] based on IFGM-ED.
    γ=0.9,η=5,θ=0.5 γ=0.5,η=10,θ=1
    n r ω=1.8 ω=1.4 ω=1.2 ω=1.4 n r ω=0.4 ω=1.4 ω=2.5 ω=3
    3 1 0.43317 0.43238 0.42624 0.42568 3 1 0.09714 0.09603 0.0952 0.09477
    3 2 0.40404 0.40318 0.39702 0.39651 3 2 0.10007 0.09975 0.09955 0.09945
    3 3 0.32162 0.32909 0.36567 0.3678 3 3 0.10199 0.10251 0.10277 0.10289
    7 1 0.44158 0.4411 0.4375 0.43719 7 1 0.09509 0.09389 0.09302 0.09258
    7 2 0.43401 0.43307 0.42539 0.42465 7 2 0.0972 0.09578 0.09466 0.09406
    7 3 0.42314 0.42183 0.41092 0.40986 7 3 0.09882 0.09775 0.0969 0.09645
    7 4 0.40648 0.40515 0.3949 0.39398 7 4 0.10011 0.09958 0.0992 0.09901
    7 5 0.37863 0.37863 0.37863 0.37863 7 5 0.10115 0.10115 0.10115 0.10115
    7 6 0.32728 0.33319 0.36347 0.36531 7 6 0.10201 0.10245 0.10267 0.10277
    7 7 0.22427 0.25007 0.35054 0.35503 7 7 0.10273 0.10352 0.10409 0.10451
    9 1 0.44288 0.44248 0.43956 0.43931 9 1 0.09461 0.09351 0.09273 0.09234
    9 2 0.43748 0.4367 0.4304 0.4298 9 2 0.09643 0.09495 0.09378 0.09317
    9 3 0.43039 0.42925 0.41959 0.41864 9 3 0.09791 0.09651 0.09538 0.09476
    9 4 0.42075 0.41932 0.40741 0.40626 9 4 0.09911 0.09808 0.09725 0.09682
    9 5 0.40701 0.40558 0.3944 0.39339 9 5 0.10012 0.09954 0.09911 0.0989
    9 6 0.3863 0.38566 0.38127 0.38092 9 6 0.10097 0.10083 0.10074 0.1007
    9 7 0.353 0.35534 0.36876 0.36968 9 7 0.10169 0.10194 0.10208 0.10214
    9 8 0.29611 0.30699 0.35753 0.3603 9 8 0.10232 0.10288 0.10318 0.10332
    9 9 0.1942 0.22695 0.34802 0.35309 9 9 0.10286 0.10373 0.10449 0.10513

     | Show Table
    DownLoad: CSV
    Table 4.  CRTE for X[n] based on IFGM-ED.
    γ=0.9,η=5,θ=0.5 γ=0.5,η=10,θ=1
    n ω=1.8 ω=1.4 ω=1.2 ω=1.4 n ω=0.4 ω=1.4 ω=2.5 ω=3
    2 0.31766 0.32626 0.3671 0.3694 2 0.10198 0.10254 0.10284 0.10297
    3 0.21824 0.24603 0.35185 0.35646 3 0.10272 0.10355 0.10418 0.10466
    4 0.13412 0.18248 0.34541 0.35144 4 0.10305 0.10408 0.10545 0.10682
    5 0.07755 0.14133 0.34267 0.34947 5 0.1032 0.10439 0.10658 0.10897
    6 0.04423 0.11758 0.34147 0.34867 6 0.10327 0.10456 0.10737 0.11053
    7 0.02598 0.10473 0.34094 0.34833 7 0.10331 0.10466 0.10785 0.11149
    8 0.01638 0.098 0.34069 0.34818 8 0.10332 0.10471 0.10812 0.11203
    9 0.01144 0.09456 0.34057 0.34812 9 0.10333 0.10474 0.10826 0.11231
    10 0.00893 0.09281 0.34052 0.34809 10 0.10334 0.10475 0.10833 0.11246
    11 0.00766 0.09193 0.34049 0.34807 11 0.10334 0.10476 0.10837 0.11253
    12 0.00702 0.09148 0.34048 0.34806 12 0.10334 0.10476 0.10838 0.11257
    13 0.0067 0.09126 0.34047 0.34806 13 0.10334 0.10477 0.10839 0.11259
    14 0.00654 0.09115 0.34047 0.34806 14 0.10334 0.10477 0.1084 0.1126
    15 0.00646 0.09109 0.34046 0.34806 15 0.10334 0.10477 0.1084 0.1126
    16 0.00642 0.09107 0.34046 0.34806 16 0.10334 0.10477 0.1084 0.11261
    17 0.0064 0.09105 0.34046 0.34806 17 0.10334 0.10477 0.1084 0.11261
    18 0.00639 0.09105 0.34046 0.34806 18 0.10334 0.10477 0.1084 0.11261
    19 0.00639 0.09104 0.34046 0.34806 19 0.10334 0.10477 0.1084 0.11261
    20 0.00639 0.09104 0.34046 0.34806 20 0.10334 0.10477 0.1084 0.11261
    21 0.00639 0.09104 0.34046 0.34806 21 0.10334 0.10477 0.1084 0.11261
    22 0.00638 0.09104 0.34046 0.34806 22 0.10334 0.10477 0.1084 0.11261

     | Show Table
    DownLoad: CSV

    ● When γ=0.9, η=5, and θ=0.5, the value of Hη[r:n](x) goes up as n goes up. When γ=0.5, η=10, and θ=1, the value of Hη[r:n](x) goes down as n goes up. But Hη[r:n](x) stays the same for all ω values when n=7 and r=5 (look at Table 1).

    ● We see that when γ is 0.9, η is 5, and θ is 0.5, and when γ is -0.5, η is 10, and θ is 1, the value of Hη[n](x) goes down as n goes up, and it almost stays the same when n=10 (look at Table 2).

    ● When γ=0.9, η=5, and θ=0.5, the value of ζη[r:n](x) goes down as n goes up. On the other hand, when γ=0.5, η=10, and θ=1, the value of ζη[r:n](x) goes up as n goes up. It gets bigger as n gets bigger, but ζη[r:n](x) stays the same for all ω values when n=7 and r=5 (look at Table 3).

    ● When γ=0.9, η=5, and θ=0.5, the value of ζη[n](x) goes down as n goes up. When γ=0.5, η=10, and θ=1, the value of ζη[n](x) goes up as n goes up, and the value of ζη[n](x) stays the same at n=22 (look at Table 4).

    For the purpose of calculating the CRTE for concomitant X[r,n,˜m,k], we employ empirical estimators in this section. Next, we'll examine the issue of estimating the CRTE for CGOS using the empirical CRTE. Consider the IFGM sequence (Zi,Xi) for each i=1,2,...,n. In accordance with (2.7), the emperical CRTE of the set X[r,n,˜m,k] can be computed as follows:

    ˆξη[r,n,˜m,k](x)=1η1(0(ˆ¯G[r,n,˜m,k](x)ˆ¯Gη[r,n,˜m,k](x))dx)=1η1(0((1ˆGX(x))[1ˆGX(x)(δ(˜m,k)r,n:1δ(˜m,k)r,n:2ˆGX(x))](1ˆGX(x))η[1ˆGX(x)(δ(˜m,k)r,n:1δ(˜m,k)r,n:2ˆGX(x))]η)dx)=1η1n1j=1x(j+1)x(j)((1ˆGX(x))[1ˆGX(x)(δ(˜m,k)r,n:1δ(˜m,k)r,n:2ˆGX(x))](1ˆGX(x))η[1ˆGX(x)(δ(˜m,k)r,n:1δ(˜m,k)r,n:2ˆGX(x))]ηdx)=1η1n1j=1Δj((1jn)[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)](1jn)η[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)]η),

    where for any CDF G(.), the symbol ˆG(.) stands for the empirical CDF of G(.), and Δj=x(j+1)x(j), j=1,2...,n1, are the sample spacings based on ordered random samples of Xj.

    Example 4.1. Define a random sample from the IFGM-ED as (Zi,Xi), where i ranges from 1 to n. The sample spacings, denoted by Δj, are considered to be independent RVs. Furthermore, Δj exhibits the ED with a mean of 1θ(nj), where j ranges from 1 to n1. For additional information, refer to Chandler [9] and Pyke [29]. Then the expected value and variance of the empirical CRTE in X[r] are given by

    E[ˆξη(X[r])]=1θ(η1)n1j=11(nj)((1jn)[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)](1jn)η[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)]η), (4.1)
    Var[ˆξη(X[r])]=1θ2(η1)2n1j=11(nj)2((1jn)[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)](1jn)η[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)]η)2. (4.2)

    Example 4.2. Again, for completeness, we study here the empirical CRTE of the concomitant X[r] of the rth upper record value Zr based on the IFGM copula. In this case, the sample spacings Δj, j=1,2,...,n1, are independent, and each of them has the beta distribution with parameters 1 and n. According to Pyke [29], the expectation and variance of the empirical CRTE of the concomitant X[r] are as follows:

    E[ˆξη(X[r])]=1(η1)(n+1)n1j=1((1jn)[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)](1jn)η[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)]η),
    Var[ˆξη(X[r])]=n(η1)(n+1)2(n+2)n1j=1((1jn)[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)](1jn)η[1jn(δ(˜m,k)r,n:1δ(˜m,k)r,n:2jn)]η)2.

    Figures 2 and 3 illustrate the relationship between CRTE and empirical CRTE in X[r:n] from IFGM-ED (γ,ω), at n=50. Figures 2 and 3 can be used to obtain the following properties:

    Figure 2.  Representation of CRTE and empirical CRTE in X[r:n] based on IFGM-ED for n=50 and η=20.
    Figure 3.  Representation of CRTE and empirical CRTE in X[r:n] based on IFGM-ED(γ,ω=0) for n=50 and η=20.

    (1) When the θ values are increased, the CRTE and the empirical CRTE have values that are practically identical to one another.

    (2) At most ω and γ values, CRTE and empirical CRTE have identical results, particularly when ω=0 for all r values.

    This section includes analyses of a real-world data set. The data set relates to n=50 simulated simple computer series systems consisting of a processor and a memory. The data was gathered and analyzed based on Oliveira et al. [28]. The data set contains n=50 simulated rudimentary computer systems with processors and memory. An operating computer will be able to operate when both parts are working properly (the processors and memory). Assume the system is nearing the end of its lifecycle. The degeneration advances rapidly in a short period of time [3]. In a short time (in hours), the degeneration advances rapidly. In the case of the first component, a deadly shock can destroy either it or the second component at random, due to the system's greater vulnerability to shocks. We fit the ED to the processor lifetime and memory lifetime separately. As an illustration of the data, Figures 4 and 5 provide a basic statistical analysis. The maximum likelihood estimates of the scale parameters (θi),i=1,2, are 1.24079 and 1.08616, γ=0.175473, and ω=2.16024. Table 5 examines the Tsallis entropy and CRTE for IFGM-ED(0.17543, 2.16024). For the concomitants X[r:50], r=1,2,24,25,49,50, i.e., the lower and upper extremes' concomitants, and the central values' concomitants. We observe that the Hη[r:50](x) and ζη[r:50](x) have maximum values at extremes.

    Figure 4.  Some summary plots of the processor lifetime data set.
    Figure 5.  Some summary plots of memory lifetime data set.
    Table 5.  The Tsallis entropy and CRTE of IFGM-ED at γ2=0.175 and ω2=2.160.
    r 1 2 24 25 49 50
    H5[r:50](x) 0.0736041 0.066275 0.0909935 0.100391 0.23817 0.238162
    ζ5[r:50](x) 0.189322 0.188401 0.177055 0.177312 0.192772 0.193385

