Research article Special Issues

A dynamical framework for modeling fear of infection and frustration with social distancing in COVID-19 spread

  • Received: 18 August 2020 Accepted: 25 October 2020 Published: 10 November 2020
  • We introduce a novel modeling framework for incorporating fear of infection and frustration with social distancing into disease dynamics. We show that the resulting SEIR behavior-perception model has three principal modes of qualitative behavior—no outbreak, controlled outbreak, and uncontrolled outbreak. We also demonstrate that the model can produce transient and sustained waves of infection consistent with secondary outbreaks. We fit the model to cumulative COVID-19 case and mortality data from several regions. Our analysis suggests that regions which experience a significant decline after the first wave of infection, such as Canada and Israel, are more likely to contain secondary waves of infection, whereas regions which only achieve moderate success in mitigating the disease's spread initially, such as the United States, are likely to experience substantial secondary waves or uncontrolled outbreaks.

    Citation: Matthew D. Johnston, Bruce Pell. A dynamical framework for modeling fear of infection and frustration with social distancing in COVID-19 spread[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7892-7915. doi: 10.3934/mbe.2020401

    Related Papers:

    [1] Tahir Khan, Fathalla A. Rihan, Muhammad Ibrahim, Shuo Li, Atif M. Alamri, Salman A. AlQahtani . Modeling different infectious phases of hepatitis B with generalized saturated incidence: An analysis and control. Mathematical Biosciences and Engineering, 2024, 21(4): 5207-5226. doi: 10.3934/mbe.2024230
    [2] Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024
    [3] Kaushik Dehingia, Anusmita Das, Evren Hincal, Kamyar Hosseini, Sayed M. El Din . Within-host delay differential model for SARS-CoV-2 kinetics with saturated antiviral responses. Mathematical Biosciences and Engineering, 2023, 20(11): 20025-20049. doi: 10.3934/mbe.2023887
    [4] Balázs Csutak, Gábor Szederkényi . Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation. Mathematical Biosciences and Engineering, 2025, 22(1): 109-137. doi: 10.3934/mbe.2025006
    [5] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [6] Mengya Huang, Anji Yang, Sanling Yuan, Tonghua Zhang . Stochastic sensitivity analysis and feedback control of noise-induced transitions in a predator-prey model with anti-predator behavior. Mathematical Biosciences and Engineering, 2023, 20(2): 4219-4242. doi: 10.3934/mbe.2023197
    [7] Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang . Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981. doi: 10.3934/mbe.2019401
    [8] Jiying Ma, Shasha Ma . Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China. Mathematical Biosciences and Engineering, 2023, 20(2): 3070-3098. doi: 10.3934/mbe.2023145
    [9] Guirong Jiang, Qishao Lu, Linping Peng . Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences and Engineering, 2005, 2(2): 329-344. doi: 10.3934/mbe.2005.2.329
    [10] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
  • We introduce a novel modeling framework for incorporating fear of infection and frustration with social distancing into disease dynamics. We show that the resulting SEIR behavior-perception model has three principal modes of qualitative behavior—no outbreak, controlled outbreak, and uncontrolled outbreak. We also demonstrate that the model can produce transient and sustained waves of infection consistent with secondary outbreaks. We fit the model to cumulative COVID-19 case and mortality data from several regions. Our analysis suggests that regions which experience a significant decline after the first wave of infection, such as Canada and Israel, are more likely to contain secondary waves of infection, whereas regions which only achieve moderate success in mitigating the disease's spread initially, such as the United States, are likely to experience substantial secondary waves or uncontrolled outbreaks.




    [1] Worldometers.info, Covid-19 coronavirus pandemic, available from: https://www.worldometers.info/coronavirus/. Accessed: 29 Sept, 2020.
    [2] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 20 (2020), P553-558. doi: 10.1016/S1473-3099(20)30144-4
    [3] S. Zhang, M. Y. Diao, W. Yuc, L. Pei, Z. Lin, D. Chen, et al., Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the diamond princess cruise ship: A data-driven analysis, Int. J. Infect. Dis., 93 (2020), 201-204. doi: 10.1016/j.ijid.2020.02.033
    [4] Z. Zhuang, S. Zhao, Q. Lin, P. Cao, Y. Lou, L. Yang, et al., Preliminary estimates of the reproduction number of the coronavirus disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March 2020, Int. J. Infect. Dis., 95 (2020), 308-310. doi: 10.1016/j.ijid.2020.04.044
    [5] M. Lv, X. Luo, J. Estill, Y. Liu, M. Ren, J. Wang, et al., Coronavirus disease (COVID-19): a scoping review, Euro. Surveil., 25 (2020), 2000125.
    [6] M. V. Barbarossa, J. Fuhrmann, J. Heidecke, H. V. Varma, N. Castelletti, J. H. Meinke, et al., A first study on the impact of current and future control measures on the spread of COVID-19 in Germany, medRxiv, (2020). Available from: https://www.medrxiv.org/content/10.1101/2020.04.08.20056630v1.
    [7] A. Bouchnita, A. Jebrane, A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-pharmaceutical interventions, Chaos Soliton Fract., 138 (2020), 109941. doi: 10.1016/j.chaos.2020.109941
    [8] S. L. Chang, N. Harding, C. Zachreson, O. M. Cliff, M. Prokopenko, Modelling transmission and control of the COVID-19 pandemic in Australia, arXiv, (2020). Available from: arXiv: 2003.10218v2.
    [9] R. Djidjou-Demassea, Y. Michalakisa, M. Choisya, M. T. Sofonea, S. Alizon, Optimal COVID-19 epidemic control until vaccine deployment, medRxiv, (2020). Available from: https://www.medrxiv.org/content/10.1101/2020.04.02.20049189v2.
    [10] R. Engbert, M. M. Rabe, R. Kliegl, S. Reich, Sequential data assimilation of the stochastic SEIR epidemic model for regional COVID-19 dynamics, medRxiv, (2020). Available from: https://www.medrxiv.org/content/early/2020/06/30/2020.04.13.20063768.full.pdf.
    [11] S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic, Infect. Dis. Model., 5 (2020), 293-308.
    [12] S. W. Park, D. M. Cornforth, J. Dushoff, J. S. Weitz, The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak, Epidemics, 31 (2020), 100392. doi: 10.1016/j.epidem.2020.100392
    [13] Y. Bai, L. Yao, T. Wei, F. Tian, D. Y. Jin, L. Chen, et al., Presumed asymptomatic carrier transmission of COVID-19, JAMA, 323 (2020), 1406-1407. doi: 10.1001/jama.2020.2565
    [14] W. C. Roda, M. B. Varughese, D. Han, M. Y. Li, Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model., (2020).
    [15] G. Massonis, J. R. Banga, A. F. Villaverde, Structural identifiability and observability of compartmental models of the COVID-19 pandemic, (2020). Available on arXiv: arXiv: 2006.14295.
    [16] I. Holmdahl, C. Buckee, Wrong but useful - what COVID-19 epidemiologic models can and cannot tell us, N. Engl. J. Med., 383 (2020), 303-305. doi: 10.1056/NEJMp2016822
    [17] F. Petropoulos, S. Makridakis, Forecasting the novel coronavirus COVID-19, PLoS ONE, 15 (2020), e0231236. doi: 10.1371/journal.pone.0231236
    [18] L. Wynants, B. Van Calster, G. S. Collins, Prediction models for diagnosis and prognosis of COVID-19: systematic review and critical appraisal, BMJ, 369 (2020), m1328.
    [19] Z. Wang, M. A. Andrews, Z. X. Wu, L. Wang, C. T. Bauch, Coupled disease-behavior dynamics on complex networks: a review, Phys. Life Rev., 15 (2015), 1-29. doi: 10.1016/j.plrev.2015.07.006
    [20] J. M. Epstein, J. Parker, D. Cummings, R. A. Hammond, Coupled contagion dynamics of fear and disease: Mathematical and computational explorations, PLoS ONE, 3 (2008), e3955. doi: 10.1371/journal.pone.0003955
    [21] N. Perra, D. Balcan, B. Gonçalves, A. Vespignani, Towards a characterization of behavior-disease models, PLOS ONE, 6 (2011), 1-15.
    [22] S. Y. Del Valle, S. M. Mniszewski, J. M. Hyman, Modeling the Impact of Behavior Changes on the Spread of Pandemic Influenza, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. D'Onofrio), Springer New York, New York, NY, (2013), 59-77.
    [23] J. A. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mt. J. Math., 38 (2008), 1323-1334. doi: 10.1216/RMJ-2008-38-5-1323
    [24] E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. Gonzalez Parra, G. J. Hickling, et al., Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci. U.S.A., 108 (2011), 6306-6311. doi: 10.1073/pnas.1011250108
    [25] E. P. Fenichel, X. Wang, The Mechanism and Phenomena of Adaptive Human Behavior During an Epidemic and the Role of Information, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. D'Onofrio), Springer New York, New York, NY, (2013), 153-168.
    [26] P. Poletti, B. Caprile, M. Ajelli, S. Merler, Uncoordinated Human Responses During Epidemic Outbreaks, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases (eds. P. Manfredi and A. D'Onofrio), Springer New York, New York, NY, (2013), 79-91.
    [27] C. Sun, W. Yang, J. Arino, K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting, Math. Biosci., 230 (2011), 87-95. doi: 10.1016/j.mbs.2011.01.005
    [28] M. A. Herrera-Valdez, M. Cruz-Aponte, C. Castillo-Chavez, Multiple outbreaks for the same pandemic: Local transportation and social distancing explain the different "waves" of A-H1N1 pdm cases observed in México during 2009, Math. Biosci. Eng., 8 (2011), 21. doi: 10.3934/mbe.2011.8.21
    [29] S. A. Pedro, F. T. Ndjomatchoua, P. Jentsch, J. M. Tcheunche, M. Anand, C. T. Bauch, Conditions for a second wave of COVID-19 due to interactions between disease dynamics and social processes, (2020). Available on MedRxiv: https://www.medrxiv.org/content/10.1101/2020.05.22.20110502v1.
    [30] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. Lond. A, 115 (1927), 700-721. doi: 10.1098/rspa.1927.0118
    [31] S. Roy, COVID-19 reinfection: Myth or truth?, S.N. Compr. Clin. Med., (2020), 1-4.
    [32] O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, in Wiley Series in Mathematical and Computational Biology, Chichester, Wiley, (1990).
    [33] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6
    [34] J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, 2 (2005), 281-293. doi: 10.1098/rsif.2005.0042
    [35] A. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol., 40 (1910), iv-vii.
    [36] E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., 20 (2020), 533-534. doi: 10.1016/S1473-3099(20)30120-1
    [37] Google, COVID-19 Community Mobility Reports, available from: https://www.google.com/covid19/mobility/ (Accessed: 11 Aug, 2020).
    [38] Apple, Mobility Trends Reports, available from: https://www.apple.com/covid19/mobility (Accessed: 11 Aug, 2020).
    [39] S. H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering, 2nd edition, Westview Press, Boulder, CO, 2015.
    [40] E. J. Routh, A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion, Macmillan, 1877.
    [41] A. Hurwitz, Ueber die bedingungen, unter welchen eine gleichung nur wurzeln mit negativen reellen theilen besitzt, Math. Ann., 46 (1895), 273-284. doi: 10.1007/BF01446812
  • This article has been cited by:

    1. Qingyi Zhu, Pingfan Xiang, Xuhang Luo, Chenquan Gan, Mamoun Alazab, Dynamical Behavior of Hybrid Propagation of Computer Viruses, 2022, 2022, 1939-0122, 1, 10.1155/2022/2576685
    2. 秀秀 王, Impulsive State Feedback Control Model of Predator Population with Constant Release Rate in Polluted Water, 2022, 11, 2324-7991, 7302, 10.12677/AAM.2022.1110775
    3. Tieying Wang, Microbial insecticide model and homoclinic bifurcation of impulsive control system, 2021, 14, 1793-5245, 2150043, 10.1142/S1793524521500431
    4. Wenjie Li, Jinchen Ji, Lihong Huang, Global dynamics analysis of a water hyacinth fish ecological system under impulsive control, 2022, 359, 00160032, 10628, 10.1016/j.jfranklin.2022.09.030
    5. 烁烁 王, Study on the Second Model of State Feedback Impulsive Model of Red Squirrel Protection, 2021, 10, 2324-7991, 3640, 10.12677/AAM.2021.1011385
    6. Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2022, 1556-5068, 10.2139/ssrn.4012957
    7. Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2023, 49, 1017-060X, 10.1007/s41980-023-00834-z
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7859) PDF downloads(257) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog