Research article Special Issues

Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness

  • Received: 15 July 2020 Accepted: 15 September 2020 Published: 23 September 2020
  • A total of more than 27 million confirmed cases of the novel coronavirus outbreak, also known as COVID-19, have been reported as of September 7, 2020. To reduce its transmission, a number of strategies have been proposed. In this study, mathematical models with nonpharmaceutical and pharmaceutical interventions were formulated and analyzed. The first model was formulated without the inclusion of community awareness. The analysis focused on investigating the mathematical behavior of the model, which can explain how medical masks, medical treatment, and rapid testing can be used to suppress the spread of COVID-19. In the second model, community awareness was taken into account, and all the interventions considered were represented as time-dependent parameters. Using the center-manifold theorem, we showed that both models exhibit forward bifurcation. The infection parameters were obtained by fitting the model to COVID-19 incidence data from three provinces in Indonesia, namely, Jakarta, West Java, and East Java. Furthermore, a global sensitivity analysis was performed to identify the most influential parameters on the number of new infections and the basic reproduction number. We found that the use of medical masks has the greatest effect in determining the number of new infections. The optimal control problem from the second model was characterized using the well-known Pontryagin's maximum principle and solved numerically. The results of a cost-effectiveness analysis showed that community awareness plays a crucial role in determining the success of COVID-19 eradication programs.

    Citation: Dipo Aldila, Meksianis Z. Ndii, Brenda M. Samiadji. Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6355-6389. doi: 10.3934/mbe.2020335

    Related Papers:

    [1] Kasia A. Pawelek, Anne Oeldorf-Hirsch, Libin Rong . Modeling the impact of twitter on influenza epidemics. Mathematical Biosciences and Engineering, 2014, 11(6): 1337-1356. doi: 10.3934/mbe.2014.11.1337
    [2] Meili Li, Ruijun Zhai, Junling Ma . The effects of disease control measures on the reproduction number of COVID-19 in British Columbia, Canada. Mathematical Biosciences and Engineering, 2023, 20(8): 13849-13863. doi: 10.3934/mbe.2023616
    [3] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [4] Boqiang Chen, Zhizhou Zhu, Qiong Li, Daihai He . Resurgence of different influenza types in China and the US in 2021. Mathematical Biosciences and Engineering, 2023, 20(4): 6327-6333. doi: 10.3934/mbe.2023273
    [5] Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng . The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences and Engineering, 2012, 9(2): 413-430. doi: 10.3934/mbe.2012.9.413
    [6] Fangyuan Chen, Rong Yuan . Dynamic behavior of swine influenza transmission during the breed-slaughter process. Mathematical Biosciences and Engineering, 2020, 17(5): 5849-5863. doi: 10.3934/mbe.2020312
    [7] Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman . Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences and Engineering, 2007, 4(3): 457-470. doi: 10.3934/mbe.2007.4.457
    [8] Oren Barnea, Rami Yaari, Guy Katriel, Lewi Stone . Modelling seasonal influenza in Israel. Mathematical Biosciences and Engineering, 2011, 8(2): 561-573. doi: 10.3934/mbe.2011.8.561
    [9] Jing’an Cui, Ya’nan Zhang, Zhilan Feng, Songbai Guo, Yan Zhang . Influence of asymptomatic infections for the effectiveness of facemasks during pandemic influenza. Mathematical Biosciences and Engineering, 2019, 16(5): 3936-3946. doi: 10.3934/mbe.2019194
    [10] Jing-An Cui, Fangyuan Chen . Effects of isolation and slaughter strategies in different species on emerging zoonoses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1119-1140. doi: 10.3934/mbe.2017058
  • A total of more than 27 million confirmed cases of the novel coronavirus outbreak, also known as COVID-19, have been reported as of September 7, 2020. To reduce its transmission, a number of strategies have been proposed. In this study, mathematical models with nonpharmaceutical and pharmaceutical interventions were formulated and analyzed. The first model was formulated without the inclusion of community awareness. The analysis focused on investigating the mathematical behavior of the model, which can explain how medical masks, medical treatment, and rapid testing can be used to suppress the spread of COVID-19. In the second model, community awareness was taken into account, and all the interventions considered were represented as time-dependent parameters. Using the center-manifold theorem, we showed that both models exhibit forward bifurcation. The infection parameters were obtained by fitting the model to COVID-19 incidence data from three provinces in Indonesia, namely, Jakarta, West Java, and East Java. Furthermore, a global sensitivity analysis was performed to identify the most influential parameters on the number of new infections and the basic reproduction number. We found that the use of medical masks has the greatest effect in determining the number of new infections. The optimal control problem from the second model was characterized using the well-known Pontryagin's maximum principle and solved numerically. The results of a cost-effectiveness analysis showed that community awareness plays a crucial role in determining the success of COVID-19 eradication programs.




    [1] WorldMeter, COVID-19 CORONAVIRUS PANDEMIC, available from: https://www.worldometers.info/coronavirus/#countries, accessed 02 July 2020.
    [2] Kementerian Kesehatan Republik Indonesia, Data Sebaran, available from: https://covid19.go.id/, accessed 02 July 2020.
    [3] A. Abidemi, M. I. Abd. Aziz, R. Ahmad, Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation, Chaos Solitons Fractals, 133 (2020), 109648. doi: 10.1016/j.chaos.2020.109648
    [4] N. Ganegoda, T. Gotz, K. P. Wijaya, An age-dependent model for dengue transmission: Analysis and comparison to field data, Appl. Math. Comput., 388 (2021), 125538.
    [5] A. Bustamam, D. Aldila, A. Yuwanda, Understanding Dengue Control for Short- and Long-Term Intervention with a Mathematical Model Approach, J. Appl. Math., 2018 (2018), 9674138.
    [6] J. Mohammad-Awel, A. B. Gumel, Mathematics of an epidemiology-genetics model for assessing the role of insecticides resistance on malaria transmission dynamics, Math. Biosci., 312 (2019), 33-49. doi: 10.1016/j.mbs.2019.02.008
    [7] F. B. Agusto, S. Y. D. Valle, K. W. Blayneh, C. N. Ngonghala, M. J. Goncalves, N. Li, et al., The impact of bed-net use on malaria prevalence, J. Theor. Biol., 320 (2013), 58-65. doi: 10.1016/j.jtbi.2012.12.007
    [8] L. Cai, X. Li, N. Tuncer, M. Martcheva, A. A. Lashari, Optimal control of a malaria model with asymptomatic class and superinfection, Math. Biosci., 288 (2017), 94-108. doi: 10.1016/j.mbs.2017.03.003
    [9] S. Kim, A. Aurelio, E. Jung, Mathematical model and intervention strategies for mitigating tuberculosis in the Philippines, J Theor Biol., 443 (2018), 100-112. doi: 10.1016/j.jtbi.2018.01.026
    [10] D. K. Das, S. Khajanci, T. K. Kar, The impact of the media awareness and optimal strategy on the prevalence of tuberculosis, Appl. Math. Comput., 366 (2020), 124732.
    [11] G. O. Agaba, Y. N. Kyrychko, K. B. Blyuss, Mathematical model for the impact of awareness on the dynamics of infectious diseases, Math. Biosci., 286 (2017), 22-30. doi: 10.1016/j.mbs.2017.01.009
    [12] R. K. Rai, A. K. Misra, Y. Takeuchi, Modeling the impact of sanitation and awareness on the spread of infectious diseases, Math. Biosci. Eng., 16 (2019), 667-700. doi: 10.3934/mbe.2019032
    [13] A. K. Misra, R. K. Rai, Y. Takeuchi, Modeling the control of infectious diseases: Effects of TV and social media advertisements, Math. Biosci. Eng., 15 (2018), 1315-1343. doi: 10.3934/mbe.2018061
    [14] K. Leung, J. T. Wu, D. Liu, G. M. Leung, First-wave covid-19 transmissibility and severity in china outside hubei after control measures, and second-wave scenario planning: a modelling impact assessment, The Lancet, 395 (2020), 1382-1393.
    [15] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of covid-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558. doi: 10.1016/S1473-3099(20)30144-4
    [16] K. Prem, Y. Liu, T. W. Russell, A. J. Kucharski, R. M. Eggo, N. Davies, et al., The effect of control strategies to reduce social mixing on outcomes of the covid-19 epidemic in wuhan, china: a modelling study, Lancet Public Health, 5 (2020), e261-e270.
    [17] E. Soewono, On the analysis of covid-19 transmission in wuhan, diamond princess and jakartacluster, Commun. Biomath. Sci., 3 (2020), 9-18.