     | Show Table
    DownLoad: CSV

    Given its simplicity and adaptability, IFGM surpasses most FGM generalizations, even though its efficiency is similar to some of those generalizations (such as the Huang\textendash Kotz FGM) in that it has a similar range of correlation coefficients. The CDFs used in this work were consistently formed by linearly combining simpler distributions, due to the advantages they offer. Tsallis entropy and its associated measures for concomitant were derived from IFGM, and a numerical analysis was conducted to uncover certain characteristics of these measures based on GOSs. Special cases were also extracted from this study, for example, OSs, record values, and k-record values. Furthermore, non-parametric estimators of CRTE were derived. The outcomes of an empirical examination of the CRTE are distinct. Finally, an illustrative analysis of a bivariate real-world data set was performed, and the proposed method performs exceptionally well. In the future work, some bivariate distribution families will be considered, including the Huang-kotz, Cambanis, and Sarmanov families, as well as various applications of the CRTE in CGOS. Additionally, we will investigate the quantile function based on Tsallis measures from concomitants. Also, for the estimation problem, we will discuss at least two estimation methods for this model: maximum likelihood and Besyain. Further, a Monte Carlo simulation will be conducted to test the estimator's performance against the empirical measure as well as the exact formula presented in this paper.

    I. A. Husseiny: Conceptualization, Writing original draft, Formal analysis, Software, Investigation, Methodology, Supervision; M. Nagy: Validation, Resources, Writing-review & editing, Data curation, Methodology; A. H. Mansi: Writing-review & editing, Investigation; M. A. Alawady: Conceptualization, Formal analysis, Writing original draft, Software, Investigation, Methodology, Supervision. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was conducted under a project titled "Researchers Supporting Project", funded by King Saud University, Riyadh, Saudi Arabia under grant number (RSPD2024R969).

    The authors are grateful to the editor and anonymous referees for their insightful comments and suggestions, which helped to improve the paper's presentation.

    This research was conducted under a project titled "Researchers Supporting Project", funded by King Saud University, Riyadh, Saudi Arabia under grant number (RSPD2024R969).

    The authors declare no conflict of interest.



    [1] A. G. Mathioudakis, G. A. Mathioudakis, The phenotypes of chronic obstructive pulmonary disease, Arch. Hellenic Med., 31 (2014), 558-569. https://doi.org/10.1080/15412550701629663 doi: 10.1080/15412550701629663
    [2] GOLD 2022: Global initiative for chronic obstructive lung disease, 2022.
    [3] D. A. Suffredini, R. M. Reed, At the twisted heart of nicotine addiction, BMJ Case Rep., 2012. https://doi.org/10.1136/bcr-2012-006240 doi: 10.1136/bcr-2012-006240
    [4] P. W. Jones, Health status measurement in chronic obstructive pulmonary disease, Thorax, 56 (2001). https://doi.org/10.1201/9780203913406-14 doi: 10.1201/9780203913406-14
    [5] C. D. Brown, J. O. Benditt, F. C. Sciurba, S. M. Lee, G. J. Criner, Z. Mosenifar, et al., Exercise testing in severe emphysema: association with quality of life and lung function, COPD J. Chron. Obstruct. Pulm. Dis., 5 (2008), 117-124. https://doi.org/10.1080/15412550801941265 doi: 10.1080/15412550801941265
    [6] D. A. Lynch, Progress in Imaging COPD, 2004-2014, Chron. Obstruct. Pulm. Dis.: J. COPD Found., 1 (2014), 73-82. https://doi.org/10.15326/jcopdf.1.1.2014.0125 doi: 10.15326/jcopdf.1.1.2014.0125
    [7] P. J. Castaldi, R. S. J. Estépar, C. S. Mendoza, C. P. Hersh, N. Laird, J. D. Crapo, et al., Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers, Am. J. Respir. Crit. Care Med., 188 (2013), 1083-1090. https://doi.org/10.1164/rccm.201305-0873oc doi: 10.1164/rccm.201305-0873oc
    [8] T. B. Grydeland, A. Dirksen, H. O. Coxson, T. M. Eagan, E. Thorsen, S. G. Pillai, et al., Quantitative computed tomography measures of emphysema and airway wall thickness are related to respiratory symptoms, Am. J. Respir. Crit. Care Med., 181 (2010), 353-359. https://doi.org/10.1164/rccm.200907-1008oc doi: 10.1164/rccm.200907-1008oc
    [9] V. Kim, A. Davey, A. P. Comellas, M. K. Han, G. Washko, C. H. Martinez, et al., Clinical and computed tomographic predictors of chronic bronchitis in COPD: a cross Sectional analysis of the COPDGene study, Respir. Res., 15 (2014), 1-9. https://doi.org/10.1186/1465-9921-15-52 doi: 10.1186/1465-9921-15-52
    [10] S. P. Bhatt, N. L. Terry, H. Nath, J. A. Zach, J. Tschirren, M. S. Bolding, et al., Association between expiratory central airway collapse and respiratory outcomes among smokers, Jama, 315 (2016), 498-505. https://doi.org/10.1164/rccm.202008-3122le doi: 10.1164/rccm.202008-3122le
    [11] C. P. Hersh, G. R. Washko, R. S. J. Estépar, S. Lutz, P. J. Friedman, M. K. Han, et al., Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD, Respir. Res., 14 (2013), 1-11. https://doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6539 doi: 10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6539
    [12] S. Bodduluri, J. M. Reinhardt, E. A. Hoffman, J. D. Newell Jr, H. Nath, M. T. Dransfield, et al., Signs of gas trapping in normal lung density regions in smokers, Am. J. Respir. Crit. Care Med., 196 (2017), 1404-1410. https://doi.org/10.1164/rccm.201705-0855oc doi: 10.1164/rccm.201705-0855oc
    [13] C. J. Galbán, M. K. Han, J. L. Boes, K. A. Chughtai, C. R. Meyer, T. D. Johnson, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression, Nat. Med., 18 (2012), 1711-1715. https://doi.org/10.1038/nm.2971 doi: 10.1038/nm.2971
    [14] S. Bodduluri, S. P. Bhatt, E. A. Hoffman, J. D. Newell, C. H. Martinez, M. T. Dransfield, et al., Biomechanical CT metrics are associated with patient outcomes in COPD, Thorax, 72 (2017), 409-414. https://doi.org/10.1136/thoraxjnl-2016-209544 doi: 10.1136/thoraxjnl-2016-209544
    [15] S. P. Bhatt, S. Bodduluri, E. A. Hoffman, J. D. Newell Jr, J. C. Sieren, M. T. Dransfield, et al., Computed tomography measure of lung at risk and lung function decline in chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care Med., 196 (2017), 569-576. https://doi.org/10.1164/rccm.201701-0050oc doi: 10.1164/rccm.201701-0050oc
    [16] G. R. Washko, G. L. Kinney, J. C. Ross, R. S. J. Estépar, M. K. Han, M. T. Dransfield, et al., Lung Mass in Smokers, Acad. Radiol., 24 (2016), 386-392. https://doi.org/10.1016/j.acra.2016.10.011 doi: 10.1016/j.acra.2016.10.011
    [17] J. M. Wells, G. R. Washko, M. K. Han, N. Abbas, H. Nath, A. J. Mamary, et al., Pulmonary arterial enlargement and acute exacerbations of COPD, N. Engl. J. Med., 367 (2012), 913-921. https://doi.org/10.1136/thoraxjnl-2013-203397 doi: 10.1136/thoraxjnl-2013-203397
    [18] R. S. J. Estépar, G. L. Kinney, J. L. Black-Shinn, R. P. Bowler, G. L. Kindlmann, J. C. Ross, et al., Computed tomographic measures of pulmonary vascular morphology in smokers and their clinical implications, Am. J. Respir. Crit. Care Med., 188 (2013), 231-239. https://doi.org/10.1164/rccm.201301-0162oc doi: 10.1164/rccm.201301-0162oc
    [19] P. Lambin, E. Rios-Velazquez, R. Leijenaar, S. Carvalho, R. G. Van Stiphout, P. Granton, et al., Radiomics: Extracting more information from medical images using advanced feature analysis, Eur. J. Cancer, 43 (2007), 441-446. https://doi.org/10.1016/j.ejca.2011.11.036 doi: 10.1016/j.ejca.2011.11.036
    [20] A. N. Frix, F. Cousin, T. Refaee, F. Bottari, A. Vaidyanathan, C. Desir, et al., Radiomics in lung diseases imaging: State-of-the-art for clinicians, J. Pers. Med., 11 (2021), 1-20. https://doi.org/10.3390/jpm11070602 doi: 10.3390/jpm11070602
    [21] S. M. Rezaeijo, R. Abedi-Firouzjah, M. Ghorvei, S. Sarnameh, Screening of COVID-19 based on the extracted radiomics features from chest CT images, J. X-Ray Sci. Technol., 29 (2021), 1-15. https://doi.org/10.3233/xst-200831 doi: 10.3233/xst-200831
    [22] F. Xiao, R. Sun, W. Sun, D. Xu, L. Lan, H. Li, et al., Radiomics analysis of chest CT to predict the overall survival for the severe patients of COVID-19 pneumonia, Phys. Med. Biol., 66 (2021), 1-11. https://doi.org/10.1088/1361-6560/abf717 doi: 10.1088/1361-6560/abf717
    [23] F. Xiong, Y. Wang, T. You, H. Li, T. Fu, H. Tan, et al., The clinical classification of patients with COVID-19 pneumonia was predicted by Radiomics using chest CT, Medicine, 100 (2021), 1-8. https://doi.org/10.1097/md.0000000000025307 doi: 10.1097/md.0000000000025307
    [24] M. Tamal, M. Alshammari, M. Alabdullah, R. Hourani, H. A. Alola, T. M. Hegazi, An integrated framework with machine learning and radiomics for accurate and rapid early diagnosis of COVID-19 from chest x-ray, Expert Syst. Appl., 180 (2021), 1-8. https://doi.org/10.1101/2020.10.01.20205146 doi: 10.1101/2020.10.01.20205146
    [25] Y. Tang, T. Zhang, X. Zhou, Y. Zhao, H. Xu, Y. Liu, et al., The preoperative prognostic value of the radiomics nomogram based on CT combined with machine learning in patients with intrahepatic cholangiocarcinoma, World J. Surg. Oncol., 19 (2021), 1-13. https://doi.org/10.1186/s12957-021-02162-0 doi: 10.1186/s12957-021-02162-0
    [26] X. Han, J. Yang, J. Luo, P. Chen, Z. Zhang, A. Alu, et al., Application of CT-based radiomics in discriminating pancreatic cystadenomas from pancreatic neuroendocrine tumors using machine learning methods, Front. Oncol., 11 (2021), 1-13. https://doi.org/10.3389/fonc.2021.606677 doi: 10.3389/fonc.2021.606677
    [27] M. F. A. Chaudhary, E. A. Hoffman, A. P. Comellas, J. Guo, S. Fortis, S. Bodduluri, et al., CT texture features predict severe COPD exacerbations in spiromics, in American Thoracic Society 2021 International Conference, (2021), 1122-1122. https://doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1122
    [28] M. Occhipinti, M. Paoletti, B. J. Bartholmai, S. Rajagopalan, R. A. Karwoski, C. Nardi, et al., Spirometric assessment of emphysema presence and severity as measured by quantitative CT and CT-based radiomics in COPD, Respir. Res., 20 (2019), 1-11. https://doi.org/10.1186/s12931-019-1049-3 doi: 10.1186/s12931-019-1049-3
    [29] G. Wu, A. Ibrahim, I. Halilaj, R. T. Leijenaar, W. Rogers, H. A. Gietema, et al., The emerging role of radiomics in COPD and lung cancer, Respiration, 99 (2020), 99-107. https://doi.org/10.1159/000505429 doi: 10.1159/000505429
    [30] G. Maragatham, S. Rajendran, Improving the classifier accuracy with an integrated approach using medical data-a study, Int. J. Med. Eng. Inf., 12 (2020), 313-321. https://doi.org/10.1504/ijmei.2020.10029317 doi: 10.1504/ijmei.2020.10029317
    [31] D. Lu, Q. Weng, A survey of image classification methods and techniques for improving classification performance, Int. J. Remote Sens., 28 (2007), 823-870. https://doi.org/10.1080/01431160600746456 doi: 10.1080/01431160600746456
    [32] R. C. Au, W. C. Tan, J. Bourbeau, J. C. Hogg, M. Kirby, Impact of image pre-processing methods on computed tomography radiomics features in chronic obstructive pulmonary disease, Phys. Med. Biol., 66 (2021). https://doi.org/10.2139/ssrn.3349696 doi: 10.2139/ssrn.3349696
    [33] J. Yun, Y. H. Cho, S. M. Lee, J. Hwang, J. S. Lee, Y. M. Oh, et al., Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease, Sci. Rep., 11 (2021), 1-9. https://doi.org/10.1038/s41598-021-94535-4 doi: 10.1038/s41598-021-94535-4
    [34] R. C. Au, W. C. Tan, J. Bourbeau, J. C. Hogg, M. Kirby, Radiomics Analysis to Predict Presence of Chronic Obstructive Pulmonary Disease and Symptoms Using Machine Learning, in TP121 COPD: FROM CELLS TO THE CLINIC, American Thoracic Society, 2021. https://doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4568
    [35] C. Liang, J. Xu, F. Wang, H. Chen, J. Tang, D. Chen, et al., Development of a radiomics model for predicting COPD exacerbations based on complementary visual information, in TP041 DIAGNOSIS AND RISK ASSESSMENT IN COPD, American Thoracic Society, 2021. https://doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a2296
    [36] Y. Yang, W. Li, Y. Guo, Y. Liu, Q. Li, K. Yang, et al., Early COPD risk decision for adults aged from 40 to 79 years based on lung radiomics features, Front. Med., 9 (2022), 1-15. https://doi.org/10.3389/fmed.2022.845286 doi: 10.3389/fmed.2022.845286
    [37] Y. Yang, W. Li, Y. Kang, Y. Guo, K. Yang, Q. Li, et al., A novel lung radiomics feature for characterizing resting heart rate and COPD stage evolution based on radiomics feature combination strategy, Math. Biosci. Eng., 19 (2022), 4145-4165. https://doi.org/10.3934/mbe.2022191 doi: 10.3934/mbe.2022191
    [38] Y. Zhou, P. L. Bruijnzeel, C. McCrae, J. Zheng, U. Nihlen, R. Zhou, et al., Study on risk factors and phenotypes of acute exacerbations of chronic obstructive pulmonary disease in Guangzhou, China-design and baseline characteristics, J. Thorac. Dis., 7 (2015), 720-733. https://doi:10.3978/j.issn.2072-1439.2015.04.14 doi: 10.3978/j.issn.2072-1439.2015.04.14
    [39] J. Hofmanninger, F. Prayer, J. Pan, S. Rohrich, H. Prosch, G. Langs, Automatic lung segmentation in routine imaging is a data diversity problem, not a methodology problem, Eur. Radiol. Exp., 4 (2020), 1-13. https://doi.org/10.1186/s41747-020-00173-2 doi: 10.1186/s41747-020-00173-2
    [40] Y. Yang, Q. Li, Y. Guo, Y. Liu, X. Li, J. Guo, et al., Lung parenchyma parameters measure of rats from pulmonary window computed tomography images based on ResU-Net model for medical respiratory researches, Math. Biosci. Eng., 18 (2021), 4193-4211. https://doi.org/10.3934/mbe.2021210 doi: 10.3934/mbe.2021210
    [41] Y. Yang, Y. Guo, J. Guo, Y. Gao, Y. Kang, A method of abstracting single pulmonary lobe from computed tomography pulmonary images for locating COPD, in Proceedings of the Fourth International Conference on Biological Information and Biomedical Engineering, (2020), 1-6. https://doi.org/10.1145/3403782.3403805
    [42] J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, et al., Computational radiomics system to decode the radiographic phenotype, Cancer Res., 77 (2017), 104-107. https://doi.org/10.1158/0008-5472.can-17-0339 doi: 10.1158/0008-5472.can-17-0339
    [43] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. B, 58 (2007), 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x
    [44] N. Simon, J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for Cox's proportional hazards model via coordinate descent, J. Stat. Software, 39 (2011), 1-13. https://doi.org/10.18637/jss.v039.i05 doi: 10.18637/jss.v039.i05
    [45] Y. Qi, Random forest for bioinformatics, in Ensemble machine learning: methods and applications, Springer, Boston, MA, (2012), 307-323. https://doi.org/10.1007/978-1-4419-9326-7_11
    [46] T. H. Kim, D. C. Park, D. M. Woo, T. Jeong, S. Y. Min, Multi-class classifier-based adaboost algorithm, in International conference on intelligent science and intelligent data engineering, Springer, Berlin, Heidelberg, (2011), 122-127. https://doi.org/10.1007/978-3-642-31919-8_16
    [47] V. K. Ayyadevara, Gradient boosting machine, in Pro machine learning algorithms, Apress, Berkeley, CA, (2018), 117-134. https://doi.org/10.1007/978-1-4842-3564-5_6
    [48] M. Taki, A. Rohani, F. Soheili-Fard, A. Abdeshahi, Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models, J. Cleaner Prod. 172 (2018), 3028-3041. https://doi.org/10.1016/j.jclepro.2017.11.107 doi: 10.1016/j.jclepro.2017.11.107
    [49] W. Hu, W. Hu, S. Maybank, Adaboost-based algorithm for network intrusion detection, IEEE Trans. Syst. Man Cybern. Part B Cybern., 38 (2008), 577-583. https://doi.org/10.1109/tsmcb.2007.914695 doi: 10.1109/tsmcb.2007.914695
    [50] S. Suthaharan, Support vector machine, in Machine learning models and algorithms for big data classification, Springer, Boston, MA, (2016), 207-235. https://doi.org/10.1007/978-1-4899-7641-3_9
    [51] Q. Li, Y. Yang, Y. Guo, W. Li, Y. Liu, H. Liu, et al., Performance evaluation of deep learning classification network for image features, IEEE Access, 9 (2021), 9318-9333. https://doi.org/10.1109/access.2020.3048956 doi: 10.1109/access.2020.3048956
    [52] M. A. Carbonneau, V. Cheplygina, E. Granger, G. Gagnon, Multiple instance learning: A survey of problem characteristics and applications, Pattern Recognit., 77 (2018), 329-353. https://doi.org/10.1016/j.patcog.2017.10.009 doi: 10.1016/j.patcog.2017.10.009
    [53] H. Polat, H. D. Mehr, Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture, Appl. Sci., 9 (2019), 1-15. https://doi.org/10.3390/app9050940 doi: 10.3390/app9050940
    [54] A. Chon, N. Balachandar, P. Lu, Deep convolutional neural networks for lung cancer detection, Standford Univ., (2017), 1-9. https://doi.org/10.1109/uemcon47517.2019.8993023 doi: 10.1109/uemcon47517.2019.8993023
    [55] S. P. Singh, L. Wang, S. Gupta, H. Goli, P. Padmanabhan, B. Gulyás, 3D deep learning on medical images: a review, Sensors, 20 (2020), 1-24. https://doi.org/10.3390/s20185097 doi: 10.3390/s20185097
    [56] B. H. Lee, D. H. Oh, T. Y. Kim, 3D Virtual reality game with deep learning-based hand gesture recognition, J. Korea Comput. Graphics Soc., 24 (2018), 41-48. https://doi.org/10.15701/kcgs.2018.24.5.41 doi: 10.15701/kcgs.2018.24.5.41
    [57] B. George, S. Seals, I. Aban, Survival analysis and regression models, J. Nucl. Cardiol., 21 (2014), 686-694. https://doi.org/10.1007/s12350-014-9908-2 doi: 10.1007/s12350-014-9908-2
    [58] L. Torrey, J. Shavlik, Transfer learning, in Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, IGI global, (2010), 242-264. https://doi.org/10.4018/978-1-60566-766-9.ch011
  • This article has been cited by:

    1. Ghada Mohammed Mansour, Haroon Mohamed Barakat, Islam Abdullah Husseiny, Magdy Nagy, Ahmed Hamdi Mansi, Metwally Alsayed Alawady, Measures of cumulative residual Tsallis entropy for concomitants of generalized order statistics based on the Morgenstern family with application to medical data, 2025, 22, 1551-0018, 1572, 10.3934/mbe.2025058
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4343) PDF downloads(292) Cited by(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog