A brain tumor is an abnormal growth of brain cells inside the head, which reduces the patient's survival chance if it is not diagnosed at an earlier stage. Brain tumors vary in size, different in type, irregular in shapes and require distinct therapies for different patients. Manual diagnosis of brain tumors is less efficient, prone to error and time-consuming. Besides, it is a strenuous task, which counts on radiologist experience and proficiency. Therefore, a modern and efficient automated computer-assisted diagnosis (CAD) system is required which may appropriately address the aforementioned problems at high accuracy is presently in need. Aiming to enhance performance and minimise human efforts, in this manuscript, the first brain MRI image is pre-processed to improve its visual quality and increase sample images to avoid over-fitting in the network. Second, the tumor proposals or locations are obtained based on the agglomerative clustering-based method. Third, image proposals and enhanced input image are transferred to backbone architecture for features extraction. Fourth, high-quality image proposals or locations are obtained based on a refinement network, and others are discarded. Next, these refined proposals are aligned to the same size, and finally, transferred to the head network to achieve the desired classification task. The proposed method is a potent tumor grading tool assessed on a publicly available brain tumor dataset. Extensive experiment results show that the proposed method outperformed the existing approaches evaluated on the same dataset and achieved an optimal performance with an overall classification accuracy of 98.04%. Besides, the model yielded the accuracy of 98.17, 98.66, 99.24%, sensitivity (recall) of 96.89, 97.82, 99.24%, and specificity of 98.55, 99.38, 99.25% for Meningioma, Glioma, and Pituitary classes, respectively.
Citation: Yurong Guan, Muhammad Aamir, Ziaur Rahman, Ammara Ali, Waheed Ahmed Abro, Zaheer Ahmed Dayo, Muhammad Shoaib Bhutta, Zhihua Hu. A framework for efficient brain tumor classification using MRI images[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 5790-5815. doi: 10.3934/mbe.2021292
[1] | Mônica H. M. Nascimento, Milena T. Pelegrino, Joana C. Pieretti, Amedea B. Seabra . How can nitric oxide help osteogenesis?. AIMS Molecular Science, 2020, 7(1): 29-48. doi: 10.3934/molsci.2020003 |
[2] | Jehad Shaikhali, Gunnar Wingsle . Redox-regulated transcription in plants: Emerging concepts. AIMS Molecular Science, 2017, 4(3): 301-338. doi: 10.3934/molsci.2017.3.301 |
[3] | M.Bansbach Heather, H.Guilford William . Actin nitrosylation and its effect on myosin driven motility. AIMS Molecular Science, 2016, 3(3): 426-438. doi: 10.3934/molsci.2016.3.426 |
[4] | Carlos Gutierrez-Merino, Dorinda Marques-da-Silva, Sofia Fortalezas, Alejandro K. Samhan-Arias . The critical role of lipid rafts nanodomains in the cross-talk between calcium and reactive oxygen and nitrogen species in cerebellar granule neurons apoptosis by extracellular potassium deprivation. AIMS Molecular Science, 2016, 3(1): 12-29. doi: 10.3934/molsci.2016.1.12 |
[5] | Michael W Patt, Lisa Conte, Mary Blaha, Balbina J Plotkin . Steroid hormones as interkingdom signaling molecules: Innate immune function and microbial colonization modulation. AIMS Molecular Science, 2018, 5(1): 117-130. doi: 10.3934/molsci.2018.1.117 |
[6] | Siddig Ibrahim Abdelwahab, Manal Mohamed Elhassan Taha, Adel S. Al-Zubairi, Ahmad Syahida, Lee KaHeng, Putri Narrima, Rozana Othman, Hassan Ahmad Alfaifi, Amal Hamdan Alzahrani . Anti-inflammatory and antioxidant properties of bark and fruit extracts of Faidherbia albida (Delile) A. Chev: A perspective from bio-prospecting assays to scientometric approach. AIMS Molecular Science, 2024, 11(3): 262-276. doi: 10.3934/molsci.2024016 |
[7] | Zhaoping Qin, Patrick Robichaud, Taihao Quan . Oxidative stress and CCN1 protein in human skin connective tissue aging. AIMS Molecular Science, 2016, 3(2): 269-279. doi: 10.3934/molsci.2016.2.269 |
[8] | Sayeeda Ahsanuddin, Minh Lam, Elma D. Baron . Skin aging and oxidative stress. AIMS Molecular Science, 2016, 3(2): 187-195. doi: 10.3934/molsci.2016.2.187 |
[9] | Akshaj Pole, Manjari Dimri, Goberdhan P. Dimri . Oxidative stress, cellular senescence and ageing. AIMS Molecular Science, 2016, 3(3): 300-324. doi: 10.3934/molsci.2016.3.300 |
[10] | Giulia Ambrosi, Pamela Milani . Endoplasmic reticulum, oxidative stress and their complex crosstalk in neurodegeneration: proteostasis, signaling pathways and molecular chaperones. AIMS Molecular Science, 2017, 4(4): 424-444. doi: 10.3934/molsci.2017.4.424 |
A brain tumor is an abnormal growth of brain cells inside the head, which reduces the patient's survival chance if it is not diagnosed at an earlier stage. Brain tumors vary in size, different in type, irregular in shapes and require distinct therapies for different patients. Manual diagnosis of brain tumors is less efficient, prone to error and time-consuming. Besides, it is a strenuous task, which counts on radiologist experience and proficiency. Therefore, a modern and efficient automated computer-assisted diagnosis (CAD) system is required which may appropriately address the aforementioned problems at high accuracy is presently in need. Aiming to enhance performance and minimise human efforts, in this manuscript, the first brain MRI image is pre-processed to improve its visual quality and increase sample images to avoid over-fitting in the network. Second, the tumor proposals or locations are obtained based on the agglomerative clustering-based method. Third, image proposals and enhanced input image are transferred to backbone architecture for features extraction. Fourth, high-quality image proposals or locations are obtained based on a refinement network, and others are discarded. Next, these refined proposals are aligned to the same size, and finally, transferred to the head network to achieve the desired classification task. The proposed method is a potent tumor grading tool assessed on a publicly available brain tumor dataset. Extensive experiment results show that the proposed method outperformed the existing approaches evaluated on the same dataset and achieved an optimal performance with an overall classification accuracy of 98.04%. Besides, the model yielded the accuracy of 98.17, 98.66, 99.24%, sensitivity (recall) of 96.89, 97.82, 99.24%, and specificity of 98.55, 99.38, 99.25% for Meningioma, Glioma, and Pituitary classes, respectively.
Consider the following Euler-Poisson system for the bipolar hydrodynamical model of semi-conductor devices:
{n1t+j1x=0,j1t+(j21n1+p(n1))x=n1E−j1,n2t+j2x=0,j2t+(j22n2+q(n2))x=−n2E−j2,Ex=n1−n2−D(x), | (1) |
in the region Ω=(0,1)×R+. In this paper, n1(x,t), n2(x,t), j1(x,t), j2(x,t) and E(x,t) represent the electron density, the hole density, the electron current density, the hole current density and the electric field, respectively. In this note, we assume that the p and q satisfy the γ-law:p(n1)=n21 and q(n2)=n22 (γ=2), which denote the pressures of the electrons and the holes. The function D(x), called the doping profile, stands for the density of impurities in semiconductor devices.
For system (1), the initial conditions are
ni(x,0)=ni0(x)≥0,ji(x,0)=ji0(x),i=1,2, | (2) |
and the boundary conditions at x=0 and x=1 are
ji(0,t)=ji(1,t)=0,i=1,2,E(0,t)=0. | (3) |
So, we can get the compatibility condition
ji0(0)=ji0(1)=0,i=1,2. | (4) |
Moreover, in this paper, we assume the doping profile D(x) satisfies
D(x)∈C[0,1] and D∗=supxD(x)≥infxD(x)=D∗. | (5) |
Now, the definition of entropy solution to problem (1)−(4) is given. We consider the locally bounded measurable functions n1(x,t), j1(x,t), n2(x,t), j2(x,t), E(x,t), where E(x,t) is continuous in x, a.e. in t.
Definition 1.1. The vector function (n1,n2,j1,j2,E) is a weak solution of problem (1)−(4), if it satisfies the equation (1) in the distributional sense, verifies the restriction (2) and (3). Furthermore, a weak solution of system (1)−(4) is called an entropy solution if it satisfies the entropy inequality
ηet+qex+j21n1+j22n2−j1E+j2E≤0, | (6) |
in the sense of distribution. And the (ηe,qe) are mechanical entropy-entropy flux pair which satisfy
{ηe(n1,n2,j1,j2)=j212n1+n21+j222n2+n22,qe(n1,n2,j1,j2)=j312n21+2n1j1+j322n22+2n2j2. | (7) |
For bipolar hydrodynamic model, the studies on the existence of solutions and the large time behavior as well as relaxation-time limit have been extensively carried out, for example, see [1][2][3][4][5][6] etc. Now, we make it into a semilinear ODE about the potential and the pressures with the exponent γ=2. We can get the existence, uniqueness and some bounded estimates of the steady solution. Then, using a technical energy method and a entropy dissipation estimate, we present a framework for the large time behavior of bounded weak entropy solutions with vacuum. It is shown that the weak solutions converge to the stationary solutions in L2 norm with exponential decay rate.
The organization of this paper is as follows. In Section 2, the existence, uniqueness and some bounded estimates of stationary solutions are given. we present a framework for the large time behavior of bounded weak entropy solutions with vacuum in Section 3.
In this part, we will prove the existence and uniqueness of steady solution to problem (1)−(4). Moreover, we can obtain some important estimates on the steady solution (N1,N2,E).
The steady equation of (1)−(4) is as following
{J1=J2=0,2N1N1x=N1E,2N2N2x=−N2E,Ex=N1−N2−D(x), | (8) |
and the boundary condition
E(0)=0. | (9) |
We only concern the classical solutions in the region where the density
infxN1>0 and infxN2>0. | (10) |
hold.
Now, we introduce a new variation Φ(x), and make Φ′(x): = E(x). To eliminate the additive constants, we set ∫10Φ(x)dx=0. Then (2.1) turns into
{2N1x=Φx,2N2x=−Φx,Φxx=N1−N2−D(x). | (11) |
Obviously, (11)1 and (11)2 indicate
{N1(x)=12Φ(x)+C1,N2(x)=−12Φ(x)+C2,Φxx(x)=12Φ(x)+C1+12Φ(x)−C2−D(x). | (12) |
where C1 and C2 are two unknown positive constants. To calculate these two constants, we suppose*
*Using the conservation of the total charge: integrating (1)1 and (1)3 from 0 to 1
(∫10nidx)t=−∫10jixdx=0, for i=1,2, |
we see this assumption is right.
∫10(ni(x,0)−Ni(x))dx=0 for i=1,2, | (13) |
then
ˉn1:=∫10n1(x,0)dx=∫10N1(x)dx=∫10(Φ(x)2+C1)dx=C1,ˉn2:=∫10n2(x,0)dx=∫10N2(x)dx=∫10(−Φ(x)2+C2)dx=C2. | (14) |
Substituting (14) into (12)3, we have
Φxx=Φ(x)+ˉn1−ˉn2−D(x). | (15) |
Clearly, we can prove the existence and uniqueness of solutions to (15) with the Neumann boundary condition
Φx(0)=Φx(1)=0. | (16) |
Integrate(15) from x=0 to x=1, we get
ˉn1−ˉn2=∫10D(x)dx. | (17) |
Suppose Φ(x) attains its maximum in x0∈[0,1], then we get Φxx(x0)≤0† and
† If x0∈(0,1), then Φx(x0)=0, Φxx(x0)≤0 clearly. If x0=0 or x0=1, the Taylor expansion
Φ(x)=Φ(x0)+Φ′(x0)(x−x0)+Φ″(x0)2(x−x0)2+o(x−x0)2, |
the boundary condition (16) indicates Φ″(x0)≤0.
Φ(x0)+ˉn1−ˉn2−D(x0)≤0. |
So we get
Φ(x0)≤D∗+ˉn2−ˉn1. | (18) |
Similarly, if Φ attains its minimum in x1∈[0,1], we obtain
Φ(x1)≥D∗+ˉn2−ˉn1. | (19) |
Moreover, from (12),(14),(15),(18), and (19), we have
D∗+ˉn2+ˉn12≤N1(x)≤D∗+ˉn2+ˉn12,−D∗+ˉn2+ˉn12≤N2(x)≤−D∗+ˉn2+ˉn12, | (20) |
D∗≤(N1−N2)(x)≤D∗ for any x∈[0,1]. | (21) |
Above that, the theorem of existence and uniqueness of steady equation is given.
Theorem 2.1. Assume that (5) holds, then problem (8), (9) has an unique solution (N1,N2,E), such that for any x∈[0,1]
n∗≤N1(x)≤n∗, n∗≤N2(x)≤n∗, | (22) |
and
D∗≤(N1−N2)(x)≤D∗, | (23) |
satisfy, where
n∗:=max{D∗+ˉn2+ˉn12,−D∗+ˉn2+ˉn12},n∗:=min{D∗+ˉn2+ˉn12,−D∗+ˉn2+ˉn12}, | (24) |
ˉn1, ˉn2 are defined in (14).
Now, our aim is to prove the weak-entropy solution of (1)−(4) convergences to corresponding stationary solution in L2 norm with exponential decay rate. For this purpose, we introduce the relative entropy-entropy flux pair:
η∗(x,t)=2∑i=1(j2i2ni+n2i−N2i−2Ni(ni−Ni))(x,t)=(ηe−2∑i=1Qi)(x,t)≥0, | (25) |
q∗(x,t)=2∑i=1(j3i2n2i+2niji−2Niji)(x,t)=(qe−2∑i=1Pi)(x,t), | (26) |
where
Qi=N2i+2Ni(ni−Ni),Pi=2Niji, |
ηe and qe are the entropy-entropy flux pair defined in (1.7).
The following theorem is our main result in section 3.
Theorem 3.1(Large time behavior) Suppose (n1,n2,j1,j2,E)(x,t) be any weak entropy solution of problem (1.1)−(1.4) satisfying
2(2D∗−ˉn1−ˉn2)<(n1−n2)(x,t)<2(2D∗+ˉn1+ˉn2), | (27) |
for a.e. x∈[0,1] and t>0. (N1,N2,E)(x) is its stationary solution obtained in Theorem 2.1. If
∫10η∗(x,0)dx<∞, ∫10(ni(s,0)−Ni(s))ds=0, | (28) |
then for any t>0, we have
∫10[j21+j22+(E−E)2+(n1−N1)2+(n2−N2)2](x,t)dx≤C0e−˜C0t∫10η∗(x,0)dx. | (29) |
holds for some positive constant C0 and ˜C0 .
Proof. We set
yi(x,t)=−∫x0(ni(s,t)−Ni(s))ds, i=1,2, x∈[0,1], t>0. | (30) |
Clearly, yi(i=1,2) is absolutely continuous in x for a.e. t>0. And
yix=−(ni−Ni),yit=ji,y2−y1=E−E,yi(0,t)=yi(1,t)=0, | (31) |
following (1.1), (2.1), and (2.1). From (1.1)2 and (2.1)2, we get y1 satisfies the equation
y1tt+(y21tn1)x−y1xx+y1t=n1E−N1E. | (32) |
Multiplying y1 with (32) and integrating over (0,1)‡, we have
‡For weak solutions, (1) satisfies in the sense of distribution. We choose test function φn(x,t)∈C∞0((0,1)×[0,T)) and let φn(x,t)→yi(x,t) as n→+∞ for i=1,2.
ddt∫10(y1y1t+12y21) dx−∫10(y21tn1)y1x dx−∫10(n21−N21)y1xdx−∫10y21t dx=∫10(N1(y2−y1)y1+Ex2y21)dx. | (33) |
In above calculation, we have used the integration by part. Similarly, from (1.1)4 and (2.1)3, we get
ddt∫10(y2y2t+12y22) dx−∫10(y22tn2)y2x dx−∫10(n22−N22)y2x dx−∫10y22t dx=−∫10(N2(y2−y1)y2+Ex2y22) dx. | (34) |
Add (33) and (34), we have
ddt∫10(y1y1t+12y21+y2y2t+12y22) dx−∫10(n21−N21)y1xdx−∫10(n22−N22)y2x dx=∫10((y21tn1)y1x +(y22tn2)y2x) dx+∫10(y21t+y22t) dx+∫10(N1(y2−y1)y1+Ex2y21−N2(y2−y1)y2−Ex2y22) dx. | (35) |
Since
∫10(N1(y2−y1)y1+Ex2y21−N2(y2−y1)y2−Ex2y22) dx=∫10n1−N1−n2+N2−D(x)2y21dx+∫10n2−N2−n1+N1+D(x)2y22dx−∫10N1+N22(y1−y2)2dx, | (36) |
then, from (31)1 and (36) we get
ddt∫10(y1y1t+12y21+y2y2t+12y22) dx+∫10(N1+n1)y21x+∫10(N2+n2)y22xdx+∫10N1+N22(y1−y2)2dx=∫10((y21tn1)y1x+(y22tn2)y2x) dx+∫10(y21t+y22t) dx+∫10(n1−N1−n2+N2−D(x)2y21+n2−N2−n1+N1+D(x)2y22)dx. | (37) |
Moreover, since
|yi(x)|=|∫x0yis(s)ds|≤x12(∫x0y2isds)12≤x12(∫10y2isds)12,x∈[0,1], | (38) |
we can obtain
‖yi‖2L2=∫10|yi|2dx≤12‖yix‖2L2, | (39) |
verifies for i=1,2. If the weak solutions n1(x,t) and n2(x,t) satisfy (27) then
infx{N1+n1}>supx{n1−N1−n2+N2−D(x)4}, | (40) |
and
infx{N2+n2}>supx{n2−N2−n1+N1+D(x)4}, | (41) |
hold, where we have used the assumption (5) and the estimate (23).
Following (39), (40) and (41), we have
∫10n1−N1−n2+N2−D(x)2y21dx<∫10(N1+n1)y21xdx, | (42) |
and
∫10n2−N2−n1+N1+D(x)2y22dx<∫10(N2+n2)y22xdx. | (43) |
Thus (36), (42), and (43) indicate there is a positive constant β>0, such that
ddt∫10(y1y1t+12y21+y2y2t+12y22) dx+β∫10(y21x+y22x)dx+∫10N1+N22(y1−y2)2dx≤∫10((y21tn1)y1x+(y22tn2)y2x) dx+∫10(y21t+y22t) dx=∫10(N1y21tn1+N2y22tn2) dx. | (44) |
In view of the entropy inequality (6), and the definition of η∗ and q∗ in (25) and (26), the following inequality holds in the sense of distribution.
ηet+qex+j21n1+j22n2−j1E+j2E=η∗t+2∑i=1Qit+q∗x+2∑i=1Pix+j21n1+j22n2−j1E+j2E=η∗t+q∗x+j21n1+j22n2−j1E+j2E+j1E−j2E≤0. | (45) |
Since
−j1E+j2E+j1E−j2E=(E−E)(j2−j1)=(y2−y1)(y2t−y1t), | (46) |
then (44) turns into
η∗t+q∗x+y21tn1+y22tn2+(y2−y1)(y2t−y1t)≤0. | (47) |
We use the theory of divergence-measure fields, then
ddt∫10(η∗+12(y2−y1)2)dx+∫10(y21tn1+y22tn2) dx ≤0, | (48) |
where we use the fact
∫10q∗x dx =0. | (49) |
Let λ>2+2n∗>0. Then, we multiply (48) by λ and add the result to (44) to get
ddt∫10(λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22)dx+β∫10(y21x+y22x)dx+∫10N1+N22(y1−y2)2dx+∫10((λ−N1)y21tn1+(λ−N2)y22tn2)dx≤0. | (50) |
Using the estimate (22) in Theorem 2.1. and the Poincˊare inequality (39), we have
ddt∫10(λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22)dx+β2∫10(y21x+y22x)dx+β2∫10(y21+y22)dx+n∗∫10(y1−y2)2dx+∫10(y21tn1+y22tn2)dx≤0. | (51) |
Now, we consider η∗ in (25). Clearly
n2i−N2i−2Ni(ni−Ni), | (52) |
is the quadratic remainder of the Taylor expansion of the function n2i around Ni>n∗>0 for i=1,2. And then, there exist two positive constants C1 and C2 such that
C1y2ix≤n2i−N2i−2Ni(ni−Ni)≤C2y2ix. | (53) |
Making C3=min{C1,12} and C4=max{C2,12}, then we get
C3(y21tn1+y22tn2+y21x+y22x)≤η∗≤C4(y21tn1+y22tn2+y21x+y22x). | (54) |
Let
F(x,t)=λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22, |
then there exist positive constants C5, C6, and C7, depending on λ,n∗,β, such that
∫10F(x,t)dx=∫10[λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22]dx≤C5∫10[(y21tn1+y22tn2)+n∗(y2−y1)2+β2(y21x+y22x) +β2(y21+y22)]dx≤C6∫10η∗dx, | (55) |
and
0<C7∫10[(y21tn1+y22tn2)+n∗(y2−y1)2+β2(y21x+y22x) +β2(y21+y22)]dx≤∫10[λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22]dx=∫10F(x,t)dx. | (56) |
Then
ddt∫10F(x,t) dx+1C5∫10F(x,t)dx≤0, | (57) |
and
∫10[(y21tn1+y22tn2)+n∗(y2−y1)2+β2(y21x+y22x) +β2(y21+y22)]dx≤1C7∫10F(x,t)dx≤1C7e−tC5∫10F(x,0)dx≤C8e−tC5∫10η∗(x,0)dx. | (58) |
are given, following the Growall inequality and the estimates (55) and (56). Up to now, we finish the proof of Theorem 3.1.
In the process of the selected topic and write a paper, I get the guidance from my tutor: Huimin Yu. In the teaching process, my tutor helps me develop thinking carefully. The spirit of meticulous and the rigorous attitude of my tutor gives me a lot of help. Gratitude to my tutor is unable to express in words. And this paper supported in part by Shandong Provincial Natural Science Foundation (Grant No. ZR2015AM001).
The author declare no conflicts of interest in this paper.
[1] | T. Zhang, A. H. Sodhro, Z. Luo, N. Zahid, M. W. Nawaz, S. Pirbhulal, et al., A joint deep learning and internet of medical things driven framework for elderly patients, IEEE Access, 8 (2020), 75822-75832. |
[2] | S. Pirbhulal, W Wu, S. C. Mukhopadhyay, G. Li, Adaptive energy optimization algorithm for internet of medical things, in 2018 12th International Conference on Sensing Technology (ICST), (2018), 269-272. |
[3] | H. Zhang, H. Zhang, S. Pirbhulal, W. Wu, V. H. Albuquerque, Active balancing mechanism for imbalanced medical data in deep learning-based classification models, ACM Trans. Multimedia Comput., Commun., Appl. (TOMM), 16 (2020), 1-15. |
[4] |
M. Muzammal, R. Talat, A. H. Sodhro, S. Pirbhulal, A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks, Inf. Fusion, 53 (2020), 155-164. doi: 10.1016/j.inffus.2019.06.021
![]() |
[5] | S. Pirbhulal, H. Zhang, W. Wu, S. C. Mukhopadhyay, T. Islam, HRV-based biometric privacy-preserving and security mechanism for wireless body sensor networks, Wearable Sens. Appl. Des. Implementation, (2017), 1-27. |
[6] | U. K. Acharya, S. Kumar, Genetic algorithm based adaptive histogram equalization (GAAHE) technique for medical image enhancement, Optik, 230 (2021), 166273. |
[7] |
Y. Zhang, S. Liu, C. Li, J. Wang, Rethinking the dice loss for deep learning lesion segmentation in medical images, J. Shanghai Jiaotong Univ. (Sci.), 26 (2021), 93-102. doi: 10.1007/s12204-021-2264-x
![]() |
[8] | S. Liang, H. Liu, Y. Gu, X. Guo, H. Li, L. Li, et al., Fast automated detection of COVID-19 from medical images using convolutional neural networks, Commun. Biol., 4 (2021), 1-3. |
[9] | A. S. Miroshnichenko, V. M. Mikhelev, Classification of medical images of patients with Covid-19 using transfer learning technology of convolutional neural network, in Journal of Physics: Conference Series, 1801 (2021), 012010. |
[10] | F. Alenezi, K. C. Santosh, Geometric regularized Hopfield neural network for medical image enhancement, Int. J. Biomed. Imaging, 2021 (2021). |
[11] | R. A. Gougeh, T. Y. Rezaii, A. Farzamnia, Medical image enhancement and deblurring, in Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019, (2021), 543-554. |
[12] | Y. Ma, Y. Liu, J. Cheng, Y. Zheng, M. Ghahremani, H. Chen, et al., Cycle structure and illumination constrained GAN for medical image enhancement, in International Conference on Medical Image Computing and Computer-Assisted Intervention, (2020), 667-677. |
[13] | D. Zhang, G. Huang, Q. Zhang, J. Han, J. Han, Y. Yu, Cross-modality deep feature learning for brain tumor segmentation, Pattern Recognit., 110 (2021), 107562. |
[14] | N. Heller, F. Isensee, K. H. Maier-Hein, X. Hou, C. Xie, F. Li, et al., The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the kits19 challenge, Med. Image Anal., 67 (2021), 101821. |
[15] | D. Zhang, B. Chen, J. Chong, S. Li, Weakly-supervised teacher-student network for liver tumor segmentation from non-enhanced images, Med. Image Anal., (2021), 102005. |
[16] | S. Preethi, P. Aishwarya, An efficient wavelet-based image fusion for brain tumor detection and segmentation over PET and MRI image, Multimedia Tools Appl., (2021), 1-8. |
[17] | M. Toğaçar, B. Ergen, Z. Cömert, Tumor type detection in brain MR images of the deep model developed using hypercolumn technique, attention modules, and residual blocks, Med. Biol. Eng. Comput., 59 (2021), 57-70. |
[18] |
B. Kaushal, M. D. Patil, G. K. Birajdar, Fractional wavelet transform based diagnostic system for brain tumor detection in MR imaging, Int. J. Imaging Syst. Technol., 31 (2021), 575-591. doi: 10.1002/ima.22497
![]() |
[19] | F. J. Díaz-Pernas, M. Martínez-Zarzuela, M. Antón-Rodríguez, D. González-Ortega, A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network, in Healthcare, 9 (2021) 153. |
[20] | A. R. Khan, S. Khan, M. Harouni, R. Abbasi, S. Iqbal, Z. Mehmood, Brain tumor segmentation using K‐means clustering and deep learning with synthetic data augmentation for classification, Microsc. Res. Tech., 2021. |
[21] | C. L. Maire, M. M. Fuh, K. Kaulich, K. D. Fita, I. Stevic, D. H. Heiland, et al., Genome-wide methylation profiling of glioblastoma cell-derived extracellular vesicle DNA allows tumor classification, Neuro-oncology, 2021. |
[22] | G. Garg, R. Garg, Brain tumor detection and classification based on hybrid ensemble classifier, preprint, arXiv: 2101.00216. |
[23] | K. Kaplan, Y. Kaya, M. Kuncan, H. M. Ertunç, Brain tumor classification using modified local binary patterns (LBP) feature extraction methods, Med. Hypotheses, 139 (2020), 109696. |
[24] |
J. Amin, M. Sharif, N. Gul, M. Yasmin, S. A. Shad, Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network, Pattern Recognit. Lett., 129 (2020), 115-122. doi: 10.1016/j.patrec.2019.11.016
![]() |
[25] | N. Ghassemi, A. Shoeibi, M. Rouhani, Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images, Biomed. Signal Process. Control, 57 (2020), 101678. |
[26] | A. M. Alhassan, W. M. Zainon, Brain tumor classification in magnetic resonance image using hard swish-based RELU activation function-convolutional neural network, Neural Comput. Appl., (2021), 1-3. |
[27] |
M. Agarwal, G. Rani, V. S. Dhaka, Optimized contrast enhancement for tumor detection, Int. J. Imaging Syst. Technol., 30 (2020), 687-703. doi: 10.1002/ima.22408
![]() |
[28] | B. S. Rao, Dynamic histogram equalization for contrast enhancement for digital images, Appl. Soft Comput., 89 (2020), 106114. |
[29] |
B. Subramani, M. Veluchamy, A fast and effective method for enhancement of contrast resolution properties in medical images, Multimedia Tools Appl., 79 (2020), 7837-7855. doi: 10.1007/s11042-018-6434-2
![]() |
[30] | Z. Ullah, M. U. Farooq, S. H. Lee, D. An, A hybrid image enhancement based brain MRI images classification technique, Med. Hypotheses, 143 (2020), 109922. |
[31] | U. K. Acharya, S. Kumar, Particle swarm optimized texture based histogram equalization (PSOTHE) for MRI brain image enhancement, Optik, 224 (2020), 165760. |
[32] | J. Cheng, W. Huang, S. Cao, R. Yang, W. Yang, Z. Yun, et al., Enhanced performance of brain tumor classification via tumor region augmentation and partition, PloS One, 10 (2015), e0140381. |
[33] | M. R. Ismael, I. Abdel-Qader, Brain tumor classification via statistical features and back-propagation neural network, in 2018 IEEE International Conference on Electro/Information Technology (EIT), IEEE, (2018), 252-257. |
[34] | B. Tahir, S. Iqbal, M. Usman Ghani Khan, T. Saba T, Z. Mehmood, A. Anjum, et al., Feature enhancement framework for brain tumor segmentation and classification, Microscopy Res. Tech., 82 (2019), 803-811. |
[35] | J. S. Paul, A. J. Plassard, B. A. Landman, D. Fabbri, Deep learning for brain tumor classification, in Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging, 10137 (2017), 1013710. |
[36] | P. Afshar, A. Mohammadi, K. N. Plataniotis, Brain tumor type classification via capsule networks, in 2018 25th IEEE International Conference on Image Processing (ICIP), IEEE, (2018), 3129-3133, |
[37] | P. Afshar, K. N. Plataniotis, A. Mohammadi, Capsule networks for brain tumor classification based on MRI images and coarse tumor boundaries, in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, (2019), 1368-1372. |
[38] | Y. Zhou, Z. Li, H. Zhu, C. Chen, M. Gao, K. Xu, et al., Holistic brain tumor screening and classification based on densenet and recurrent neural network, in International MICCAI Brain lesion Workshop, Springer, Cham, (2018), 208-217. |
[39] | A. Pashaei, H. Sajedi, N. Jazayeri, Brain tumor classification via convolutional neural network and extreme learning machines, in 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE), IEEE, (2018), 314-319. |
[40] | N. Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani, T. R. Mengko, Brain tumor classification using convolutional neural network, in World Congress on Medical Physics and Biomedical Engineering 2018, Springer, Singapore, (2019), 183-189. |
[41] | J. Guo, W. Qiu, X. Li, X. Zhao, N. Guo, Q. Li, Predicting alzheimer's disease by hierarchical graph convolution from positron emission tomography imaging, in 2019 IEEE International Conference on Big Data (Big Data), IEEE, (2019), 5359-5363. |
[42] |
W. Ayadi, W. Elhamzi, I. Charfi, M. Atri, Deep CNN for brain tumor classification, Neural Process. Lett., 53 (2021), 671-700. doi: 10.1007/s11063-020-10398-2
![]() |
[43] | S. Deepak, P. M. Ameer, Brain tumor classification using deep CNN features via transfer learning, Comput. Biol. Med., 111 (2019), 103345. |
[44] |
P. F. Felzenszwalb, D. P. Huttenlocher, Efficient graph-based image segmentation, Int. J. Comput. Vision, 59 (2004), 167-181. doi: 10.1023/B:VISI.0000022288.19776.77
![]() |
[45] | M. Aamir, Y. F. Pu, Z. Rahman, W. A. Abro, H. Naeem, F. Ullah, et al., A hybrid proposed framework for object detection and classification, J. Inf. Process. Syst., 14 (2018). |
[46] | M. Aamir, Y. F. Pu, W. A. Abro, H. Naeem, Z. Rahman, A hybrid approach for object proposal generation, in International Conference on Sensing and Imaging, Springer, Cham, (2017), 251-259. |
[47] | M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, in International Conference on Machine Learning, PMLR, (2019), 6105-6114. |
[48] | Y. Guan, M. Aamir, Z. Hu, W. A. Abro, Z. Rahman, Z. A. Dayo, et al., A region-based efficient network for accurate object detection, Trait. du Signal, 38 (2021). |
[49] | M. Sandler, A. Howard, M. Zhu M, A. Zhmoginov, L. C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 4510-4520. |
[50] | R. Girshick, Fast r-cnn, in Proceedings of the IEEE International Conference on Computer Vision, (2015), 1440-1448. |
[51] | T. Sadad, A. Rehman, A. Munir, T. Saba, U. Tariq, N. Ayesha, et al., Brain tumor detection and multi‐classification using advanced deep learning techniques, Microscopy Res. Tech., 84 (2021), 1296-1308. |
[52] |
A. Rehman, S. Naz, M. I. Razzak, F. Akram, M. Imran, A deep learning-based framework for automatic brain tumors classification using transfer learning, Circuits, Syst. Signal Process., 39 (2020), 757-775. doi: 10.1007/s00034-019-01246-3
![]() |
[53] |
Z. Rahman, Y. F. Pu, M. Aamir, S. Wali, Structure revealing of low-light images using wavelet transform based on fractional-order denoising and multiscale decomposition, Visual Comput., 37 (2021), 865-880. doi: 10.1007/s00371-020-01838-0
![]() |
[54] | M. Aamir, Z. Rahman, Y. F. Pu, W. A. Abro, K. Gulzar, Satellite image enhancement using wavelet-domain based on singular value decomposition, Int. J. Adv. Comput. Sci. Appl. (IJACSA), 2019. |
[55] | M. Aamir, Z. Rehman, Y. F. Pu, A. Ahmed, W. A. Abro, Image enhancement in varying light conditions based on wavelet transform, in 2019 16th International Computer Conference on Wavelet Active Media Technology and Information Processing, (2019), 317-322. |
[56] | M. Aamir, Y. F. Pu, Z. Rahman, M. Tahir, H. Naeem, Q. Dai, A framework for automatic building detection from low-contrast satellite images, Symmetry, 11 (2019), 3. |
1. | Savita Duhan, 2021, 9780128193822, 195, 10.1016/B978-0-12-819382-2.00011-9 | |
2. | Gonzalo R. Tortella, Olga Rubilar, María Cristina Diez, Jorge Padrão, Andrea Zille, Joana C. Pieretti, Amedea B. Seabra, Advanced Material Against Human (Including Covid‐19) and Plant Viruses: Nanoparticles As a Feasible Strategy, 2021, 5, 2056-6646, 2000049, 10.1002/gch2.202000049 | |
3. | Y. Q. An, L. Sun, X. J. Wang, R. Sun, Z. Y. Cheng, Z. K. Zhu, G. G. Yan, Y. X. Li, J. G. Bai, Vanillic Acid Mitigates Dehydration Stress Responses in Blueberry Plants, 2019, 66, 1021-4437, 806, 10.1134/S1021443719050029 | |
4. | Nkulu Kabange Rolly, Sang-Uk Lee, Qari Muhammad Imran, Adil Hussain, Bong-Gyu Mun, Kyung-Min Kim, Byung-Wook Yun, Nitrosative stress-mediated inhibition of OsDHODH1 gene expression suggests roots growth reduction in rice (Oryza sativa L.), 2019, 9, 2190-572X, 10.1007/s13205-019-1800-y | |
5. | Patrícia Juliana Lopes-Oliveira, Diego Genuário Gomes, Milena Trevisan Pelegrino, Edmilson Bianchini, José Antonio Pimenta, Renata Stolf-Moreira, Amedea Barozzi Seabra, Halley Caixeta Oliveira, Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery, 2019, 9, 2045-2322, 10.1038/s41598-019-54030-3 | |
6. | Natalia Napieraj, Małgorzata Reda, Małgorzata Janicka, The role of NO in plant response to salt stress: interactions with polyamines, 2020, 47, 1445-4408, 865, 10.1071/FP19047 | |
7. | Fareen Sami, Husna Siddiqui, Shamsul Hayat, Nitric Oxide-Mediated Enhancement in Photosynthetic Efficiency, Ion Uptake and Carbohydrate Metabolism that Boosts Overall Photosynthetic Machinery in Mustard Plants, 2020, 0721-7595, 10.1007/s00344-020-10166-5 | |
8. | Milena T Pelegrino, Joana C Pieretti, Camila Neves Lange, Marcio Yukihiro Kohatsu, Bruna Moreira Freire, Bruno Lemos Batista, Paola Fincheira, Gonzalo R Tortella, Olga Rubilar, Amedea B Seabra, Foliar spray application of CuO nanoparticles ( NPs ) and S ‐nitrosoglutathione enhances productivity, physiological and biochemical parameters of lettuce plants , 2021, 0268-2575, 10.1002/jctb.6677 | |
9. | M. Pontin, G. Murcia, R. Bottini, A. Fontana, L. Bolcato, P. Piccoli, Nitric oxide and abscisic acid regulate osmoprotective and antioxidative mechanisms related to water stress tolerance of grapevines, 2021, 1322-7130, 10.1111/ajgw.12485 | |
10. | Neidiquele M. Silveira, Rafael V. Ribeiro, Paula J. C. Prataviera, Maria D. Pissolato, Joana C. Pieretti, Amedea B. Seabra, Eduardo C. Machado, Germination and initial growth of common bean plants under water deficit as affected by seed treatment with S-nitrosoglutathione and calcium chloride, 2020, 32, 2197-0025, 49, 10.1007/s40626-020-00166-x | |
11. | Rizwana Begum Syed Nabi, Rupesh Tayade, Adil Hussain, Krishnanand P. Kulkarni, Qari Muhammad Imran, Bong-Gyu Mun, Byung-Wook Yun, Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress, 2019, 161, 00988472, 120, 10.1016/j.envexpbot.2019.02.003 | |
12. | Milena Trevisan Pelegrino, Marcio Yukihiro Kohatsu, Amedea Barozzi Seabra, Lucilena Rebelo Monteiro, Diego Genuário Gomes, Halley Caixeta Oliveira, Wallace Rosado Rolim, Tatiane Araújo de Jesus, Bruno Lemos Batista, Camila Neves Lange, Effects of copper oxide nanoparticles on growth of lettuce (Lactuca sativa L.) seedlings and possible implications of nitric oxide in their antioxidative defense, 2020, 192, 0167-6369, 10.1007/s10661-020-8188-3 | |
13. | Anderson E. S. Pereira, Bruno T. Sousa, María J. Iglesias, Vera A. Alvarez, Claudia A. Casalongué, Halley C. Oliveira, Leonardo F. Fraceto, 2019, Chapter 4, 978-3-030-19415-4, 45, 10.1007/978-3-030-19416-1_4 | |
14. | Yu. V. Karpets, Yu. E. Kolupaev, Functional interaction of nitric oxide with reactive oxygen species and calcium ions at development of plants adaptive responses, 2017, 2017, 19924917, 6, 10.35550/vbio2017.02.006 | |
15. | Angeles Aroca, Cecilia Gotor, Luis C. Romero, Hydrogen Sulfide Signaling in Plants: Emerging Roles of Protein Persulfidation, 2018, 9, 1664-462X, 10.3389/fpls.2018.01369 | |
16. | Angeles Aroca, Cecilia Gotor, Diane C. Bassham, Luis C. Romero, Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life, 2020, 9, 2076-3921, 621, 10.3390/antiox9070621 | |
17. | Alina Wiszniewska, Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure, 2021, 10, 2223-7747, 623, 10.3390/plants10040623 | |
18. | Vinod Goyal, Dharmendra Jhanghel, Shweta Mehrotra, Emerging warriors against salinity in plants: Nitric oxide and hydrogen sulphide, 2021, 171, 0031-9317, 896, 10.1111/ppl.13380 | |
19. | Sagar Bag, Anupam Mondal, Avishek Banik, 2022, 9781119800156, 95, 10.1002/9781119800156.ch6 | |
20. | A. Tyagi, S. Sharma, S. Ali, K. Gaikwad, M. H. Siddiqui, Crosstalk between H 2 S and NO: an emerging signalling pathway during waterlogging stress in legume crops , 2022, 24, 1435-8603, 576, 10.1111/plb.13319 | |
21. | Marcio Yukihiro Kohatsu, Camila Neves Lange, Milena Trevisan Pelegrino, Joana Claudio Pieretti, Gonzalo Tortella, Olga Rubilar, Bruno Lemos Batista, Amedea Barozzi Seabra, Tatiane Araujo de Jesus, Foliar spraying of biogenic CuO nanoparticles protects the defence system and photosynthetic pigments of lettuce (Lactuca sativa), 2021, 324, 09596526, 129264, 10.1016/j.jclepro.2021.129264 | |
22. | Young Hee Lee, Yun Jeong Kim, Hyong Woo Choi, Yun-Hee Kim, Jeum Kyu Hong, Sodium nitroprusside pretreatment alters responses of Chinese cabbage seedlings to subsequent challenging stresses, 2022, 17, 1742-9145, 206, 10.1080/17429145.2021.2024286 | |
23. | Mobina Ulfat, Habib‐ur‐Rehman Athar, Zafar Ullah Zafar, Muhammad Ashraf, 2022, 9781119800156, 59, 10.1002/9781119800156.ch4 | |
24. | Beáta Piršelová, Ľudmila Galuščáková, Libuša Lengyelová, Veronika Kubová, Vilma Jandová, Jitka Hegrová, Assessment of the Hormetic Effect of Arsenic on Growth and Physiology of Two Cultivars of Maize (Zea mays L.), 2022, 11, 2223-7747, 3433, 10.3390/plants11243433 | |
25. | Nazir Ahmed, Mingyuan Zhu, Qiuxia Li, Xilei Wang, Jiachi Wan, Yushi Zhang, Glycine Betaine-Mediated Root Priming Improves Water Stress Tolerance in Wheat (Triticum aestivum L.), 2021, 11, 2077-0472, 1127, 10.3390/agriculture11111127 | |
26. | Amedea Barozzi Seabra, Milena Trevisan Pelegrino, Patrícia Juliana Lopes-Oliveira, Diego Genuário Gomes, Halley Caixeta Oliveira, 2022, 9780128187975, 3, 10.1016/B978-0-12-818797-5.00012-1 | |
27. | I. Zhigacheva, N. Krikunova, I. Generozova, P. Butsanets, S. Vasilyeva, M. Rasulov, ETRANITROSYL IRON COMPLEX WITH THIOSULFATE LIGANDS PREVENTS MITOCHONDRIAL DYSFUNCTION UNDER STRESS, 2022, 7, 2499-9962, 17, 10.29039/rusjbpc.2022.0477 | |
28. | Aehsan Ul Haq, Mohammad Lateef Lone, Sumira Farooq, Shazia Parveen, Foziya Altaf, Inayatullah Tahir, Daniel Ingo Hefft, Ajaz Ahmad, Parvaiz Ahmad, Suleyman Allakhverdiev, Nitric oxide effectively orchestrates postharvest flower senescence: a case study of, 2021, 50, 1445-4408, 97, 10.1071/FP21241 | |
29. | Huan Yang, Haiying Yu, Yao Wu, Huagang Huang, Xizhou Zhang, Daihua Ye, Yongdong Wang, Zicheng Zheng, Tingxuan Li, Nitric oxide amplifies cadmium binding in root cell wall of a high cadmium-accumulating rice (Oryza sativa L.) line by promoting hemicellulose synthesis and pectin demethylesterification, 2022, 234, 01476513, 113404, 10.1016/j.ecoenv.2022.113404 | |
30. | Milana Trifunović-Momčilov, Nikola Stamenković, Marija Đurić, Snežana Milošević, Marija Marković, Zlatko Giba, Angelina Subotić, Role of Sodium Nitroprusside on Potential Mitigation of Salt Stress in Centaury (Centaurium erythraea Rafn) Shoots Grown In Vitro, 2023, 13, 2075-1729, 154, 10.3390/life13010154 | |
31. | Iraj Azizi, Behrooz Esmaielpour, Hamideh Fatemi, Exogenous nitric oxide on morphological, biochemical and antioxidant enzyme activity on savory (Satureja Hortensis L.) plants under cadmium stress, 2021, 20, 1658077X, 417, 10.1016/j.jssas.2021.05.003 | |
32. | Amedea B. Seabra, Neidiquele M. Silveira, Rafael V. Ribeiro, Joana C. Pieretti, Juan B. Barroso, Francisco J. Corpas, José M. Palma, John T. Hancock, Marek Petřivalský, Kapuganti J. Gupta, David Wendehenne, Gary J. Loake, Jorg Durner, Christian Lindermayr, Árpád Molnár, Zsuzsanna Kolbert, Halley C. Oliveira, Nitric oxide‐releasing nanomaterials: from basic research to potential biotechnological applications in agriculture, 2022, 234, 0028-646X, 1119, 10.1111/nph.18073 | |
33. | Abolghassem Emamverdian, Yulong Ding, James Barker, Guohua Liu, Yang Li, Farzad Mokhberdoran, Sodium Nitroprusside Improves Bamboo Resistance under Mn and Cr Toxicity with Stimulation of Antioxidants Activity, Relative Water Content, and Metal Translocation and Accumulation, 2023, 24, 1422-0067, 1942, 10.3390/ijms24031942 | |
34. | Amedea B. Seabra, Gonzalo R. Tortella, 2023, 9780323988001, 167, 10.1016/B978-0-323-98800-1.00005-8 | |
35. | Simerpreet Kaur Sehgal, Amandeep Kaur, 2023, 9780323912099, 261, 10.1016/B978-0-323-91209-9.00001-4 | |
36. | Jaspreet Kour, Kanika Khanna, Arun Dev Singh, Shalini Dhiman, Kamini Devi, Neerja Sharma, Isha Madaan, Nitika Kapoor, Geetika Sirhindi, Renu Bhardwaj, 2023, 9780323912099, 91, 10.1016/B978-0-323-91209-9.00011-7 | |
37. | Zhi jian Chen, Jing Huang, Su Li, Ji Feng Shao, Ren Fang Shen, Xiao Fang Zhu, Salylic acid minimize cadmium accumulation in rice through regulating the fixation capacity of the cell wall to cadmium, 2023, 336, 01689452, 111839, 10.1016/j.plantsci.2023.111839 | |
38. | Arun Dev Singh, Kanika Khanna, Jaspreet Kour, Shalini Dhiman, Mohd. Ibrahim, Neerja Sharma, Indu Sharma, Priyanka Sharma, Bilal Ahmad Mir, Renu Bhardwaj, 2023, Chapter 3, 978-3-031-43028-2, 45, 10.1007/978-3-031-43029-9_3 | |
39. | Kuntal Bera, Kakan Ball, Puspendu Dutta, Sanjoy Sadhukhan, 2023, Chapter 7, 978-3-031-43028-2, 147, 10.1007/978-3-031-43029-9_7 | |
40. | Hebat-Allah Ali Hussein, Response Mechanisms of Tolerant and Sensitive Faba Bean (Vicia faba) Cultivars to Nitric Oxide, 2023, 0718-9508, 10.1007/s42729-023-01580-1 | |
41. | Rui Guo, ChangZhao Chen, MengXing He, ZhiWen Li, Yang Lv, XinYu Tao, Qiang Zhang, Kinetin-mediated reduction of cadmium accumulation in rice (Oryza sativa L.) via modulation of cell wall binding capacity in a NO-dependent manner, 2024, 218, 00988472, 105627, 10.1016/j.envexpbot.2023.105627 | |
42. | Gaurav Sharma, Nandni Sharma, Puja Ohri, Harmonizing hydrogen sulfide and nitric oxide: A duo defending plants against salinity stress, 2024, 10898603, 10.1016/j.niox.2024.01.002 | |
43. | Nidhi Kandhol, Vijay Pratap Singh, Sangeeta Pandey, Shivesh Sharma, Lijuan Zhao, Francisco J. Corpas, Zhong-Hua Chen, Jason C. White, Durgesh Kumar Tripathi, Nanoscale materials and NO-ROS homeostasis in plants: trilateral dynamics, 2024, 13601385, 10.1016/j.tplants.2024.06.009 | |
44. | Gonzalo Tortella Fuentes, Paola Fincheira, Olga Rubilar, Sebastian Leiva, Ivette Fernandez, Mauricio Schoebitz, Milena T. Pelegrino, André Paganotti, Roberta Albino dos Reis, Amedea B. Seabra, Nanoparticle-Based Nitric Oxide Donors: Exploring Their Antimicrobial and Anti-Biofilm Capabilities, 2024, 13, 2079-6382, 1047, 10.3390/antibiotics13111047 | |
45. | Diego G. Gomes, Bruno T. Sousa, Joana C. Pieretti, Roney H. Pereira, Wagner R. de Souza, Halley C. Oliveira, Amedea B Seabra, Nanoencapsulated nitric oxide donor triggers a dose-dependent effect on the responses of maize seedlings to high light stress, 2024, 2667064X, 100711, 10.1016/j.stress.2024.100711 | |
46. | Zhenning Teng, Qin Zheng, Yaqiong Peng, Yi Li, Shuan Meng, Bohan Liu, Yan Peng, Meijuan Duan, Dingyang Yuan, Jianhua Zhang, Nenghui Ye, Nitrate reductase–dependent nitric oxide production mediates nitrate-conferred salt tolerance in rice seedlings, 2025, 197, 0032-0889, 10.1093/plphys/kiaf080 | |
47. | Renan S. Nunes, Kelli C. Freitas Mariano, Joana C. Pieretti, Roberta A. dos Reis, Amedea B. Seabra, Innovative nitric oxide-releasing nanomaterials: current progress, trends, challenges, and perspectives in cardiovascular therapies, 2025, 10898603, 10.1016/j.niox.2025.03.004 |