    [18] M. Z. Ndii, P. Hadisoemarto, D. Agustian, A. Supriatna, An analysis of covid-19 transmission in indonesia and saudi arabia, Commun. Biomath. Sci., 3 (2020), 19-27.
    [19] S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the covid-19 pandemic, Infect. Disease Model., 5 (2020), 293-308. doi: 10.1016/j.idm.2020.04.001
    [20] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, et al., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., 26 (2020), 855-860. doi: 10.1038/s41591-020-0883-7
    [21] D. Aldila, S. H. Khoshnaw, E. Safitri, Y. R. Anwar, A. R. Bakry, B. M. Samiadji, et al., A mathematical study on the spread of covid-19 considering social distancing and rapid assessment: The case of jakarta, indonesia, Chaos Solitons Fractals, 139 (2020), 110042. doi: 10.1016/j.chaos.2020.110042
    [22] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2), Science, 368 (2020), 489-493. doi: 10.1126/science.abb3221
    [23] The world bank: Awareness Campaigns Help Prevent Against COVID-19 in Afghanistan. Available from: https://www.worldbank.org/en/news/feature/2020/06/28/awareness-campaigns-help-prevent-against-covid-19-in-afghanistan. (Accessed 15 July 2020).
    [24] M. S. Wolf, M. Serper, L. Opsasnick, R. M. O'Conor, L. M. Curtis, J. Y. Benavente, et al., Awareness, Attitudes, and Actions Related to COVID-19 Among Adults With Chronic Conditions at the Onset of the U.S. Outbreak: A Cross-sectional Survey, Ann. Intern. Med., 173 (2020), 100-109. doi: 10.7326/M20-1239
    [25] Worldometer, COVID-19 CORONAVIRUS PANDEMIC, available from: https://www.worldometers.info/coronavirus/#countries (Accessed 25 August 2020).
    [26] Z. Feng, J. X. Velasco-Hernández, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35 (1997), 523-544.
    [27] A. Davies, K. A. Thompson, K. Giri, G. Kafatos, J. Walker, A. Bennett, Testing the efficacy of homemade masks: would they protect in an influenza pandemic?, Disaster. Med. Public Health Prep., 7 (2013), 413-418. doi: 10.1017/dmp.2013.43
    [28] N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Impact of Non-Pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand, vol. 16, Imperial College COVID-19 Response Team, London, 2020.
    [29] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, et al., Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-cov2), Science, 368 (2020), 489-493. doi: 10.1126/science.abb3221
    [30] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, New Engl. J. Med., 382 (2020), 1199-1207. doi: 10.1056/NEJMoa2001316
    [31] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application, Ann. Int. Med., 172 (2020), 577-582. doi: 10.7326/M20-0504
    [32] C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, P.-R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-cov-2) and corona virus disease-2019 (COVID-19): The epidemic and the challenges, Int. J. Antimicrob. Ag., 55 (2020), 105924. doi: 10.1016/j.ijantimicag.2020.105924
    [33] C. del Rio, P. N. Malani, COVID-19-new insights on a rapidly changing epidemic, JAMA, 323 (2020), 1339-1340. doi: 10.1001/jama.2020.3072
    [34] R. M. Anderson, H. Heesterbeek, D. Klinkenberg, T. D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic?, Lancet, 395 (2020), 931-934. doi: 10.1016/S0140-6736(20)30567-5
    [35] World Health Organization, Coronavirus disease 2019 (COVID-19): Situation report, 46, WHO (2020).
    [36] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. doi: 10.3390/jcm9020462
    [37] L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, New Engl. J. Med., 382 (2020), 1177-1179. doi: 10.1056/NEJMc2001737
    [38] G. Grasselli, A. Pesenti, M. Cecconi, Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response, JAMA, 323 (2020), 1545-1546.
    [39] C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. Maclntyre, M. H. Bonds, et al., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel Coronavirus, Math. Biosci., 325 (2020), 108364. doi: 10.1016/j.mbs.2020.108364
    [40] O. Diekmann, J. A. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 4 (2010), 873-885.
    [41] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6
    [42] O. Diekmann, J. A. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
    [43] K. P. Wijaya, J. P. Chavez, D. Aldila, An epidemic model highlighting humane social awareness and vector-host lifespan ratio variation, Commun. Nonlinear Sci. Numer. Simulat., 90 (2020), 105389. doi: 10.1016/j.cnsns.2020.105389
    [44] B. D. Handari, F. Vitra, R. Ahya, D. Aldila, Optimal control in a malaria model: intervention of fumigation and bed nets, Adv. Differ. Equations, 497 (2019), 497.
    [45] D. Aldila, T. Götz, E. Soewono, An optimal control problem arising from a dengue disease trans-mission model, Math. Biosci., 242 (2013), 9-16. doi: 10.1016/j.mbs.2012.11.014
    [46] D. Aldila, H. Seno, A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes' Biased Distribution and Mosquito Repellent Use, Bull. Math. Biol., 81 (2020), 4977-5008.
    [47] S. M. Garba, A. B. Gumel, M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 11-25.
    [48] T. C. Reluga, J. Medlock, A. S. Perelson, Backward bifurcations and multiple equilibria in epidemic models with structured immunity, J. Theor. Biol., 252 (2008), 155-165. doi: 10.1016/j.jtbi.2008.01.014
    [49] D. H. Knipl, G. Röst, Backward bifurcation in SIVS Model with immigration of Non-infectives, Biomath., 2 (2013), 1-14.
    [50] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361-404. doi: 10.3934/mbe.2004.1.361
    [51] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, New York/London 1962. John Wiley & Sons.
    [52] F. B. Agusto, I. M. Elmojtaba, Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection, PLoS One, 12 (2017), e0171102.
    [53] A. Kumar, P. K. Srivastava, Y. Dong, Y. Takeuchi, Optimal control of infectious disease: Information-induced vaccination and limited treatment, Physica A, 542 (2020), 123196. doi: 10.1016/j.physa.2019.123196
    [54] H. R. Joshi, S. Lenhart, S. Hota, F. Agusto, Optimal control of an SIR model with changing behavior through an education campaign, Electron. J. Differ. Eq., 50 (2015), 1-14.
    [55] M. Z. Ndii, F. R. Berkanis, D. Tambaru, M. Lobo, B. S. Djahi, Optimal control strategy for the effects of hard water consumption on kidney-related diseases, BMC Res. Notes, 13 (2020), 201. doi: 10.1186/s13104-020-05043-z
    [56] Jakarta responses to COVID-19 official website. Available from: https://corona.jakarta.go.id/id
    [57] East Java responses to COVID-19 official website. Available from: http://infocovid19.jatimprov.go.id
    [58] Information center and coordination for COVID-19, West Java, official website. Available from: https://pikobar.jabarprov.go.id
    [59] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196. doi: 10.1016/j.jtbi.2008.04.011
    [60] M. Z. Ndii, B. S. Djahi, N. D. Rumlaklak, A. K. Supriatna, Determining the important parameters of mathematical models of the propagation of malware, in: M. A. Othman, M. Z. A. Abd Aziz, M. S. Md Saat, M. H. Misran (Eds.), Proceedings of the 3rd International Symposium of Information and Internet Technology (SYMINTECH 2018), Springer International Publishing, Cham, 2019, pp. 1-9.
    [61] S. Lenhart, J. T. & Workman Optimal control applied to biological models. CRC Press, 2007.
  • This article has been cited by:

    1. Maytee Cruz-Aponte, Erin C McKiernan, Marco A Herrera-Valdez, Mitigating effects of vaccination on influenza outbreaks given constraints in stockpile size and daily administration capacity, 2011, 11, 1471-2334, 10.1186/1471-2334-11-207
    2. Hélène Pasquini-Descomps, Nathalie Brender, David Maradan, Value for Money in H1N1 Influenza: A Systematic Review of the Cost-Effectiveness of Pandemic Interventions, 2017, 20, 10983015, 819, 10.1016/j.jval.2016.05.005
    3. James Benneyan, Jacqueline Garrahan, Iulian Ilies, Xiaoli Duan, 2017, Modeling approaches, challenges, and preliminary results for the opioid and heroin co-epidemic crisis, 978-1-5386-3428-8, 2821, 10.1109/WSC.2017.8248006
    4. Biao Tang, Yanni Xiao, Jianhong Wu, Implication of vaccination against dengue for Zika outbreak, 2016, 6, 2045-2322, 10.1038/srep35623
    5. G. Devipriya, K. Kalaivani, Optimal Control of Multiple Transmission of Water-Borne Diseases, 2012, 2012, 0161-1712, 1, 10.1155/2012/421419
    6. DAVID BACA-CARRASCO, DANIEL OLMOS, IGNACIO BARRADAS, A MATHEMATICAL MODEL FOR HUMAN AND ANIMAL LEPTOSPIROSIS, 2015, 23, 0218-3390, S55, 10.1142/S0218339015400057
    7. Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio, Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, 2019, 78, 0303-6812, 1089, 10.1007/s00285-018-1303-1
    8. Swarnali Sharma, G. P. Samanta, Analysis of a hand–foot–mouth disease model, 2017, 10, 1793-5245, 1750016, 10.1142/S1793524517500164
    9. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study, 2012, 9, 1551-0018, 539, 10.3934/mbe.2012.9.539
    10. Baojun Song, Zhilan Feng, Gerardo Chowell, From the guest editors, 2013, 10, 1551-0018, 10.3934/mbe.2013.10.5i
    11. Swarnali Sharma, G. P. Samanta, Stability analysis and optimal control of an epidemic model with vaccination, 2015, 08, 1793-5245, 1550030, 10.1142/S1793524515500308
    12. Cho Naing, Rachel Yi Ping Tan, Wai Cheong Soon, Jehangirshaw Parakh, Sandip Singh Sanggi, Preventive behaviours towards influenza A(H1N1)pdm09 and factors associated with the intention to take influenza A(H1N1)pdm09 vaccination, 2012, 5, 18760341, 412, 10.1016/j.jiph.2012.07.005
    13. John M. Aronis, Nicholas E. Millett, Michael M. Wagner, Fuchiang Tsui, Ye Ye, Jeffrey P. Ferraro, Peter J. Haug, Per H. Gesteland, Gregory F. Cooper, A Bayesian system to detect and characterize overlapping outbreaks, 2017, 73, 15320464, 171, 10.1016/j.jbi.2017.08.003
    14. Arunava Banerjee, Kajol Bharti, M. Nabi, 2019, Legendre Pseudospectral Method based Optimal Control of Water-Borne Disease Transmission, 978-1-7281-3455-0, 1, 10.1109/UPCON47278.2019.8980072
    15. M. H. A. Biswas, L. T. Paiva, MdR de Pinho, A SEIR model for control of infectious diseases with constraints, 2014, 11, 1551-0018, 761, 10.3934/mbe.2014.11.761
    16. Nele Goeyvaerts, Lander Willem, Kim Van Kerckhove, Yannick Vandendijck, Germaine Hanquet, Philippe Beutels, Niel Hens, Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence, 2015, 13, 17554365, 1, 10.1016/j.epidem.2015.04.002
    17. D. C. DOVER, E. M. KIRWIN, N. HERNANDEZ-CERON, K. A. NELSON, Pandemic Risk Assessment Model (PRAM): a mathematical modeling approach to pandemic influenza planning, 2016, 144, 0950-2688, 3400, 10.1017/S0950268816001850
    18. Soyoung Kim, Jonggul Lee, Eunok Jung, Mathematical model of transmission dynamics and optimal control strategies for 2009 A/H1N1 influenza in the Republic of Korea, 2017, 412, 00225193, 74, 10.1016/j.jtbi.2016.09.025
    19. Carlos Castillo-Garsow, Carlos Castillo-Chavez, Sherry Woodley, A Preliminary Theoretical Analysis of a Research Experience for Undergraduates Community Model, 2013, 23, 1051-1970, 860, 10.1080/10511970.2012.697099
    20. Qingxia Zhang, Dingcheng Wang, Assessing the Role of Voluntary Self-Isolation in the Control of Pandemic Influenza Using a Household Epidemic Model, 2015, 12, 1660-4601, 9750, 10.3390/ijerph120809750
    21. Eunha Shim, Optimal strategies of social distancing and vaccination against seasonal influenza, 2013, 10, 1551-0018, 1615, 10.3934/mbe.2013.10.1615
    22. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, 2014, 132, 0167-8019, 127, 10.1007/s10440-014-9894-z
    23. SWARNALI SHARMA, G. P. SAMANTA, ANALYSIS OF A CHLAMYDIA EPIDEMIC MODEL, 2014, 22, 0218-3390, 713, 10.1142/S0218339014500296
    24. Sarah Giarola-Silva, Jordana G.A. Coelho-dos-Reis, Marina Moraes Mourão, Ana Carolina Campi-Azevedo, Erick E. Nakagaki Silva, Maria Luiza-Silva, Marina Angela Martins, Amanda Cardoso de Oliveira Silveira-Cassette, Maurício Azevedo Batista, Vanessa Peruhype-Magalhães, Lis Ribeiro do Valle Antonelli, José Geraldo Leite Ribeiro, Silvana Maria Elói-Santos, Alexandre Vieira Machado, Andréa Teixeira-Carvalho, Olindo Assis Martins-Filho, Márcio Sobreira Silva Araújo, Distinct patterns of cellular immune response elicited by influenza non-adjuvanted and AS03-adjuvanted monovalent H1N1(pdm09) vaccine, 2017, 144, 01663542, 70, 10.1016/j.antiviral.2017.05.009
    25. Caroline W. Kanyiri, Kimathi Mark, Livingstone Luboobi, Mathematical Analysis of Influenza A Dynamics in the Emergence of Drug Resistance, 2018, 2018, 1748-670X, 1, 10.1155/2018/2434560
    26. Jun-Yuan Yang, Yuming Chen, Feng-Qin Zhang, Stability analysis and optimal control of a hand-foot-mouth disease (HFMD) model, 2013, 41, 1598-5865, 99, 10.1007/s12190-012-0597-1
    27. James Benneyan, Christopher Gehrke, Iulian Ilies, Nicole Nehls, Community and Campus COVID-19 Risk Uncertainty Under University Reopening Scenarios: Model-Based Analysis (Preprint), 2020, 2369-2960, 10.2196/24292
    28. Luis R Carrasco, Mark Jit, Mark I Chen, Vernon J Lee, George J Milne, Alex R Cook, Trends in parameterization, economics and host behaviour in influenza pandemic modelling: a review and reporting protocol, 2013, 10, 1742-7622, 10.1186/1742-7622-10-3
    29. Puntani Pongsumpun, I-Ming Tang, Dynamics of a New Strain of the H1N1 Influenza A Virus Incorporating the Effects of Repetitive Contacts, 2014, 2014, 1748-670X, 1, 10.1155/2014/487974
    30. Alberto Olivares, Ernesto Staffetti, Uncertainty Quantification of a Mathematical Model of COVID-19 Transmission Dynamics with Mass Vaccination Strategy, 2021, 09600779, 110895, 10.1016/j.chaos.2021.110895
    31. Harendra Pal Singh, Sumit Kaur Bhatia, Yashika Bahri, Riya Jain, Optimal control strategies to combat COVID-19 transmission: A mathematical model with incubation time delay, 2022, 9, 26667207, 100176, 10.1016/j.rico.2022.100176
    32. Irena Papst, Kevin P. O’Keeffe, Steven H. Strogatz, Modeling the Interplay Between Seasonal Flu Outcomes and Individual Vaccination Decisions, 2022, 84, 0092-8240, 10.1007/s11538-021-00988-z
    33. Prashant N. Kambali, Amirhassan Abbasi, C. Nataraj, Nonlinear dynamic epidemiological analysis of effects of vaccination and dynamic transmission on COVID-19, 2023, 111, 0924-090X, 951, 10.1007/s11071-022-08125-8
    34. Teodoro Alamo, Daniel G. Reina, Pablo Millán Gata, Victor M. Preciado, Giulia Giordano, Data-driven methods for present and future pandemics: Monitoring, modelling and managing, 2021, 52, 13675788, 448, 10.1016/j.arcontrol.2021.05.003
    35. Ivair R. Silva, Yan Zhuang, Debanjan Bhattacharjee, Igor R. de Almeida, Regression model for the reported infected during emerging pandemics under the stochastic SEIR, 2023, 42, 2238-3603, 10.1007/s40314-023-02241-w
    36. Alberto Olivares, Ernesto Staffetti, Robust optimal control of compartmental models in epidemiology: Application to the COVID-19 pandemic, 2022, 111, 10075704, 106509, 10.1016/j.cnsns.2022.106509
    37. Wongyeong Choi, Eunha Shim, Vaccine Effects on Susceptibility and Symptomatology Can Change the Optimal Allocation of COVID-19 Vaccines: South Korea as an Example, 2021, 10, 2077-0383, 2813, 10.3390/jcm10132813
    38. Jiraporn Lamwong, Puntani Pongsumpun, Optimal control and stability analysis of influenza transmission dynamics with quarantine interventions, 2025, 11, 2363-6203, 10.1007/s40808-025-02413-z
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7482) PDF downloads(423) Cited by(64)

Article outline

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog