Processing math: 25%
Research article

Stability of an adaptive immunity viral infection model with multi-stages of infected cells and two routes of infection

  • Received: 07 May 2019 Accepted: 12 October 2019 Published: 21 October 2019
  • This paper studies an (n + 4)-dimensional nonlinear viral infection model that characterizes the interactions of the viruses, susceptible host cells, n-stages of infected cells, CTL cells and B cells. Both viral and cellular infections have been incorporated into the model. The well-posedness of the model is justified. The model admits five equilibria which are determined by five threshold parameters. The global stability of each equilibrium is proven by utilizing Lyapunov function and LaSalle's invariance principle. The theoretical results are illustrated by numerical simulations.

    Citation: N. H. AlShamrani, A. M. Elaiw. Stability of an adaptive immunity viral infection model with multi-stages of infected cells and two routes of infection[J]. Mathematical Biosciences and Engineering, 2020, 17(1): 575-605. doi: 10.3934/mbe.2020030

    Related Papers:

    [1] Sumyyah Al-Hijjawi, Abd Ghafur Ahmad, Shawkat Alkhazaleh . A generalized effective neurosophic soft set and its applications. AIMS Mathematics, 2023, 18(12): 29628-29666. doi: 10.3934/math.20231517
    [2] Jia-Bao Liu, Rashad Ismail, Muhammad Kamran, Esmail Hassan Abdullatif Al-Sabri, Shahzaib Ashraf, Ismail Naci Cangul . An optimization strategy with SV-neutrosophic quaternion information and probabilistic hesitant fuzzy rough Einstein aggregation operator. AIMS Mathematics, 2023, 8(9): 20612-20653. doi: 10.3934/math.20231051
    [3] Dhuha Saleh Aldhuhayyan, Kholood Mohammad Alsager . Multi-criteria evaluation of tree species for afforestation in arid regions using a hybrid cubic bipolar fuzzy soft rough set framework. AIMS Mathematics, 2025, 10(5): 11813-11841. doi: 10.3934/math.2025534
    [4] D. Jeni Seles Martina, G. Deepa . Some algebraic properties on rough neutrosophic matrix and its application to multi-criteria decision-making. AIMS Mathematics, 2023, 8(10): 24132-24152. doi: 10.3934/math.20231230
    [5] Dongsheng Xu, Huaxiang Xian, Xiewen Lu . Interval neutrosophic covering rough sets based on neighborhoods. AIMS Mathematics, 2021, 6(4): 3772-3787. doi: 10.3934/math.2021224
    [6] Muhammad Ihsan, Muhammad Saeed, Atiqe Ur Rahman, Mazin Abed Mohammed, Karrar Hameed Abdulkaree, Abed Saif Alghawli, Mohammed AA Al-qaness . An innovative decision-making framework for supplier selection based on a hybrid interval-valued neutrosophic soft expert set. AIMS Mathematics, 2023, 8(9): 22127-22161. doi: 10.3934/math.20231128
    [7] Dongsheng Xu, Xiangxiang Cui, Lijuan Peng, Huaxiang Xian . Distance measures between interval complex neutrosophic sets and their applications in multi-criteria group decision making. AIMS Mathematics, 2020, 5(6): 5700-5715. doi: 10.3934/math.2020365
    [8] Rajab Ali Borzooei, Hee Sik Kim, Young Bae Jun, Sun Shin Ahn . MBJ-neutrosophic subalgebras and filters in BE-algebras. AIMS Mathematics, 2022, 7(4): 6016-6033. doi: 10.3934/math.2022335
    [9] Amr Elrawy, Mohamed Abdalla . Results on a neutrosophic sub-rings. AIMS Mathematics, 2023, 8(9): 21393-21405. doi: 10.3934/math.20231090
    [10] Rana Muhammad Zulqarnain, Wen Xiu Ma, Imran Siddique, Shahid Hussain Gurmani, Fahd Jarad, Muhammad Irfan Ahamad . Extension of aggregation operators to site selection for solid waste management under neutrosophic hypersoft set. AIMS Mathematics, 2023, 8(2): 4168-4201. doi: 10.3934/math.2023208
  • This paper studies an (n + 4)-dimensional nonlinear viral infection model that characterizes the interactions of the viruses, susceptible host cells, n-stages of infected cells, CTL cells and B cells. Both viral and cellular infections have been incorporated into the model. The well-posedness of the model is justified. The model admits five equilibria which are determined by five threshold parameters. The global stability of each equilibrium is proven by utilizing Lyapunov function and LaSalle's invariance principle. The theoretical results are illustrated by numerical simulations.


    Numerous investigations in applied and social sciences, including engineering, environmental studies, economics, and management, often deal with ambiguous and inaccurate data. Traditional methods struggle to address these complexities. Current frameworks like bipolar neutrosophic sets (BNSs) also face difficulties in managing the inherent uncertainty and vagueness of complex datasets, hindering accurate representation and analysis, especially in decision-making contexts.

    A collection of contemporary theories effectively addresses ambiguities and uncertainties, including fuzzy set (FS) theories [1], interval-valued fuzzy set theories [2], and bipolar fuzzy sets [3]. Zhang [4] proposed an extension of fuzzy set theory by integrating bipolarity, leading to the development of bipolar-valued fuzzy sets. It is noted that bipolar fuzzy sets (BFS) are particularly suitable for representing information that encompasses both a property and its negation. Further exploration by Lee [3] delved into the fundamental operations associated with bipolar-valued fuzzy sets. Additionally, Lee et al. [5] conducted a comparative analysis of intuitionistic fuzzy sets, interval-valued sets, and BFSs. For instance, BFSs are characterized by positive and negative membership values within the range of [1,1]. Elements with zero membership indicate a lack of alignment with the specified property, while the interval (0,1] signifies varying degrees of membership satisfaction. Conversely, the interval [1,0) suggests an implicit acknowledgment of the counter property by the elements. Furthermore, the application of BFS-based information has been integrated into decision analysis [6,7]. This is exemplified by the work of Wei et al. [8] (2018), who proposed an expansion of the BFS framework to include the concept of interval-valued bipolar fuzzy sets (IVBFS) within a multi-attribute decision-making context. Jun et al. [9] introduced the abstraction of cubic sets, which extend both interval-valued fuzzy sets and fuzzy sets, allowing for the representation of vagueness through the simultaneous use of exact and interval values. Riaz and Tehrim [10,11] further developed a novel model known as the cubic bipolar fuzzy set (CBFS), which generalizes BFSs to accommodate two-sided opposing features, thereby enabling the representation of information through both bipolar fuzzy numbers and interval-valued bipolar fuzzy numbers.

    The neutrosophic set is characterized by three distinct membership functions: the truth-membership function (T), the indeterminacy-membership function (I), and the falsity-membership function (F). Each of these functions is defined within the context of explicit quantification of indeterminacy. The values of T, I, and F are constrained to subsets of the real standard or nonstandard interval ]0,1+[. In their work, Wang et al. [12] proposed a single-valued neutrosophic set (SVNS) along with its associated operators, which serve as subclasses of neutrosophic sets. This innovation allows for the restriction of these sets to the real standard interval [0,1], thereby facilitating their application in scientific and engineering contexts. Additionally, the dual aspects of bipolarity are incorporated into decision-making processes, where positive information is utilized for favorable or appropriate descriptions, while negative information highlights aspects that are rejected or implausible. Building on this concept and the application of BFS, Deli et al. [13] introduced BNSs, exploring their properties, theorems, and aggregation operators, exemplified through a car purchasing scenario. As BNS emerged as a compelling field within neutrosophic theory, Deli et al. [14] further advanced the discourse by presenting the interval-valued bipolar neutrosophic set (IVBN-set), which serves as a broader generalization encompassing FSs, bipolar sets, neutrosophic sets, and bipolar neutrosophic sets. Nonetheless, the previously discussed models face challenges related to effective parameterization, stemming from the constraints of their parametric definitions, which hinder the precise representation of problem parameters.

    Molodtsov [15] introduces an enhanced parameterization tool that offers a thorough and complete representation of problem parameters by utilizing soft set theory to address uncertainty and ambiguity. This innovative capability in parameterization, when compared to previous methodologies, has inspired numerous models in the literature, such as neutrosophic soft sets [16], bipolar neutrosophic soft sets [17], and bipolar neutrosophic graded soft sets [18]. Although bipolar neutrosophic sets demonstrate superior efficiency over neutrosophic sets in evaluating real-world problems characterized by inherent uncertainty-both positive and negative-this simplicity in bipolar neutrosophic sets is insufficient for adequately capturing the nuances of ratings or grades due to information constraints. Likewise, interval-valued bipolar neutrosophic sets fall short in conveying expert opinions based on the properties of alternatives. This research presents a novel framework termed cubic bipolar neutrosophic sets (CBNSs), which serves as a generalization of bipolar neutrosophic sets. This new model enhances accuracy and flexibility relative to prior approaches by encompassing a greater volume of information, thus rendering it more comprehensive and rational. Specifically, it integrates information in a more thorough and appropriate manner. To further enhance the parameterization tool, the study explores an additional model that improves the adequacy of final decisions and the quality of information provided. Crucially, the application of these proposed models in decision-making is illustrated, demonstrating their utility in addressing realistic uncertain problems.

    Established models like BNSs and IVBN-sets have advanced uncertainty modeling but often fail to capture the complexities of real-world situations, especially with conflicting data or ambiguous membership levels. This study introduces CBNSs, a new framework that combines bipolar fuzzy numbers and interval-valued bipolar fuzzy numbers for a more nuanced representation of uncertainty. CBNSs enhance the accuracy of modeling complex systems, particularly in decision-making processes that involve both positive and negative information, such as evaluating investment alternatives by illustrating trade-offs between potential rewards and risks.

    Comparison with Conventional BNSs:

    BNSs struggle with uncertainty due to their binary membership grades. In contrast, CBNSs offer a more advanced framework with cubic membership grades, allowing for a wider range of possibility, impossibility, and indeterminacy. This flexibility enables CBNSs to convey more information and adapt better to different contexts.

    Comparison with Other Related Theories:

    CBNSs differ from FSs and interval-valued neutrosophic sets by incorporating bipolarity, allowing for the representation of both positive and negative information. Their cubic membership grades provide enhanced flexibility in expressing uncertainty, while an indeterminacy membership grade addresses ambiguous information. Overall, CBNSs offer a more nuanced framework than BNSs and are particularly useful for decision-making and information processing due to their ability to manage uncertainty, imprecision, and indeterminacy.

    To enhance our research, we expanded the background section to include a detailed analysis of conventional methods and their limitations. Before cubic bipolar neutrosophic soft sets CBNSSs, various strategies were used to address uncertainty and imprecision in decision-making, including:

    FSs: FSs introduced by Zadeh offer a mathematical framework for representing uncertainty and vagueness. However, they are limited to representing uncertainty within a single dimension.

    Interval-Valued Fuzzy Sets: To address the limitations of FSs, interval-valued fuzzy sets were proposed. These sets allow for the representation of uncertainty using intervals instead of single values.

    BFSs: BFSs extend FSs to incorporate both positive and negative membership grades, providing a more nuanced representation of information.

    Interval-Valued Bipolar Fuzzy Soft Sets: Combining the concepts of interval-valued fuzzy sets and BFSs, interval-valued bipolar fuzzy soft sets offer a framework for handling uncertainty and bipolarity in soft set theory.

    - Limitations of Traditional Methods:

    While these traditional methods have contributed to the field of decision-making, they often face challenges in handling complex real-world problems. Some limitations include:

    Restricted representation of uncertainty: FSs and interval-valued fuzzy sets may not adequately capture the full spectrum of uncertainty, especially in situations with conflicting or contradictory information.

    Lack of bipolarity: FSs and interval-valued fuzzy sets do not consider both positive and negative aspects of information, limiting their applicability in certain domains.

    Inflexibility: These methods may be less flexible in adapting to different decision-making scenarios, especially when dealing with highly uncertain or imprecise information.

    - The Need for CBNSs:

    This study introduces CBNSSs to address the limitations of conventional methods. CBNSSs offer a flexible framework for managing uncertainty, bipolarity, and imprecision in decision-making by combining cubic sets, BFSs, and neutrosophic sets for a more detailed representation of information.

    This research is organized into five sections. Section 1 provides a foundational overview of the study, outlining the motivation and research objectives. Section 2 offers a concise review of essential concepts and notations related to cubic sets, BFSs, neutrosophic sets, and neutrosophic soft sets. Section 3 introduces the novel concept of CBNSs and elaborates on their fundamental operations, including complement, union, and intersection. Section 4 delves into the concept of CBNSSs, presenting their operational rules, definitions, and properties. Finally, Section 5 demonstrates the practical application of CBNSSs in addressing decision-making challenges within the cubic bipolar neutrosophic soft set domain.

    Definition 1. [1] An FS A in ω={¨x1,¨x2,,¨xn} is given by

    A={(¨x,μA(¨x)):¨xω},

    where 0μA(¨x)1 is the grade of satisfaction of ¨xω in the set A.

    Definition 2. [2] Let I=[0,1] be a closed unit interval and =[,u] be a closed subinterval of I, where 0u1. Let [L] be the family of all subintervals. The interval-valued fuzzy set (IVFS) defined on ω is a function :ω[L]. The set of all IVFSs is denoted by [L]ω and (¨x)=[(¨x),u(¨x)], for each [L]ω and ¨xω, is called degree of membership of ¨x to , where (¨x) and u(¨x) are called lower and upper FSs respectively.

    Definition 3. [9] A cubic set on ω={¨x1,¨x2,,¨xn} can be defined as

    K={¨x,(¨x),λ(¨x)¨xω},

    where is an IVFS on ω and λ is a FS in ω.

    Definition 4. [4] A bipolar valued FS B on ω={¨x1,¨x2,,¨xn} is defined by a positive membership function χ+B, that is χ+B:ω[0,1], and a negative membership function χB, that is χB:ω[1,0]. Mathematically, a bipolar valued FS is represented by

    B={(¨x,χ+B(¨x),χB(¨x)):¨xω}.

    Definition 5. [5] An IVBFS over the reference set ω={¨x1,¨x2,,¨xn} is defined as

    δ={(¨x,[V+(¨x),V+u(¨x)],[V(¨x),Vu(¨x)])¨xω},

    where the positive membership degree [V+(¨x),V+u(¨x)][0,1] depicts the satisfaction degree of an element ¨x to the property corresponding to an IVBFS (δ) and the negative membership degree [V(¨x),Vu(¨x)][1,0] depicts the satisfaction degree of an element ¨x to some implicit counter property corresponding to the IVBFS (δ), respectively, for every ¨xω. An interval-valued bipolar fuzzy number (IVBFN) is written as δ={[V+,V+u],[V,Vu]}.

    Definition 6. [19] A CBFS over the reference set ω={¨x1,¨x2,,¨xn} is defined as

    ACB={¨x,δ(¨x),B(¨x)¨xω},

    where δ is an IVBFS on ω and B is a BFS on ω. Thus, CBFS can be rewritten as

    ACB={¨x,[V+A(¨x),V+uA(¨x)],[VA(¨x),VuA(¨x)],{χ+A(¨x),χA(¨x)}¨xω},

    where the interval [V+A(¨x),V+uA(¨x)][0,1] and [VA(¨x),VuA(¨x)][1,0] represent the interval valued positive and negative membership degrees, respectively, and χ+A(¨x)[0,1] and χA(¨x)[1,0] represent the positive and negative membership, respectively.

    Definition 7. [11] Assume that ω={¨x1,¨x2,,¨xn} is a reference set ω. Then the neutrosophic set (NS) is formed as the following structure:

    ˆANS={(¨x,¨tˆA(¨x),¨iˆA(¨x),¨fˆA(¨x))¨xω},

    where ¨tˆA(¨x),¨iˆA(¨x),¨fˆA(¨x) refer to true membership, indeterminacy membership, and falsehood membership of object ¨x in ω and persist as a mapping:

    ¨tˆA(¨x),¨iˆA(¨x),¨fˆA(¨x):ˆU[0,1].

    Definition 8. [13] A bipolar neutrosophic set BBNS in the reference set ω={¨x1,¨x2,,¨xn} is given by

    BBNS={(¨x,BT+(¨x),BI+(¨x),BF+(¨x),BT(¨x),BI(¨x),BF(¨x))¨xω},

    where BT+,BI+,BF+[0,1] denote, respectively, the positive-Truth Membership(TM), positive-Indeterminacy Membership(IM), and positive-Falsity Membership (FM) degrees of an element ¨xω to the property in line with a bipolar NS BBNS, and BT,BI,BF[1,0] denote, respectively, the negative-TM, negative-IM, and negative-FM degrees of an object ¨xω.

    Definition 9. [13] Let

    BBNS1={(¨x,BT+N1(¨x),BI+N1(¨x),BF+N1(¨x),BTN1(¨x),BIN1(¨x),BFN1(¨x))¨xω},

    and

    BBNS2={(¨x,BT+N2(¨x),BI+N2(¨x),BF+N2(¨x),BTN2(¨x),BIN2(¨x),BFN2(¨x))¨xω},

    be two BNSs on the reference set ω={¨x1,¨x2,,¨xn}. Then the fundamental operation on BNS is defined as follows:

    1. Union

    BBNS1BBNS2=max{BT+N1(¨x),BT+N2(¨x)},BI+N1(¨x)+BI+N2(¨x)2,min{BF+N1(¨x),BF+N2(¨x)},max{BTN1(¨x),BTN2(¨x)},BIN1(¨x)+BIN2(¨x)2,min{BFN1(¨x),BFN2(¨x)},

    for all ¨xω.

    2. Intersection

    B1BNSB2BNS=min{BN1T+(¨x),BN2T+(¨x)},BN1I+(¨x)+BN2II+(¨x)2,max{BN1F+(¨x),BN2F+(¨x)},max{BN1T(¨x),BN2T(¨x)},BN1I(¨x)+BN2I(¨x)2,min{BN1F(¨x),BN2F(¨x)},

    for all ¨xω.

    3. Complement

    BcBNS1={(¨x,BcN1T+(¨x),BcN1II+(¨x),BcN1F+(¨x),BcN1T(¨x),BcN1I(¨x),BcN1F(¨x))¨xω}={¨x,({1+}BN1TT+(¨x),{1+}BN1I+(¨x),{1+}BN1F+(¨x),{1}BN1T(¨x),{1}BN1II(¨x),{1}BN1F(¨x))|¨xω}.

    4. Subset

    BN1T+(¨x)BN2T+(¨x),BN1I+(¨x)BN2I+(¨x),BN1F+(¨x)BN2F+(¨x),

    and

    BN1T(¨x)BTN2(¨x),BN1I(¨x)BN2I(¨x),BN1F(¨x)BN2F(¨x),

    for all ¨xω.

    Definition 10. [14] An interval-valued bipolar neutrosophic set (IVBNS) VIBNS(¨x) in the reference set ω={¨x1,¨x2,,¨xn} is given by

    VIBNS==(¨x,{[VNIT+(¨x),VNuIT+(¨x)],[VNII+(¨x),VNuII+(¨x)],[VNIF+(¨x),VNuIF+(¨x)],[VNIT(¨x),VNuIT(¨x)],[VNII(¨x),VNuII(¨x)],[VNIF(¨x),VNuIF(¨x)]}|¨xω),

    where VNIT+, VNuIT+, VNII+, VNuII+, VNIF+, VNuIF+ [0,1] and VNIT, VNuIT, VNII, VNuII, VNIF, VNuIF [1,0], such that the family of all IVBNS sets over ω will be denoted by IVBNSω.

    Definition 11. [14] For VIBNS1,VIBNS2IVBNSω, some operations are defined as follows:

    1. Union

    VIBNS1VIBNS2={max{V1NI+,V2NIT+},max{V1NuIT+,V2NuIT+},min{V1NII+,V2NII+},min{V1NuII+,V2NuII+},min{V1NIF+,V2NIF+},min{V1NuIF+,V2NuIF+},min{V1NIT,V2NIT},min{V1NuIT,V2NuIT},max{V1NII,V2NII},max{V1NuII,V2NuII},max{V1NIF,V2NIF},max{V1NuIF,V2NuIF}},

    for all ¨xω.

    2. Intersection

    VIBNS1VIBNS2={min{V1NIT+,V2NIT+},min{V1NuIT+,V2NuIT+},max{V1NII+,V2NII+},max{V1NuII+,V2NuII+},max{V1NIF+,V2NIF+},max{V1NuIF+,V2NuIF+},max{V1NIT,V2NIT},max{V1NuIT,V2NuIT},min{V1NII,V2NII},min{V1NuII,V2NuII},min{V1NIF,V2NIF},min{V1NuIF,V2NuIF}},

    for all ¨xω.

    3. Complement

    VcIBNS1=(¨x,{Vc1NIT+,Vc1NuIT+,Vc1NII+,Vc1NuII+,Vc1NIF+,Vc1NuIF+,Vc1NIT,Vc1NuIT,Vc1NII,Vc1NuII,Vc1NIF,Vc1NuIF}|¨xω)=(¨x,{{1+}V1NuIT+,{1+}V1NIT+,{1+}V1NuII+,{1+}V1NII+,{1+}V1NuIF+,{1+}V1NIF+,{1}V1NuIT,{1}V1NIT,{1}V1NuII,{1}V1NII,{1}V1NuIF,{1}V1NIF}|¨xω).

    4. Subset

    VIBNS1VIBNS2 if

    V1NIT+V2NIT+,V1NuIT+V2NuIT+,V1NII+V2NII+,V1NuII+V2NuII+,V1NIF+V2NIF+,V1NuIF+V2NuIF+,andV1NITV2NIT,V1NuITV2NuIT,V1NIIV2NII,V1NuIIV2NuII,V1NIFV2NIF,V1NuIFV2NuIF,for  all  ¨xω.

    5. Equality

    VIBNS1=VIBNS2 if

    V1NIT+=V2NIT+,V1NuIT+=V2NuIT+,V1NII+=V2NII+,V1NuII+=V2NuII+,V1NIF+=V2NIF+,V1NuIF+=V2NuIF+,andV1NIT=V2NIT,V1NuIT=V2NuIT,V1NII=V2NII,V1NuII=V2NuII,V1NIF=V2NIF,V1NuIF=V2NuIF,for  all  ¨xω.

    Definition 12. [15] Let ω={¨x1,¨x2,,¨xn} and E={¨e1,¨e2,,¨em} be a reference set and attribute set, respectively. Then, a soft set (SS) over ω is given by the structure:

    S={(¨e,S(¨e))¨eE},

    where S is a mapping given by:

    S:EP(ω).

    Here, P(ω) refers to the collection of subsets of the reference set ω.

    Definition 13. [16] Let ω={¨x1,¨x2,,¨xn} and E={¨e1,¨e2,,¨em} be a reference set and attribute set, respectively. Then, a neutrosophic Soft Set over ω is given by the structure:

    SN={(¨e,ST(¨e),SI(¨e),SF(¨e))¨eE},

    where SN is a mapping given by:

    SN:EPN(ω).

    Here, PN(ω) refers to the collection of subsets of the reference set ω.

    Definition 14. [17] Let ω={¨x1,¨x2,,¨xn} and E={¨e1,¨e2,,¨em} be a reference set and attribute set, respectively. A bipolar neutrosophic SS FB in reference set ω is given by

    FB={(¨e,BNST+(¨e),BNSI+(¨e),BNSF+(¨e),BNST(¨e),BNSI(¨e),BNSF(¨e))¨eE,¨xω},

    where BNST+,BNSI+,BNSF+[0,1] denote, respectively the positive-TM, positive-IM, and positive-FM degrees of an element ¨xω to the property in line with a FB, and BNST,BNI,BNSF[1,0] denote, respectively the negative-TM, negative-IM and negative-FM degrees of an object ¨xω.

    In this part, we introduce the definition of CBNSs and their basic operations, derive their properties, and provide some examples.

    Definition 15. Consider a universal set ω. A CBNS ACBNS defined over the universe set ω is an ordered pair which is defined as follows:

    ACBNS={¨x,VIBNS(¨x),BBNS(¨x)¨xω},

    where VIBNS={VIT+(¨x),VII+(¨x),VIF+(¨x),VIT(¨x),VII(¨x),VIF(¨x)} is called IVBNS,

    whereas BBNS={BN+(¨x),BN(¨x)} is called BNS. Consider the interval I=[1,1]. Suppose that [I+] and [I] are the collection of all subintervals of [0,1] and [1,0], respectively. Then, we obtain the mappings:

    VIT+(¨x)[I+]VIT+(¨x)=[VIT+(¨x),VuIT+(¨x)],VII+(¨x)[I+]VII+(¨x)=[VII+(¨x),VuII+(¨x)],VIF+(¨x)[I+]VIF+(¨x)=[VIF+(¨x),VuIF+(¨x)],

    and

    VIT(¨x)[I]VIT(¨x)=[VIT(¨x),VuIT(¨x)],VII(¨x)[I]VII(¨x)=[VII(¨x),VuII(¨x)],VIF(¨x)[I]VIF(¨x)=[VIF(¨x),VuIF(¨x)].

    Similarly, we get

    BN+(¨x)[I+]BN+(¨x)=[BT+(¨x),BI+(¨x),BF+(¨x)],BN(¨x)[I]BN(¨x)=[BT(¨x),BI(¨x),BF(¨x)].

    Then, the CBNS ACBNS is represented as

    ACBNS={[VIT+,VuIT+],[VII+,VuII+],[VIF+,VuIF+],[VIT,VuIT],[VII,VuII],[VIF,VuIF],(BT+,BI+,BF+,BT,BI,BF)}.

    Note that the set of all CBNSs over ω will be denoted by CωBN.

    Example 1. Let ω={¨x1,¨x2,¨x3} be a universe set. Suppose an IVBNS VIBNS in ω is defined by

    VIBNS={[0.2,0.8]II+,[0.3,0.6]II+,[0.4,0.5]IF+,[0.8,0.5]II,[0.6,0.3]II,[0.4,0.3]IF/¨x1,[0.4,0.6]IT+,[0.3,0.7]II+,[0.1,0.3]IF+,[0.7,0.5]IT,[0.6,0.2]II,[0.5,0.4]IF/¨x2,[0.3,0.8]IT+,[0.4,0.7]II+,[0.3,0.4]IF+,[0.9,0.5]IT,[0.4,0.3]II,[0.8,0.5]IF/¨x3},

    and a BNS BBNS is a set of ω and is defined by

    BBNS={0.4,0.3,0.1,0.6,0.2,0.3/¨x1,0.2,0.3,0.7,0.04,0.5,0.4/¨x2,0.4,0.6,0.2,0.01,0.7,0.4/¨x3}.

    Then, the CBNSs ACBNS=VIBNS,BBNS will have the tabular representation as in Table 1.

    Table 1.  Tabular representation of the CBNSs.
    ACBNS=VIBNS,BBNS
    ACBNS VIBNS BBNS
    ¨x1 [02,0.8]IT+,[03,0.6]II+,[0.4,0.5]IF+, (0.4,0.3,0.1,0.6,0.2,0.3)
    [0.8,0.5]IT,[0.6,0.3]II,[0.4,0.3]IF
    ¨x2 [0.4,0.6]IT+,[0.3,0.7]II+,[0.1,0.3]IF+, (0.2,0.3,0.7,0.04,0.5,0.4)
    [0.7,0.5]IT,[0.6,0.2]II,[0.5,0.4]IF
    ¨x3 [0.3,0.8]IT+,[0.4,0.7]II+,[0.3,0.4]IF+, (0.4,0.6,0.2,0.01,0.7,0.4)
    [0.9,0.5]IT,[0.4,0.3]II,[0.8,0.5]IF

     | Show Table
    DownLoad: CSV

    Definition 16. Let ACBNS1=VIBNS1,BBNS1 and ACBNS2=VIBNS2,BBNS2CBNω, where

    ACBNS1={[¨x,{[V1IT+(¨x),Vu1IT+(¨x)],[V1II+(¨x),Vu1II+(¨x)],[V1IF+(¨x),Vu1IF+(¨x)],[V1IT(¨x),Vu1IT(¨x)],[V1II(¨x),Vu1II(¨x)],[V1IF(¨x),Vu1IF(¨x)]},{BT+1(¨x),BI+1(¨x),BF+1(¨x),BT1(¨x),BI1(¨x),BF1(¨x)}]:¨xω},

    and

    ACBNS2={[¨x,{[V2IT+(¨x),Vu2IT+(¨x)],[V2II+(¨x),Vu2II+(¨x)],[V2IF+(¨x),Vu2IF+(¨x)],[V2IT(¨x),Vu2IT(¨x)],[V2II(¨x),Vu2II(¨x)],[V2IF(¨x),Vu2IF(¨x)]},{BT+2(¨x),BI+2(¨x),BF+2(¨x),BT2(¨x),BI2(¨x),BF2(¨x)}]:¨xω}.

    1. Then, ACBNS1ACBNS2 if, and only if:

    i. VIBNS1VIBNS2 for all ¨xω, and we have:

    V1IT+(¨x)V2IT+(¨x),Vu1IT+(¨x)Vu2IT+(¨x),V1II+(¨x)V2II+(¨x),Vu1II+(¨x)Vu2II+(¨x),V1IF+(¨x)V2IF+(¨x),Vu1IF+(¨x)Vu2IF+(¨x),

    and

    V1IT(¨x)V2IT(¨x),Vu1IT(¨x)Vu2IT(¨x),V1II(¨x)V2II(¨x),Vu1II(¨x)Vu2II(¨x),V1IF(¨x)V2IF(¨x),Vu1IF(¨x)Vu2IF(¨x).

    ii. BBNS1BBNS2 for all ¨xω, and we have:

    BT+1(¨x)BT+2(¨x),BI+1(¨x)BI+2(¨x),BF+1(¨x)BF+2(¨x),BT1(¨x)BT2(¨x),BI1(¨x)BI2(¨x),BF1(¨x)BF2(¨x).

    2. Then, ACBNS1=ACBNS2 if, and only if:

    V1IT+(¨x)=V2IT+(¨x),Vu1IT+(¨x)=Vu2IT+(¨x),V1II+(¨x)=V2II+(¨x),Vu1II+(¨x)=Vu2II+(¨x),V1IF+(¨x)=V2IF+(¨x),Vu1IF+(¨x)=Vu2IF+(¨x),V1IT(¨x)=V2IT(¨x),Vu1IT(¨x)=Vu2IT(¨x),V1II(¨x)=V2II(¨x),Vu1II(¨x)=Vu2II(¨x),V1IF(¨x)=V2IF(¨x),Vu1IF(¨x)=Vu2IF(¨x), for all ¨xω,

    and

    BT+1(¨x)=BT+2(¨x),BI+1(¨x)=BI+2(¨x),BF+1(¨x)=BF+2(¨x),BT1(¨x)=BT2(¨x),BI1(¨x)=BI2(¨x),BF1(¨x)=BF2(¨x),for  all  ¨xω.

    Definition 17. Let ACBNS=VIBNS,BBNSCωBN, where

    ACBNS={[¨x,{[VIT+(¨x),VuIT+(¨x)],[VII+(¨x),VuII+(¨x)],[VIF+(¨x),VuIF+(¨x)],[VIT(¨x),VuIT(¨x)],[VII(¨x),VuII(¨x)],[VIF(¨x),VuIF(¨x)]},{BT+(¨x),BI+(¨x),BF+(¨x),BT(¨x),BI(¨x),BF(¨x)}]:¨xω}.

    If

    VIT+(¨x)BT+(¨x)VuIT+(¨x),VII+(¨x)BI+(¨x)VuII+(¨x),VIF+(¨x)BF+(¨x)VuIF+(¨x),

    and

    VIT(¨x)BT(¨x)VuIT(¨x),VII(¨x)BI(¨x)VuII(¨x),VIF(¨x)BF(¨x)VuIF(¨x),

    for all ¨xω, then ACBNS is called an internal cubic bipolar neutrosophic set (ICBNS).

    Example 2. Let ACBNS=VIBNS,BBNSCωBN.IfVIBNS

    ={[0.2,0.8]IT+,[0.3,0.6]II+,[0.4,0.7]IF+,[0.8,0.5]IT,[0.6,0.5]II,[0.3,0.1]IF/¨x1},

    and

    BBNS={0.4,0.5,0.6,0.6,0.55,0.2/¨x1},

    for all ¨xω, then ACBNS=VIBNS,BBNS is an ICBNS.

    Definition 18. Let ACBNS=VIBNS,BBNSCωBN, where

    ACBNS={[¨x,{[VIT+(¨x),VuIT+(¨x)],[VII+(¨x),VuII+(¨x)],[VIF+(¨x),VuIF+(¨x)],[VIT(¨x),VuIT(¨x)],[VII(¨x),VuII(¨x)],[VIF(¨x),VuIF(¨x)]},{BT+(¨x),BI+(¨x),BF+(¨x),BT(¨x),BI(¨x),BF(¨x)}]:¨xω}.

    If

    BT+(¨x)[VIT+(¨x),VuIT+(¨x)],BI+(¨x)[VII+(¨x),VuII+(¨x)],BF+(¨x)[VIF+(¨x),VuIF+(¨x)],

    and

    BT(¨x)[VIT(¨x),VuIT(¨x)],BI(¨x)[VII(¨x),VuII(¨x)],BF(¨x)[VIF(¨x),VuIF(¨x)],

    for all ¨xω, then ACBNS is called an external cubic bipolar neutrosophic set (ECBNS).

    Example 3. Let ACBNS=VIBNS,BBNSCωBN. If VIBNS

    ={[0.2,0.8]IT+,[0.3,0.6]II+,[0.4,0.7]IF+,[0.8,0.5]IT,[0.6,0.5]II,[0.3,0.1]IF/¨x1},

    and

    BBNS={0.1,0.7,0.3,0.3,0.8,0.5/¨x1},

    for all ¨xω, then ACBNS=VIBNS,BBNS is an ECBNS.

    Remark 1. Let ACBNS=VIBNS,BBNSCωBN. Then, ACBNS is said to be neither ICBNS nor ECBNS if:

    V+(¨x)BN+(¨x)V+u(¨x)andV(¨x)BN(¨x)Vu(¨x),

    and

    BN+(¨x)(V+(¨x),V+u(¨x))andBN(¨x)(V(¨x),Vu(¨x))for  all  ¨xω.

    Example 4. Let ACBNS=VIBNS,BBNSCωBN.IfVIBNS

    ={[0.2,0.8]IT+,[0.3,0.6]II+,[0.4,0.7]IF+,[0.8,0.5]IT,[0.6,0.5]II,[0.3,0.1]IF/¨x1},

    and

    BBNS={0.5,0.4,0.5,0.3,0.8,0.5/¨x1},

    for all ¨xω, then ACBNS=VIBNS,BBNS is not an ICBNS or an ECBNS.

    Theorem 1. Let ACBNS=VIBNS,BBNSCωBN, which is not an ECBNS. Then, there exists ¨xω such that:

    VIT+(¨x)BT+(¨x)VIT+u(¨x)VII+(¨x)BI+(¨x)VII+u(¨x),VIF+(¨x)BF+(¨x)VIF+u(¨x)VIT(¨x)BT(¨x)VITu(¨x),VII(¨x)BI(¨x)VIIu(¨x)orVIF(¨x)BF(¨x)VIFu(¨x).

    Proof. Suppose that ACBNS=VIBNS,BBNSCωBN. Then, ACBNS is ECBNS. By using Definition 18, we get:

    BN+(¨x)(V+(¨x),V+u(¨x)),BN(¨x)(V(¨x),Vu(¨x)),¨xω.

    Since ACBNS is not an ECBNS in ω, we have:

    BN+(¨x)(V+(¨x),V+u(¨x)),BN(¨x)(V(¨x),Vu(¨x)),¨xω.

    That means:

    V+(¨x)BN+(¨x)V+u(¨x),V(¨x)BN(¨x)Vu(¨x).

    Theorem 2. Let ACBNS=VIBNS,BBNSCωBN. If ACBNS is both ICBNS and ECBNS, then:

    BT+(¨x)[L(VIT+)U(VIT+)],BI+(¨x)[L(VII+)U(VII+)],BF+(¨x)[L(VIF+)U(VIF+)],BT(¨x)[L(VIT)U(VIT)],BI(¨x)[L(VII)U(VII)]andBF(¨x)[L(VIF)U(VIF)],

    for all ¨xω, where:

    L(VIT+)={VIT+(¨x)¨xω},U(VIT+)={VIT+u(¨x)¨xω},L(VII+)={VII+(¨x)¨xω},U(VII+)={VII+u(¨x)¨xω},L(VIF+)={VIF+(¨x)¨xω},U(VIF+)={VIF+u(¨x)¨xω},L(VIT)={VIT(¨x)¨xω},U(VIT)={VITu(¨x)¨xω},L(VII)={VII(¨x)¨xω},U(VII)={VIIu(¨x)¨xω},L(VIF)={VIF(¨x)¨xω},U(VIF)={VIFu(¨x)¨xω}.

    Proof. Suppose that ACBNS=VIBNS,BBNSCωBN. Then, ACBNS is both ICBNS and ECBNS. By using Definitions 17 and 18, we get:

    V+(¨x)BN+(¨x)V+u(¨x),V(¨x)BN(¨x)Vu(¨x),

    and

    BN+(¨x)(V+(¨x),V+u(¨x)),BN(¨x)(V(¨x),Vu(¨x)).

    Thus,

    BN+(¨x)=V+(¨x) or BN+(¨x)=V+u(¨x),BN(¨x)=V(¨x) or BN(¨x)=Vu(¨x).

    Hence,

    BN+(¨x)[L(V+)U(V+)],BN(¨x)[L(V)U(V)].

    In this part, we introduce some basic operations with examples for CBNS.

    Definition 19. Let ACBNS=VIBNS,BBNSCωBN, where:

    ACBNS={[¨x,{[VIT+(¨x),VuIT+(¨x)],[VII+(¨x),VuII+(¨x)],[VIF+(¨x),VuIF+(¨x)],[VIT(¨x),VuIT(¨x)],[VII(¨x),VuII(¨x)],[VIF(¨x),VuIF(¨x)]},{BT+(¨x),BI+(¨x),BF+(¨x),BT(¨x),BI(¨x),BF(¨x)}]:¨xω}.

    The complement of ACBNS is denoted by AcCBNS and is defined by:

    VcIT+(¨x)={1+}VuIT+(¨x),VcIT+u(¨x)={1+}VIT+(¨x),VcII+(¨x)={1+}VuII+(¨x),VcII+u(¨x)={1+}VII+(¨x),VcIF+(¨x)={1+}VuIF+(¨x),VcIF+u(¨x)={1+}VIF+(¨x),VcIT(¨x)={1}VuIT(¨x),VcITu(¨x)={1}VIT(¨x),VcII(¨x)={1}VuII(¨x),VcIIu(¨x)={1}VII(¨x),VcIF(¨x)={1}VuIF(¨x),VcIFu(¨x)={1}VIF(¨x),

    and:

    BcT+(¨x)={1+}BT+(¨x),BcI+(¨x)={1+}BI+(¨x),BcF+(¨x)={1+}BF+(¨x),BcT(¨x)={1}BT(¨x),BcI(¨x)={1}BI(¨x),BcF(¨x)={1}BF(¨x),

    for all ¨xω.

    Theorem 3. Let ACBNS=VIBNS,BBNSCωBN. If ACBNS is an ICBNS, then AcCBNS is also an ICBNS.

    Proof. Since ACBNS=VIBNS,BBNS is an ICBNS in ω, we have:

    VIT+(¨x)BT+(¨x)VuIT+(¨x),VII+(¨x)BI+(¨x)VuII+(¨x),VIF+(¨x)BF+(¨x)VuIF+(¨x),VIT(¨x)BT(¨x)VuIT(¨x),VII(¨x)BI(¨x)VuII(¨x)orVIF(¨x)BF(¨x)VuIF(¨x),

    which means:

    {1+}VcIT+u(¨x)BT+(¨x){1+}VcIT+(¨x),{1+}VcII+u(¨x)BI+(¨x){1+}VcII+(¨x),{1+}VcIF+u(¨x)BF+(¨x){1+}VcIF+(¨x),{1}VcITu(¨x)BT(¨x){1}VcIT(¨x),{1}VcIIu(¨x)BI(¨x){1}VcII(¨x)or{1}VcIFu(¨x)BF(¨x){1}VcIF(¨x),

    and this means \mathrm{A}^{\text{cCBNS}} is also an ICBNS in \omega .

    Theorem 4. Let \mathrm{A}^{\mathit{\text{CBNS}}} = \langle \mathbb{V}^{\mathit{\text{IBNS}}}, \mathbb{B}^{\mathit{\text{BNS}}} \rangle \in \mathbb{C}^{\omega}_{\mathit{\text{BN}}} . If \mathrm{A}^{\mathit{\text{CBNS}}} is an ECBNS, then \mathrm{A}^{\mathit{\text{cCBNS}}} is also an ECBNS.

    Proof. The proof can be easily stated according to Definitions 18 and 19.

    Definition 20. Let

    \mathrm{A}^{{CBNS}}_1 = \left\{ \left[ \begin{array}{c} \ddot{x}, \left\{ \begin{array}{c} \left[ \mathbb{V}_{\ell 1} {}^{I T^{+}}(\ddot{x}), \mathbb{V}_{u 1} {}^{I T^{+}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 1} {}^{I I^{+}}(\ddot{x}), \mathbb{V}_{u 1} {}^{I I^{+}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 1} {}^{I F^{+}}(\ddot{x}), \mathbb{V}_{u 1} {}^{I F^{+}}(\ddot{x}) \right], \\ \left[ \mathbb{V}_{\ell 1} {}^{I T^{-}}(\ddot{x}), \mathbb{V}_{u 1} {}^{I T^{-}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 1} {}^{I I^{-}}(\ddot{x}), \mathbb{V}_{u 1} {}^{I I^{-}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 1} {}^{I F^{-}}(\ddot{x}), \mathbb{V}_{u 1} {}^{I F^{-}}(\ddot{x}) \right] \end{array} \right\}, \\ \left\{\mathbb{B}_{1} {}^{T^{+}}(\ddot{x}), \mathbb{B}_{1} {}^{I^{+}}(\ddot{x}), \mathbb{B}_{1} {}^{F^{+}}(\ddot{x}), \mathbb{B}_{1} {}^{T^{-}}(\ddot{x}), \mathbb{B}_{1} {}^{I^{-}}(\ddot{x}), \mathbb{B}_{1} {}^{F^{-}}(\ddot{x}) \right\} \end{array} \right]: \ddot{x} \in \omega \right\},

    and

    \mathrm{A}^{{CBNS}}_2 = \left\{ \left[ \begin{array}{c} \ddot{x}, \left\{ \begin{array}{c} \left[ \mathbb{V}_{\ell 2} {}^{I T^{+}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I T^{+}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 2} {}^{I I^{+}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I I^{+}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 2} {}^{I F^{+}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I F^{+}}(\ddot{x}) \right], \\ \left[ \mathbb{V}_{\ell 2} {}^{I T^{-}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I T^{-}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 2} {}^{I I^{-}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I I^{-}}(\ddot{x}) \right], \left[ \mathbb{V}_{\ell 2} {}^{I F^{-}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I F^{-}}(\ddot{x}) \right] \end{array} \right\}, \\ \left\{ \mathbb{B}_{2} {}^{T^{+}}(\ddot{x}), \mathbb{B}_{2} {}^{I^{+}}(\ddot{x}), \mathbb{B}_{2} {}^{F^{+}}(\ddot{x}), \mathbb{B}_{2} {}^{T^{-}}(\ddot{x}), \mathbb{B}_{2} {}^{I^{-}}(\ddot{x}), \mathbb{B}_{2} {}^{F^{-}}(\ddot{x}) \right\} \end{array} \right]: \ddot{x} \in \omega \right\},

    be two CBNSs in \omega .

    Then, the union is defined as:

    \mathrm{A}^{{CBNS}}_1 \cup \mathrm{A}^{{CBNS}}_2 (\ddot{x}) = \left\{ \left[ \begin{array}{c} \ddot{x}, \left\{ \begin{array}{c} \left[ \max \left\{ \mathbb{V}_{\ell 1} {}^{I T^{+}}(\ddot{x}), \mathbb{V}_{\ell 2} {}^{I T^{+}}(\ddot{x}) \right\}, \max \left\{ \mathbb{V}_{u 1} {}^{I T^{+}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I T^{+}}(\ddot{x}) \right\} \right], \\ \left[ \min \left\{ \mathbb{V}_{\ell 1} {}^{I I^{+}}(\ddot{x}), \mathbb{V}_{\ell 2} {}^{I I^{+}}(\ddot{x}) \right\}, \min \left\{ \mathbb{V}_{u 1} {}^{I I^{+}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I I^{+}}(\ddot{x}) \right\} \right], \\ \left[ \min \left\{ \mathbb{V}_{\ell 1} {}^{I F^{+}}(\ddot{x}), \mathbb{V}_{\ell 2} {}^{I F^{+}}(\ddot{x}) \right\}, \min \left\{ \mathbb{V}_{u 1} {}^{I F^{+}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I F^{+}}(\ddot{x}) \right\} \right], \\ \left[ \min \left\{ \mathbb{V}_{\ell 1} {}^{I T^{-}}(\ddot{x}), \mathbb{V}_{\ell 2} {}^{I T^{-}}(\ddot{x}) \right\}, \min \left\{ \mathbb{V}_{u 1} {}^{I T^{-}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I T^{-}}(\ddot{x}) \right\} \right], \\ \left[ \max \left\{ \mathbb{V}_{\ell 1} {}^{I I^{-}}(\ddot{x}), \mathbb{V}_{\ell 2} {}^{I I^{-}}(\ddot{x}) \right\}, \max \left\{ \mathbb{V}_{u 1} {}^{I I^{-}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I I^{-}}(\ddot{x}) \right\} \right], \\ \left[ \max \left\{ \mathbb{V}_{\ell 1} {}^{I F^{-}}(\ddot{x}), \mathbb{V}_{\ell 2} {}^{I F^{-}}(\ddot{x}) \right\}, \max \left\{ \mathbb{V}_{u 1} {}^{I F^{-}}(\ddot{x}), \mathbb{V}_{u 2} {}^{I F^{-}}(\ddot{x}) \right\} \right] \end{array} \right\}, \\ \langle \begin{array}{l} \max \left\{ \mathbb{B}_{1} {}^{T^{+}}(\ddot{x}), \mathbb{B}_{2} {}^{T^{+}}(\ddot{x}) \right\}, \frac{\mathbb{B}_{1} {}^{I^{+}}(\ddot{x}) + \mathbb{B}_{2} {}^{I^{+}}(\ddot{x})}{2}, \min \left\{ \mathbb{B}_{1} {}^{F^{+}}(\ddot{x}), \mathbb{B}_{2} {}^{F^{+}}(\ddot{x}) \right\}, \\ \ \min \left\{ \mathbb{B}_{1} {}^{T^{-}}(\ddot{x}), \mathbb{B}_{2} {}^{T^{-}}(\ddot{x}) \right\}, \frac{\mathbb{B}_{1} {}^{I^{-}}(\ddot{x}) + \mathbb{B}_{2} {}^{I^{-}}(\ddot{x})}{2}, \max \left\{ \mathbb{B}_{1} {}^{F^{-}}(\ddot{x}), \mathbb{B}_{2} {}^{F^{-}}(\ddot{x}) \right\} \end{array} \rangle \end{array} \right]: \ddot{x} \in \omega \right\}.

    Definition 21. Let

    \mathrm{A}^{{CBNS}}_1 = \left\{ \begin{array}{l} \left[ \begin{array}{c} \ddot{x}, \left\{ \begin{array}{l} \left[ V_{\ell 1}{}^{IT^{+}}(\ddot{x}), V_{u 1}{}^{IT^{+}}(\ddot{x}) \right], \left[ V_{\ell 1}{}^{II^{+}}(\ddot{x}), V_{u 1}{}^{II^{+}}(\ddot{x}) \right], \left[ V_{\ell 1}{}^{IF^{+}}(\ddot{x}), V_{u 1}{}^{IF^{+}}(\ddot{x}) \right], \\ \left[ V_{\ell 1}{}^{IT^{-}}(\ddot{x}), V_{u 1}{}^{IT^{-}}(\ddot{x}) \right], \left[ V_{\ell 1}{}^{II^{-}}(\ddot{x}), V_{u 1}{}^{II^{-}}(\ddot{x}) \right], \left[ V_{\ell 1}{}^{IF^{-}}(\ddot{x}), V_{u 1}{}^{IF^{-}}(\ddot{x}) \right] \end{array} \right\}, \\ \left\{ B_{1}{}^{T^{+}}(\ddot{x}), B_{1}{}^{I^{+}}(\ddot{x}), B_{1}{}^{F^{+}}(\ddot{x}), B_{1}{}^{T^{-}}(\ddot{x}), B_{1}{}^{I^{-}}(\ddot{x}), B_{1}{}^{F^{-}}(\ddot{x}) \right\} \end{array} \right]: \ddot{x} \in \omega \end{array} \right\},

    and

    \mathrm{A}^{{CBNS}}_2 = \left\{ \begin{array}{l} \left[ \begin{array}{c} \ddot{x}, \left\{ \begin{array}{l} \left[ V_{\ell 2}{}^{IT^{+}}(\ddot{x}), V_{u 2}{}^{IT^{+}}(\ddot{x}) \right], \left[ V_{\ell 2}{}^{II^{+}}(\ddot{x}), V_{u 2}{}^{II^{+}}(\ddot{x}) \right], \left[ V_{\ell 2}{}^{IF^{+}}(\ddot{x}), V_{u 2}{}^{IF^{+}}(\ddot{x}) \right], \\ \left[ V_{\ell 2}{}^{IT^{-}}(\ddot{x}), V_{u 2}{}^{IT^{-}}(\ddot{x}) \right], \left[ V_{\ell 2}{}^{II^{-}}(\ddot{x}), V_{u 2}{}^{II^{-}}(\ddot{x}) \right], \left[ V_{\ell 2}{}^{IF^{-}}(\ddot{x}), V_{u 2}{}^{IF^{-}}(\ddot{x}) \right] \end{array} \right\}, \\ \left\{ B_{2}^{T^{+}}(\ddot{x}), B_{2}^{I^{+}}(\ddot{x}), B_{2}^{F^{+}}(\ddot{x}), B_{2}^{T^{-}}(\ddot{x}), B_{2}^{I^{-}}(\ddot{x}), B_{2}^{F^{-}}(\ddot{x}) \right\} \end{array} \right]: \ddot{x} \in \omega \end{array} \right\},

    be two CBNSs in \omega . Then, their intersection is defined as:

    (\mathrm{A}^{{CBNS}}_1 \cap \mathrm{A}^{{CBNS}}_2)(\ddot{x}) = \left\{ \begin{array}{l} \ddot{x}, \left\{ \begin{array}{l} \left[ \min \left\{ V_{\ell 1}{}^{IT^{+}}(\ddot{x}), V_{\ell 2}{}^{IT^{+}}(\ddot{x}) \right\}, \min \left\{ V_{u 1}{}^{IT^{+}}(\ddot{x}), V_{u 2}{}^{IT^{+}}(\ddot{x}) \right\} \right], \\ \left[ \max \left\{ V_{\ell 1}{}^{II^{+}}(\ddot{x}), V_{\ell 2}{}^{II^{+}}(\ddot{x}) \right\}, \max \left\{ V_{u 1}{}^{II^{+}}(\ddot{x}), V_{u 2}{}^{II^{+}}(\ddot{x}) \right\} \right], \\ \left[ \max \left\{ V_{\ell 1}{}^{IF^{+}}(\ddot{x}), V_{\ell 2}{}^{IF^{+}}(\ddot{x}) \right\}, \max \left\{ V_{u 1}{}^{IF^{+}}(\ddot{x}), V_{u 2}{}^{IF^{+}}(\ddot{x}) \right\} \right], \\ \left[ \max \left\{ V_{\ell 1}{}^{IT^{-}}(\ddot{x}), V_{\ell 2}{}^{IT^{-}}(\ddot{x}) \right\}, \max \left\{ V_{u 1}{}^{IT^{-}}(\ddot{x}), V_{u 2}{}^{IT^{-}}(\ddot{x}) \right\} \right], \\ \left[ \min \left\{ V_{\ell 1}{}^{II^{-}}(\ddot{x}), V_{\ell 2}{}^{II^{-}}(\ddot{x}) \right\}, \min \left\{ V_{u 1}{}^{II^{-}}(\ddot{x}), V_{u 2}{}^{II^{-}}(\ddot{x}) \right\} \right], \\ \left[ \min \left\{ V_{\ell 1}{}^{IF^{-}}(\ddot{x}), V_{\ell 2}{}^{IF^{-}}(\ddot{x}) \right\}, \min \left\{ V_{u 1}{}^{IF^{-}}(\ddot{x}), V_{u 2}{}^{IF^{-}}(\ddot{x}) \right\} \right] \end{array} \right\}, \\ \langle \begin{array}{l} \min \left\{ B_{1}^{T^{+}}(\ddot{x}), B_{2}^{T^{+}}(\ddot{x}) \right\}, \frac{B_{1}^{I^{+}}(\ddot{x}) + B_{2}^{I^{+}}(\ddot{x})}{2}, \max \left\{ B_{1}^{F^{+}}(\ddot{x}), B_{2}^{F^{+}}(\ddot{x}) \right\}, \\ \max \left\{ B_{1}^{T^{-}}(\ddot{x}), B_{2}^{T^{-}}(\ddot{x}) \right\}, \frac{B_{1}^{I^{-}}(\ddot{x}) + B_{2}^{I^{-}}(\ddot{x})}{2}, \min \left\{ B_{1}^{F^{-}}(\ddot{x}), B_{2}^{F^{-}}(\ddot{x}) \right\} \end{array} \rangle \end{array} \right\} : \ddot{x} \in \omega.

    Example 5. Let \omega = \{\ddot{x}_1, \ddot{x}_2\} . Then,

    \mathrm{A}^{{CBNS}}_1 = \left\{ \begin{array}{c} \left[ \begin{array}{c} \ddot{x}_1, \left\{ \begin{array}{c} \begin{aligned} [0.6, 0.8]^{IT^+}, [0.4&, 0.5]^{II^+}, [0.44, 0.55]^{IF^+}, \\ [-0.4, -0.2]^{IT^-}, [-0.7&, -0.5]^{II^-}, [-0.3, -0.3]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.5, 0.8, 0.1, -0.67, -0.45, -0.3\right\} \end{array} \right] \\ \left[ \begin{array}{c} \ddot{x}_2, \left\{ \begin{array}{c} \begin{aligned} [0.1, 0.5]^{IT^+}, [0.2&, 0.5]^{II^+}, [0.4, 0.5]^{IF^+}, \\ [-0.6, -0.5]^{IT^-}, [-0.38&, -0.3]^{II^-}, [-0.5, -0.2]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.5, 0.7, 0.4, -0.2, -0.7, -0.5\right\} \end{array} \right] \end{array} \right\},

    and

    \mathrm{A}^{{CBNS}}_2 = \left\{ \begin{array}{c} \left[ \begin{array}{c} \ddot{x}_1, \left\{ \begin{array}{c} \begin{aligned} [0.3, 0.5]^{IT^+}, [0.5, &0.7]^{II^+}, [0.5, 0.7]^{IF^+}, \\ [-0.66, -0.4]^{IT^-}, [-0.8&, -0.7]^{II^-}, [-0.2, -0.1]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.4, 0.7, 0.3, -0.6, -0.4, -0.01\right\} \end{array} \right] \\ \left[ \begin{array}{c} \ddot{x}_2, \left\{ \begin{array}{c} \begin{aligned} [0.5, 0.6]^{IT^+}, [0.2&, 0.3]^{II^+}, [0.4, 0.8]^{IF^+}, \\ [-0.77, -0.5]^{IT^-}, [-0.4&, -0.3]^{II^-}, [-0.9, -0.2]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.8, 0.5, 0.4, -0.7, -0.3, -0.01\right\} \end{array} \right] \end{array} \right\},

    are two CBNSs in \omega .

    1. Then, the complement of a cubic bipolar neutrosophic set (ACBNS) _1 is given as follows:

    \mathrm{A}^{{cCBNS}}_1 = \left\{ \begin{array}{c} \left[ \begin{array}{c} \ddot{x}_1, \left\{ \begin{array}{c} \begin{aligned} [0.2, 0.4]^{IT^+}, [0.5&, 0.6]^{II^+}, [0.45, 0.56]^{IF^+}, \\ [-0.8, -0.6]^{IT^-}, [-0.5&, -0.3]^{II^-}, [-0.7, -0.7]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.5, 0.2, 0.9, -0.23, -0.55, -0.7\right\} \end{array} \right] \\ \left[ \begin{array}{c} \ddot{x}_2, \left\{ \begin{array}{c} \begin{aligned} [0.5, 0.9]^{IT^+}, [0.5, &0.8]^{II^+}, [0.5, 0.6]^{IF^+}, \\ [-0.5, -0.4]^{IT^-}, [-0.7&, -0.62]^{II^-}, [-0.8, -0.5]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.5, 0.3, 0.6, -0.8, -0.3, -0.5\right\} \end{array} \right] \end{array} \right\}.

    2. Then, their union is given as follows:

    \left(\mathrm{A}^{{CBNS}}_1 \cup \mathrm{A}^{{CBNS}}_2\right)(\ddot{x}) = \left\{ \begin{array}{c} \left[ \begin{array}{c} \ddot{x}_1, \left\{ \begin{array}{c} \begin{aligned} [0.6, 0.8]^{IT^+}, [0.4, &0.5]^{II^+}, [0.44, 0.55]^{IF^+}, \\ [-0.66, -0.4]^{IT^-}, [-0.7&, -0.5]^{II^-}, [-0.2, -0.1]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.5, 0.75, 0.1, -0.67, -0.425, -0.01\right\} \end{array} \right] \\ \left[ \begin{array}{c} \ddot{x}_2, \left\{ \begin{array}{c} \begin{aligned} [0.5, 0.6]^{IT^+}, [0.2, &0.3]^{II^+}, [0.4, 0.5]^{IF^+}, \\ [-0.77, -0.5]^{IT^-}, [-0.38&, -0.3]^{II^-}, [-0.5, -0.2]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.8, 0.6, 0.4, -0.7, -0.5, -0.01\right\} \end{array} \right] \end{array} \right\}.

    3. Then, their intersection is given as follows:

    \left(\mathrm{A}^{{CBNS}}_1 \cap \mathrm{A}^{{CBNS}}_2\right)(\ddot{x}) = \left\{ \begin{array}{c} \left[ \begin{array}{c} \ddot{x}_1, \left\{ \begin{array}{c} \begin{aligned} [0.3, 0.5]^{IT^+}, [0.5&, 0.7]^{II^+}, [0.5, 0.7]^{IF^+}, \\ [-0.4, -0.2]^{IT^-}, [-0.8&, -0.7]^{II^-}, [-0.3, -0.3]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.4, 0.75, 0.3, -0.6, -0.425, -0.3\right\} \end{array} \right] \\ \left[ \begin{array}{c} \ddot{x}_2, \left\{ \begin{array}{c} \begin{aligned} [0.1, 0.5]^{IT^+}, [0.2&, 0.5]^{II^+}, [0.4, 0.8]^{IF^+}, \\ [-0.6, -0.5]^{IT^-}, [-0.4, &-0.3]^{II^-}, [-0.9, -0.2]^{IF^-} \end{aligned} \end{array} \right\}, \\ \left\{0.8, 0.6, 0.4, -0.2, -0.5, -0.5\right\} \end{array} \right] \end{array} \right\}.

    To facilitate the analysis, we define the parameters used throughout this study. A detailed overview of these parameters is provided in Table 2.

    Table 2.  Parameters used in the analysis.
    Parameter Description
    \ddot{x} Element of the reference set \omega
    \mu_{\mathrm{A}}(\ddot{x}) Grade of satisfaction of \ddot{x} in set \mathrm{A}
    [\ell, u] Interval membership degree in IVFS
    \lambda(\ddot{x}) FS membership degree in a cubic set
    \chi_{\mathbb{B}}^+(\ddot{x}) Positive membership function of BFS
    \chi_{\mathbb{B}}^-(\ddot{x}) Negative membership function of BFS
    \left[\mathbb{V}_{\ell}^+(\ddot{x}), \mathbb{V}_u^+(\ddot{x})\right] Positive membership degree in IVBFS
    \left[\mathbb{V}_{\ell}^-(\ddot{x}), \mathbb{V}_u^-(\ddot{x})\right] Negative membership degree in IVBFS
    \ddot{\partial}_{\hat{\mathbb{A}}}^t(\ddot{x}) True membership degree in NS
    \ddot{\partial}_{\hat{\mathbb{A}}}^i(\ddot{x}) Indeterminacy membership degree in NS
    \ddot{\partial}_{\hat{\mathbb{A}}}^f(\ddot{x}) Falsehood membership degree in NS
    \mathbb{V}^{IT^+}(\ddot{x}) Interval for IT^+
    \mathbb{V}^{II^+}(\ddot{x}) Interval for II^+
    \mathbb{V}^{IF^+}(\ddot{x}) Interval for IF^+
    \mathbb{V}^{IT^-}(\ddot{x}) Interval for IT^-
    \mathbb{V}^{II^-}(\ddot{x}) Interval for II^-
    \mathbb{V}^{IF^-}(\ddot{x}) Interval for IF^-
    \mathbb{B}^{N^+}(\ddot{x}) BNS for positive interval
    \mathbb{B}^{N^-}(\ddot{x}) BNS for negative interval
    \mathbb{B}^{T^+}(\ddot{x}) True membership for positive interval
    \mathbb{B}^{I^+}(\ddot{x}) Indeterminate membership for positive interval
    \mathbb{B}^{F^+}(\ddot{x}) False membership for positive interval
    \mathbb{B}^{T^-}(\ddot{x}) True membership for negative interval
    \mathbb{B}^{I^-}(\ddot{x}) Indeterminate membership for negative interval
    \mathbb{B}^{F^-}(\ddot{x}) False membership for negative interval
    \mathbb{V}_{\ell}^{c I T^+}(\ddot{x}) Complement of I T^+ lower bound
    \mathbb{V}_{u}^{c I T^+}(\ddot{x}) Complement of I T^+ upper bound
    \mathbb{V}_{\ell}^{c I I^+}(\ddot{x}) Complement of I I^+ lower bound
    \mathbb{V}_{u}^{c I I^+}(\ddot{x}) Complement of I I^+ upper bound
    \mathbb{V}_{\ell}^{c I F^+}(\ddot{x}) Complement of I F^+ lower bound
    \mathbb{V}_{u}^{c I F^+}(\ddot{x}) Complement of I F^+ upper bound
    \mathbb{V}_{\ell}^{c I T^-}(\ddot{x}) Complement of I T^- lower bound
    \mathbb{V}_{u}^{c I T^-}(\ddot{x}) Complement of I T^- upper bound
    \mathbb{V}_{\ell}^{c I I^-}(\ddot{x}) Complement of I I^- lower bound
    \mathbb{V}_{u}^{c I I^-}(\ddot{x}) Complement of I I^- upper bound
    \mathbb{V}_{\ell}^{c I F^-}(\ddot{x}) Complement of I F^- lower bound
    \mathbb{V}_{u}^{c I F^-}(\ddot{x}) Complement of I F^- upper bound
    \mathbb{B}^{c T^+}(\ddot{x}) Complement of T^+ in bipolar set
    \mathbb{B}^{c I^+}(\ddot{x}) Complement of I^+ in bipolar set
    \mathbb{B}^{c F^+}(\ddot{x}) Complement of F^+ in bipolar set
    \mathbb{B}^{c T^-}(\ddot{x}) Complement of T^- in bipolar set
    \mathbb{B}^{c I^-}(\ddot{x}) Complement of I^- in bipolar set
    \mathbb{B}^{c F^-}(\ddot{x}) Complement of F^- in bipolar set

     | Show Table
    DownLoad: CSV

    CBNSs are a novel framework introduced in this research to address the limitations of existing methods, particularly BNSs, in handling uncertainty and vagueness within data analysis.

    Key Components of CBNSs:

    Bipolarity: This refers to the ability to represent both positive and negative membership degrees simultaneously, allowing for a more nuanced representation of information. Cubic Sets: Cubic sets introduce an interval-valued membership grade, providing a more flexible and expressive representation of uncertainty. How CBNSs Work:

    Representation: CBNSs represent information using a membership triplet, consisting of a truth membership grade, an indeterminacy membership grade, and a falsity membership grade. Each membership grade can take values within the interval [0, 1]. Operations: CBNSs support various operations, including union, intersection, complement, and scalar multiplication, allowing for mathematical manipulation and analysis. Decision-Making: CBNSs can be applied to decision-making problems by defining decision rules and calculating similarity measures between alternatives. Advantages of CBNSs:

    Enhanced Representation: CBNSs provide a more comprehensive and accurate representation of information compared to BNSs, especially in dealing with complex and uncertain data. Flexibility: The interval-valued membership grades in CBNSs offer greater flexibility in modeling uncertainty and vagueness. Versatility: CBNSs can be applied to various domains, including decision-making, pattern recognition, and information fusion.

    In this part, we introduce the definition of a CBNSS and its basic operations, derive its properties and give some definitions.

    Let \omega be a universe set, \hbar be a set of parameters and \mathcal{H} \subseteq \hbar . \mathbb{C}_{B N S}^\omega \prec is the set of all C B N S S s on \omega .

    Definition 22. A pair (\mathbb{F}, \mathcal{H}) is called a CBNSSs on \omega , where \mathbb{F} is a mapping given by

    \mathbb{F}: \mathcal{H} \rightarrow \mathbb{C}_{B N S}^\omega.

    A CBNSS is a mapping from parameters to \mathbb{C}_{B N S}^\omega . It is a parameterized family of CBNS-subsets of \omega and it can be written as:

    (\mathbb{F}, \mathcal{H}) = \{\mathbb{F}(e) \mid e \in \mathcal{H}\} = \left\{\langle e, \mathbb{F}^V(e), \mathbb{F}^B(e)\rangle: e \in \mathcal{H}\right\},

    where \mathbb{F}^V(e) = \left\{\mathbb{V}_{\mathcal{F}(e)}^{I T^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I I^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I F^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I T^{-}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I I^{-}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I F^{-}}(\ddot{x})\right\}

    \begin{aligned} \left.\left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{I T^{-}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{I I^{-}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{-}}(\ddot{x}), \mathbb{V}_{u_{\mathcal{F}}(e)}^{I F^{-}}(\ddot{x})\right]\rangle: \forall e \in \mathcal{H}, \ddot{x} \in \omega\right\} \\ \end{aligned}

    is called intervalued bipolar neutrosophic soft set (IBNSS) whereas \mathbb{F}^B(e) = \left\{\mathbb{B}_{\mathcal{F}(e)}^{T^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{T^{-}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{-}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{-}}(\ddot{x})\right\} is called bipolar neutrosophic soft set (BNSS).

    Suppose that \left[\mathbb{I}_{+}\right] and \left[\mathbb{I}_{-}\right] are the collection of all subintervals of [0, 1] and [-1, 0] , respectively, where

    \mathbb{V}_{\mathcal{F}(e)}^{I T^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I I^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I F^{+}}(\ddot{x}): \omega \rightarrow \left[\mathbb{I}_{+}\right] \quad, \quad \mathbb{V}_{\mathcal{F}(e)}^{I T^{-}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I I^{-}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{I F^{-}}(\ddot{x}): \omega \rightarrow \left[\mathbb{I}_{-}\right],

    and

    \mathbb{B}_{\mathcal{F}(e)}^{T^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{+}}(\ddot{x}): \omega \rightarrow \left[\mathbb{I}_{+}\right] \quad, \quad \mathbb{B}_{\mathcal{F}(e)}^{T^{-}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{-}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{-}}(\ddot{x}): \omega \rightarrow \left[\mathbb{I}_{-}\right] .

    To illustrate this notion, let us consider the following example.

    Example 6. A set of two motorbikes in the universe \omega given by \omega = \left\{\ddot{x}_1, \ddot{x}_2\right\} and parameters \hbar = \left\{e_1 = \right. styling, e_2 = price, e_3 = stamina \} .

    For \mathcal{H} = \left\{e_1, e_3\right\} \subseteq \hbar , the set (\mathbb{F}, \mathcal{H}) = \left\{\mathbb{F}\left(e_1\right), \mathbb{F}\left(e_3\right)\right\} is a CBNSS over \omega where

    \begin{equation*} \begin{aligned} \mathbb{F}\left(e_1\right) = & \left\{\frac{\ddot{x}_1}{\langle[0.2, 0.3]^{I T^{+}}, [0.3, 0.5]^{I I^{+}}, [0.4, 0.6]^{I F^{+}}, [-0.77, -0.5]^{I T^{-}}, [-0.9, -0.3]^{I I^{-}}, [-0.4, -0.4]^{I F^{-}}\rangle, (0.3, 0.4, 0.5, -0.6, -0.44, -0.3)}, \right. \\ & \left.\frac{\ddot{x}_2}{\langle[0.22, 0.45]^{I I^{+}}, [0.4, 0.6]^{I I^{+}}, [0.4, 0.6]^{I F^{+}}, [-0.2, -0.1]^{I T^{-}}, [-0.4, -0.3]^{I I^{-}}, [-0.7, -0.4]^{I F^{-}}\rangle, (0.3, 0.6, 0.5, -0.2, -0.7, -0.5)}\right\}, \\ \mathbb{F}\left(e_3\right) = & \left\{\frac{\ddot{x}_1}{\langle[0.1, 0.5]^{I T^{+}}, [0.3, 0.5]^{I I+}, [0.4, 0.7]^{I F^{+}}, [-0.6, -0.4]^{I T^{-}}, [-0.7, -0.3]^{I I^{-}}, [-0.3, -0.3]^{I F^{-}}\rangle, (0.1, 0.7, 0.9, -0.7, -0.2, -0.5)}, \right. \\ & \left.\frac{\ddot{x}_2}{\langle[0.2, 0.4]^{I I^{+}}, [0.4, 0.5]^{I I^{+}}, [0.7, 0.8]^{I F^{+}}, [-0.7, -0.2]^{I T^{-}}, [-0.6, -0.1]^{I I^{-}}, [-0.8, -0.3]^{I F^{-}}\rangle, (0.5, 0.6, 0.7, -0.5, -0.4, -0.4)}\right\} . \end{aligned} \end{equation*}

    Then, the CBNSS (\mathbb{F}, \mathcal{H}) will have a tabular representation as shown in Table 3.

    Table 3.  Tabular representation of the CBNSS (\mathbb{F}, \mathcal{H}) .
    (\mathbb{F}, \mathcal{H}) e_1 e_3
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.3]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.9, -0.3]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.4, 0.5, -0.6, -0.44, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.1, 0.5]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.7]^{I F^{+}}, &[-0.6, -0.4]^{I T^{-}} \\ [-0.7, -0.3]^{I I^{-}}, &[-0.3, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.1, 0.7, 0.9, -0.7, -0.2, -0.5\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.22, 0.45]^{I T^{+}}, &[0.4, 0.6]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.2, -0.1]^{I T^{-}} \\ [-0.4, -0.3]^{I I^{-}}, &[-0.7, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.6, 0.5, -0.2, -0.7, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.4]^{I I^{+}}, &[0.4, 0.5]^{I T^{+}} \\ [0.7, 0.8]^{I F^{+}}, &[-0.7, -0.2]^{I T^{-}} \\ [-0.6, -0.6]^{I I^{-}}, &[-0.8, -0.8]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.5, 0.6, 0.7, -0.5, -0.4, -0.4\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV

    In the following, we introduce the concept of the subset of two CBNSSs and the equality of two CBNSSs.

    Definition 23. Let (\mathbb{F}, \mathcal{H}) = \{\mathbb{F}(e) \mid e \in \mathcal{H}\} = \left\{\langle e, \mathbb{F}^V(e), \mathbb{F}^B(e)\rangle: e \in \mathcal{H}\right\} and (\mathbb{G}, \mathcal{T}) = \{\mathbb{G}(e) \mid e \in \mathcal{T}\} = \left\{\langle e, \mathbb{G}^V(e), \mathbb{G}^B(e)\rangle: e \in \mathcal{T}\right\} be two CBNSS over \omega, \mathcal{H} , and \mathcal{T} \subseteq \hbar Then, define the following:

    1. (Equality) (F, \mathcal{H}) = (\mathbb{G}, \mathcal{T}) if, and only if ( iff ) , the following conditions are satisfied:

    i. \mathcal{H} = \mathcal{T} ,

    ii. \mathbb{F}(e) = \mathbb{G}(e), \forall e \in \hbar \Leftrightarrow \mathbb{F}^V(e) = \mathbb{G}^V(e) and \mathbb{F}^B(e) = \mathbb{G}^B(e), \forall e \in \hbar .

    2. (P-Order) (\mathbb{F}, \mathcal{H}) \subseteq_P(\mathbb{G}, \mathcal{T}) if, and only if ( iff ) , the following conditions are satisfied:

    i. \mathcal{H} \subseteq \mathcal{T},

    ii. \mathbb{F}(e) \subseteq_P \mathbb{G}(e), \forall e \in \hbar \Leftrightarrow \mathbb{F}^V(e) \subseteq \mathbb{G}^V(e) and \mathbb{F}^B(e) \subseteq \mathbb{G}^B(e), \forall e \in \hbar

    3. (® - Order) (F, H) \subseteq (G, T) if, and only if (iff), the following conditions are satisfied:

    i. H \subseteq T,

    ii. F(e) \subseteq G(e), \forall e \in \omega , which is equivalent to F_V(e) \subseteq G_V(e) and F_B(e) \supseteq G_B(e), \forall e \in \omega .

    Example 7. Refer to Example 6 and take a CBNSS (G, T) over \omega , which is given in the following tabular form (see Table 4).

    Table 4.  Tabular representation of a CBNSS (G, T) .
    (G, T) e_1 e_3
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.22, 0.38]^{I T^{+}}, &[0.28, 0.45]^{I I^{+}} \\ [0.3, 0.55]^{I F^{+}}, &[-0.6, -0.4]^{I T^{-}} \\ [-0.99, -0.38]^{I I^{-}}, &[-0.49, -0.5]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.38, 0.44, 0.45, -0.67, -0.5, -0.2\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.18, 0.55]^{I T^{+}}, &[0.29, 0.48]^{I I^{+}} \\ [0.3, 0.55]^{I F^{+}}, &[-0.5, -0.3]^{I T^{-}} \\ [-0.78, -0.39]^{I I^{-}}, &[-0.38, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.2, 0.77, 0.8, -0.77, -0.29, -0.4\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.28, 0.5]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.3, 0.5]^{I F^{+}}, &[-0.19, -0.01]^{I T^{-}} \\ [-0.48, -0.38]^{I I^{-}}, &[-0.78, -0.48]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.38, 0.67, 0.4, -0.27, -0.78, -0.4\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.29, 0.49]^{I T^{+}}, &[0.3, 0.4]^{I I^{+}} \\ [0.55, 0.77]^{I F^{+}}, &[-0.5, -0.1]^{I T^{-}} \\ [-0.67, -0.67]^{I I^{-}}, &[-0.88, -0.88]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.7, 0.8, 0.2, -0.58, -0.48, -0.3\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV

    Then, it is clear that the CBNSS (F, H) in Example 6 is a P-Order of (G, T) .

    Example 8. Refer to Example 6 and take a CBNSS (G, T) over \omega , which is given in the following tabular form (see Table 5).

    Table 5.  Tabular representation of a CBNSS (G, T) .
    (G, T) e_1 e_3
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.22, 0.38]^{I T^{+}}, &[0.28, 0.45]^{I I^{+}} \\ [0.3, 0.55]^{I F^{+}}, &[-0.6, -0.4]^{I T^{-}} \\ [-0.99, -0.38]^{I I^{-}}, &[-0.49, -0.5]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.2, 0.3, 0.55, -0.5, -0.4, -0.33\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.18, 0.55]^{I T^{+}}, &[0.29, 0.48]^{I I^{+}} \\ [0.3, 0.55]^{I F^{+}}, &[-0.5, -0.3]^{I T^{-}} \\ [-0.78, -0.39]^{I I^{-}}, &[-0.38, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.01, 0.55, 0.99, -0.5, -0.2, -0.8\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.28, 0.39]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.3, 0.5]^{I F^{+}}, &[-0.19, -0.01]^{I T^{-}} \\ [-0.48, -0.38]^{I I^{-}}, &[-0.78, -0.48]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.2, 0.5, 0.7, -0.1, -0.4, -0.7\right\} \end{array} \right] \left[\begin{array}{l} \left\{ \begin{aligned} [0.29, 0.49]^{I T^{+}}, &[0.3, 0.4]^{I I^{+}} \\ [0.55, 0.77]^{I F^{+}}, &[-0.5, -0.1]^{I T^{-}} \\ [-0.67, -0.67]^{I I^{-}}, &[-0.88, -0.88]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.44, 0.55, 0.9, -0.4, -0.3, -0.9\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV

    Then, it is clear that the CBNSS (F, H) in Example 6 is an ®-Order of (G, T) .

    In this part, we introduce some basic operations with examples for CBNSSs.

    Definition 24. Let (\mathcal{F}, \mathcal{H}) be a CBNSSs over \omega . The complement of (\mathbb{F}, \mathcal{H}) is denoted by (\mathbb{F}, \mathcal{H})^c and is defined by (\mathbb{F}, \mathcal{H})^c = \left(\mathbb{F}^c, \neg \mathcal{H}\right) , where \mathbb{F}^c: \neg \mathcal{H} \rightarrow \mathbb{C}_{B N S}^\omega is a mapping given by

    (\mathbb{F}, \mathcal{H})^c = \left\{\mathbb{F}^c(e) \mid e \in \mathcal{H}\right\} = \left\{\langle e, \mathbb{F}^{V c}(e), \mathbb{F}^{B^c}(e)\rangle: e \in \neg \mathcal{H}\right\},

    where

    \begin{aligned} \mathbb{F}^{V c}(e) = \{\mathbb{V}^{c I T^{+}(e)}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I I^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I I^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I T^{-}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I I^{-}}(\ddot{x}), \mathbb{V}^c I_{\mathcal{F}(e)}^{c F^{-}}(\ddot{x}) \} \\ = \{\langle\ddot{x}, [\mathbb{V}_{\ell \mathcal{F}(e)}^{c I T^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I I^{+}}(\ddot{x}) ], [\mathbb{V}_{\ell \mathcal{F}(e)}^{c I I^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I I^{+}}(\ddot{x}) ], [\mathbb{V}_{\ell \mathcal{F}(e)}^{c \mathcal{F}(e)}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I F^{+}}(\ddot{x}) ], \\ { [\mathbb{V}_{\ell \mathcal{F}(e)}^{c I T^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I T^{-}}(\ddot{x}) ], [\mathbb{V}_{\ell \mathcal{F}(e)}^{c I I^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I I^{-}}(\ddot{x}) ], [\mathbb{V}_{\ell \mathcal{F}(e)}^{c I F^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I F^{-}}(\ddot{x}) ]\rangle: \forall e \in \mathcal{H}, \ddot{x} \in \omega \} } \\ = \{\langle\ddot{x}, [1-\mathbb{V}_{u \mathcal{F}(e)}^{I T^{+}}(\ddot{x}), 1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{+}}(\ddot{x}) ], [1-\mathbb{V}_{u \mathcal{F}(e)}^{I I^{+}}(\ddot{x}), 1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{+}}(\ddot{x}) ], \\ { [1-\mathbb{V}_{u \mathcal{F}(e)}^{I F^{+}}(\ddot{x}), 1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{+}}(\ddot{x}) ], [-1-\mathbb{V}_{u \mathcal{F}(e)}^{I T^{-}}(\ddot{x}), -1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{-}}(\ddot{x}) ], } \\ { [-1-\mathbb{V}_{u \mathcal{F}(e)}^{I I^{-}}(\ddot{x}), -1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{-}}(\ddot{x}) ], [-1-\mathbb{V}_{u \mathcal{F}(e)}^{I F^{-}}(\ddot{x}), -1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{-}}(\ddot{x}) ]\rangle: \forall e \in \mathcal{H}, \ddot{x} \in \omega \} }, \end{aligned}

    and

    \begin{aligned} \mathbb{F}^{B^c}(e) = &\left\{\mathbb{B}_{\mathcal{F}(e)}^{T^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{T^{-c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{-c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{-c}}(\ddot{x})\right\}- \\ = &\left\{1-\mathbb{B}_{\mathcal{F}(e)}^{T^{+}}(\ddot{x}), 1-\mathbb{B}_{\mathcal{F}(e)}^{I^{+}}(\ddot{x}), 1-\mathbb{B}_{\mathcal{F}(e)}^{F^{+}}(\ddot{x}), -1-\mathbb{B}_{\mathcal{F}(e)}^{T^{-}}(\ddot{x}), -1-\mathbb{B}_{\mathcal{F}(e)}^{I^{-}}(\ddot{x}), -1-\mathbb{B}_{\mathcal{F}(e)}^{F^{-}}(\ddot{x})\right\} . \end{aligned}

    Example 9. Referring to Example 6, we can write

    \begin{equation*} \begin{aligned} & (\mathbb{F}, \mathcal{H}) = \left\{\mathbb{F}\left(e_1\right)\right\} = \\ = & \left\{\frac{\ddot{x}_1}{\langle[0.2, 0.3]^{I T^{+}}, [0.3, 0.5]^{I I^{+}}, [0.4, 0.6]^{I F^{+}}, [-0.77, -0.5]^{I T^{-}}, [-0.9, -0.3]^{I I^{-}}, [-0.4, -0.4]^{I F^{-}}\rangle, (0.3, 0.4, 0.5, -0.6, -0.44, -0.3)}, \right. \\ & \left.\frac{\ddot{x}_2}{\langle[0.22, 0.45]^{I T^{+}}, [0.4, 0.6]^{I I^{+}}, [0.4, 0.6]^{I F^{+}}, [-0.2, -0.1]^{I T^{-}}, [-0.4, -0.3]^{I I^{-}}, [-0.7, -0.4]^{I F^{-}}\rangle, (0.3, 0.6, 0.5, -0.2, -0.7, -0.5)}\right\} . \end{aligned} \end{equation*}

    By using Definition 24, the complement of the \operatorname{CBNSS}(\mathbb{F}, \mathcal{H}) is

    \begin{equation*} \begin{aligned} & (\mathbb{F}, \mathcal{H})^c = \left\{\mathbb{F}^c\left(e_1\right)\right\} = \\ & \left\{\frac{\ddot{x}_1}{\langle[0.7, 0.8]^{I T^{+}}, [0.5, 0.7]^{I I^{+}}, [0.4, 0.6]^{I F^{+}}, [-0.5, -0.23]^{I T^{-}}, [-0.7, -0.1]^{I I^{-}}, [-0.6, -0.6]^{I F^{-}}\rangle, (0.7, 0.6, 0.5, -0.4, -0.56, -0.7)}, \right. \\ & \left.\frac{\ddot{x}_2}{\langle[0.55, 0.78]^{I T^{+}}, [0.4, 0.6]^{I I^{+}}, [0.4, 0.6]^{I F^{+}}, [-0.9, -0.8]^{I T^{-}}, [-0.7, -0.6]^{I I^{-}}, [-0.6, -0.3]^{I F^{-}}\rangle, (0.7, 0.4, 0.5, -0.8, -0.3, -0.5)}\right\} . \end{aligned} \end{equation*}

    Theorem 5. If (\mathbb{F}, \mathcal{H}) is a CBNSSs over \omega , then \left((\mathbb{F}, \mathcal{H})^c\right)^c = (\mathbb{F}, \mathcal{H}) .

    Proof. Suppose that (\mathbb{F}, \mathcal{H}) is a CBNSSs over \omega . The complement (\mathbb{F}, \mathcal{H}) , denoted by (\mathbb{F}, \mathcal{H})^c = \left(\mathbb{F}^c, \neg \mathcal{H}\right) , is defined as:

    \begin{aligned} (\mathbb{F}, \mathcal{H})^c = \left\{\mathbb{F}^c(e) \mid e \in \mathcal{H}\right\} = \left\{\langle e, \mathbb{F}^{V c}(e), \mathbb{F}^{B^c}(e)\rangle: e \in \neg \mathcal{H}\right\} \\ = \left\{\langle\mathbb{V}_{\mathcal{F}(e)}^{c I T^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I I^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I F^{+}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I T^{-}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I I^{-}}(\ddot{x}), \mathbb{V}_{\mathcal{F}(e)}^{c I F^{-}}(\ddot{x})\rangle, \\ \left(\mathbb{B}_{\mathcal{F}(e)}^{T^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{T^{-c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{-c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{-c}}(\ddot{x})\right)\right\}\\ = \left\{\langle\ddot{x}, \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{c I T^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I T^{+}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{c I I^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I I^{+}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{c I F^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I F^{+}}(\ddot{x})\right], \\ \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{c I T^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I T^{-}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{c I I^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I I^{-}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{c I F^{-}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{c I F^{-}}(\ddot{x})\right]\rangle, \\ \left(\mathbb{B}_{\mathcal{F}(e)}^{T^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{+c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{T^{-c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{-c}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{-c}}(\ddot{x})\right): \forall e \in \mathcal{H}, \ddot{x} \in \omega\right\} \\ = \left\{\langle\ddot{x}, \left[1-\mathbb{V}_{u \mathcal{F}(e)}^{I T^{+}}(\ddot{x}), 1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{+}}(\ddot{x})\right], \left[1-\mathbb{V}_{u \mathcal{F}(e)}^{I I^{+}}(\ddot{x}), 1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{+}}(\ddot{x})\right], \\ {\left[1-\mathbb{V}_{u \mathcal{F}(e)}^{I F^{+}}(\ddot{x}), 1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{+}}(\ddot{x})\right], \left[-1-\mathbb{V}_{u \mathcal{F}(e)}^{I T^{-}}(\ddot{x}), -1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{-}}(\ddot{x})\right], } \\ \left[-1-\mathbb{V}_{u \mathcal{F}(e)}^{I I^{-}}(\ddot{x}), -1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{-}}(\ddot{x})\right], \left[-1-\mathbb{V}_{u \mathcal{F}(e)}^{I F^{-}}(\ddot{x}), -1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{-}}(\ddot{x})\right], \rangle \\ \left(1-\mathbb{B}_{\mathcal{F}(e)}^{T^{+}}(\ddot{x}), 1-\mathbb{B}_{\mathcal{F}(e)}^{I^{+}}(\ddot{x}), 1-\mathbb{B}_{\mathcal{F}(e)}^{F^{+}}(\ddot{x}), -1-\mathbb{B}_{\mathcal{F}(e)}^{T^{-}}(\ddot{x}), -1-\mathbb{B}_{\mathcal{F}(e)}^{I^{-}}(\ddot{x}), \\ -1-\mathbb{B}_{\mathcal{F}(e)}^{F^{-}}(\ddot{x})\right): \forall e \in \mathcal{H}, \ddot{x} \in \omega\right\} \text {. } \\ \end{aligned}

    Now let (\mathbb{F}, \mathcal{H})^c = (\mathcal{Q}, R) = \left(\mathbb{F}^c, \neg \mathcal{H}\right) . Then, we obtain the following:

    \begin{aligned} (Q, R)^c \\ = \left\{\langle\ddot{x}, \left[1-\left(1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{+}}(\ddot{x})\right), 1-\left(1-\mathbb{V}_{u \mathcal{F}(e)}^{I T^{+}}(\ddot{x})\right)\right], \left[1-\left(1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{+}}(\ddot{x})\right), 1-\left(1-\mathbb{V}_{u_{\mathcal{F}}(e)}^{I I^{+}}(\ddot{x})\right)\right], \\ {\left[1-\left(1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{+}}(\ddot{x})\right), 1-\left(1-\mathbb{V}_{u \mathcal{F}(e)}^{I F^{+}}(\ddot{x})\right)\right], \left[-1-\left(-1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{-}}(\ddot{x})\right), -1-\left(-1-\mathbb{V}_{u \mathcal{F}(e)}^{I T^{-}}(\ddot{x})\right)\right], } \\ \left[-1-\left(-1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{-}}(\ddot{x})\right), -1-\left(-1-\mathbb{V}_{u_{\mathcal{F}(e)}}^{I I^{-}}(\ddot{x})\right)\right], \left[-1-\left(-1-\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{-}}(\ddot{x})\right), -1-\left(-1-\mathbb{V}_{u_{\mathcal{F}(e)}}^{I F^{-}}(\ddot{x})\right)\right]\rangle \\ , \left(1-\left(1-\mathbb{B}_{\mathcal{F}(e)}^{T^{+}}(\ddot{x})\right), 1-\left(1-\mathbb{B}_{\mathcal{F}(e)}^{I^{+}}(\ddot{x})\right), 1-\left(1-\mathbb{B}_{\mathcal{F}(e)}^{F^{+}}(\ddot{x})\right), -1-\left(-1-\mathbb{B}_{\mathcal{F}(e)}^{T^{-}}(\ddot{x})\right), \\ -1-\left(-1-\mathbb{B}_{\mathcal{F}(e)}^{I^{-}}(\ddot{x})\right), -1-\left(-1-\mathbb{B}_{\mathcal{F}(e)}^{F^{-}}(\ddot{x})\right)\right): \forall e \in \mathcal{H}, \ddot{x} \in \omega\right\} \\ = \left\{\langle\ddot{x}, \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{I T^{+}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{I I^{+}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{+}}(\ddot{x}), \mathbb{V}_{u \mathcal{F}(e)}^{I F^{+}}(\ddot{x})\right] \\ \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I T^{-}}(\ddot{x}), \mathbb{V}_{u_{\mathcal{F}}(e)}^{I T^{-}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I I^{-}}(\ddot{x}), \mathbb{V}_{u_{\mathcal{F}}(e)}^{I I^{-}}(\ddot{x})\right], \left[\mathbb{V}_{\ell \mathcal{F}(e)}^{I F^{-}}(\ddot{x}), \mathbb{V}_{u_{\mathcal{F}(e)}}^{I F^{-}}(\ddot{x})\right]\rangle \\ , \left(\mathbb{B}_{\mathcal{F}(e)}^{T^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{+}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{T^{-}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{I^{-}}(\ddot{x}), \mathbb{B}_{\mathcal{F}(e)}^{F^{-}}(\ddot{x})\right): \forall e \in \mathcal{H}, \ddot{x} \in \omega\right\} \\ = (\mathbb{F}, \mathcal{H}) . \end{aligned}

    Definition 25. The union of two CBNSSs (\mathbb{F}, \mathcal{H}) = \{\mathbb{F}(e) \mid e \in \mathcal{H}\} = \left\{\langle e, \mathbb{F}^V(e), \mathbb{F}^B(e)\rangle: e \in \mathcal{H}\right\} and (\mathbb{G}, \mathcal{T}) = \{\mathbb{G}(e) \mid e \in \mathcal{T}\} = \left\{\langle e, \mathbb{G}^V(e), \mathbb{G}^B(e)\rangle: e \in \mathcal{T}\right\} over \omega , denoted by (\mathbb{F}, \mathcal{H}) \tilde{\cup}(\mathbb{G}, \mathcal{T}) , is a \operatorname{CBNSS}(\mathcal{U}, \mathcal{S}) , where \mathcal{S} = \mathcal{H} \cup \mathcal{T} ,

    \mathcal{U}^V(e) = \left\{\begin{array}{cc} \mathbb{F}^V(e) & { if }~~ e \in \mathcal{H}-\mathcal{T}, \\ \mathbb{G}^V(e) & { if }~~ e \in \mathcal{T}-\mathcal{H}, \\ \mathbb{F}^V(e) \cup \mathbb{G}^V(e) & { if }~~ e \in \mathcal{H} \cap \mathcal{T}, \end{array}\right.

    and

    \mathcal{U}^B(e) = \left\{\begin{array}{cc} \mathbb{F}^B(e) & { if }~~ e \in \mathcal{H}-\mathcal{T}, \\ \mathbb{G}^B(e) & { if }~~ e \in \mathcal{T}-\mathcal{H}, \\ \mathbb{F}^B(e) \cup \mathbb{G}^B(e) & { if }~~ e \in \mathcal{H} \cap \mathcal{T}, \end{array}\right.

    \forall e \in \mathcal{S} .

    We write (\mathcal{U}, \mathcal{S}) = (\mathbb{F}, \mathcal{H}) \tilde{\cup}(\mathbb{G}, \mathcal{T}) , where

    \mathcal{U}(e) = \left\{\mathcal{U}^V(e), \mathcal{U}^B(e)\right\} = \left\{\left[\mathbb{F}^V(e) \cup \mathbb{G}^V(e)\right], \left[\mathbb{F}^B(e) \cup \mathbb{G}^B(e)\right]\right\} .

    Definition 26. The intersection of two CBNSSs

    (\mathbb{F}, \mathcal{H}) = \{\mathbb{F}(e) \mid e \in \mathcal{H}\} = \left\{\langle e, \mathbb{F}^V(e), \mathbb{F}^B(e)\rangle: e \in \mathcal{H}\right\} ~~ { and }

    (\mathbb{G}, \mathcal{T}) = \{\mathbb{G}(e) \mid e \in \mathcal{T}\} = \left\{\langle e, \mathbb{G}^V(e), \mathbb{G}^B(e)\rangle: e \in \mathcal{T}\right\} over \omega , denoted by (\mathbb{F}, \mathcal{H}) \tilde{\cap}(\mathbb{G}, \mathcal{T}) , is a \operatorname{CBNSS}(\mathcal{U}, \mathcal{S}) , where \mathcal{S} = \mathcal{H} \cup \mathcal{T} ,

    \mathcal{U}^V(e) = \left\{\begin{array}{cc} \mathbb{F}^V(e) & { if }~~ e \in \mathcal{H}-\mathcal{T}, \\ \mathbb{G}^V(e) & { if }~~ e \in \mathcal{T}-\mathcal{H}, \\ \mathbb{F}^V(e) \cap \mathbb{G}^V(e) & { if }~~ e \in \mathcal{H} \cap \mathcal{T}, \end{array}\right.

    and

    \mathcal{U}^B(e) = \left\{\begin{array}{cc} \mathbb{F}^B(e) & { if }~~ e \in \mathcal{H}-\mathcal{T}, \\ \mathbb{G}^B(e) & { if }~~ e \in \mathcal{T}-\mathcal{H}, \\ \mathbb{F}^B(e) \cap \mathbb{G}^B(e) & { if }~~ e \in \mathcal{H} \cap \mathcal{T} . \end{array}\right.

    \forall e \in \mathcal{S} .

    We write (\mathcal{U}, \mathcal{S}) = (\mathbb{F}, \mathcal{H}) \tilde{\cap}(\mathbb{G}, \mathcal{T}) , where

    \mathcal{U}(e) = \left\{\mathcal{U}^V(e), \mathcal{U}^B(e)\right\} = \left\{\left[\mathbb{F}^V(e) \cap \mathbb{G}^V(e)\right], \left[\mathbb{F}^B(e) \cap \mathbb{G}^B(e)\right]\right\} .

    Example 10. For \omega = \{\ddot{x}_1, \ddot{x}_2\} and parameters \{e_1, e_2, e_3\} , let (\mathcal{F}, \mathcal{H}) and (\mathcal{G}, \mathcal{T}) be CBNSSs in \omega with the tabular representations in Tables 6 and 7, respectively.

    Table 6.  Tabular representation of the CBNSS (\mathcal{F}, \mathcal{H}) .
    (\mathcal{F}, \mathcal{H}) e_1 e_3
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.5]^{I T^{+}}, &[0.3, 0.55]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.91, -0.3]^{I I^{-}}, &[-0.43, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.12, 0.4, 0.52, -0.6, -0.45, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.1, 0.5]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.72]^{I F^{+}}, &[-0.6, -0.4]^{I T^{-}} \\ [-0.73, -0.3]^{I I^{-}}, &[-0.32, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.12, 0.7, 0.8, -0.7, -0.2, -0.5\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.41]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.62]^{I F^{+}}, &[-0.3, -0.1]^{I T^{-}} \\ [-0.4, -0.3]^{I I^{-}}, &[-0.75, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.4, 0.6, 0.7, -0.2, -0.2, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.4]^{I T^{+}}, &[0.4, 0.5]^{I I^{+}} \\ [0.8, 0.85]^{I F^{+}}, &[-0.52, -0.3]^{I T^{-}} \\ [-0.64, -0.6]^{I I^{-}}, &[-0.8, -0.8]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.54, 0.64, 0.72, -0.5, -0.4, -0.44\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV
    Table 7.  Tabular representation of the CBNSS (G, T) .
    (G, T) e_1 e_2 e_3
    \ddot{x}_1 \left[\begin{array}{l} \left\{ \begin{aligned} [0.5, 0.5]^{I T^{+}}, &[0.22, 0.3]^{I I^{+}} \\ [0.2, 0.3]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.91, -0.55]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.4, 0.31, 0.51, -0.6, -0.525, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.3]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.9, -0.3]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.4, 0.5, -0.6, -0.44, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.12, 0.6]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.14, 0.5]^{I F^{+}}, &[-0.62, -0.4]^{I T^{-}} \\ [-0.73, -0.3]^{I I^{-}}, &[-0.38, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.2, 0.5, 0.4, -0.72, -0.315, -0.5\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.7]^{I T^{+}}, &[0.21, 0.5]^{I I^{+}} \\ [0.2, 0.4]^{I F^{+}}, &[-0.3, -0.1]^{I T^{-}} \\ [-0.4, -0.3]^{I I^{-}}, &[-0.7, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.34, 0.61, 0.55, -0.25, -0.45, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.44]^{I T^{+}}, &[0.5, 0.5]^{I I^{+}} \\ [0.3, 0.5]^{I F^{+}}, &[-0.22, -0.11]^{I T^{-}} \\ [-0.7, -0.32]^{I I^{-}}, &[-0.5, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.31, 0.48, 0.5, -0.62, -0.44, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.9]^{I T^{+}}, &[0.4, 0.6]^{I T^{+}} \\ [0.72, 0.8]^{I T^{+}}, &[-0.7, -0.3]^{I T^{-}} \\ [-0.65, -0.6]^{I I^{-}}, &[-0.87, -0.8]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.67, 0.46, 0.72, -0.55, -0.4, -0.4\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV

    Then, the union (\mathcal{U}, \mathcal{S}) = (\mathbb{F}, \mathcal{H}) \tilde{\cup}(\mathbb{G}, \mathcal{T}) and intersection (\mathcal{U}, \mathcal{S}) = (\mathbb{F}, \mathcal{H}) \mathfrak{\cap}(\mathbb{G}, \mathcal{T}) are given in Tables 8 and 9, respectively.

    Table 8.  Tabular representation of (U, S) = (F, H) \cup (G, T) .
    (U, S) e_1 e_2 e_3
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.5, 0.5]^{I T^{+}}, &[0.22, 0.3]^{I I^{+}} \\ [0.2, 0.3]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.91, -0.3]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.4, 0.355, 0.51, -0.6, -0.4875, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.3]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.9, -0.3]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.4, 0.5, -0.6, -0.44, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.12, 0.6]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.14, 0.5]^{I F^{+}}, &[-0.62, -0.4]^{I T^{-}} \\ [-0.73, -0.3]^{I I^{-}}, &[-0.32, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.2, 0.6, 0.4, -0.72, -0.257, -0.5\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.7]^{I T^{+}}, &[0.21, 0.5]^{I I^{+}} \\ [0.2, 0.4]^{I F^{+}}, &[-0.3, -0.1]^{I T^{-}} \\ [-0.4, -0.3]^{I I^{-}}, &[-0.7, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.4, 0.605, 0.55, -0.25, -0.325, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.44]^{I T^{+}}, &[0.5, 0.5]^{I I^{+}} \\ [0.3, 0.5]^{I F^{+}}, &[-0.22, -0.11]^{I T^{-}} \\ [-0.7, -0.32]^{I I^{-}}, &[-0.5, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.31, 0.48, 0.5, -0.62, -0.44, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.9]^{I T^{+}}, &[0.4, 0.5]^{I I^{+}} \\ [0.72, 0.8]^{I F^{+}}, &[-0.7, -0.3]^{I T^{-}} \\ [-0.64, -0.6]^{I I^{-}}, &[-0.8, -0.8]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.67, 0.55, 0.72, -0.55, -0.4, -0.4\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV
    Table 9.  Tabular representation of (U, S) = (F, H) \tilde{\cap} (G, T) .
    (U, S) e_1 e_2 e_3
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.5]^{I T^{+}}, &[0.3, 0.55]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.91, -0.55]^{I I^{-}}, &[-0.43, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.12, 0.355, 0.52, -0.6, -0.4875, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.3]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.9, -0.3]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.4, 0.5, -0.6, -0.44, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.1, 0.5]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.72]^{I F^{+}}, &[-0.6, -0.4]^{I T^{-}} \\ [-0.73, -0.3]^{I I^{-}}, &[-0.38, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.12, 0.6, 0.8, -0.7, -0.257, -0.5\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.41]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.62]^{I F^{+}}, &[-0.3, -0.1]^{I T^{-}} \\ [-0.4, -0.3]^{I I^{-}}, &[-0.75, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.4, 0.605, 0.7, -0.2, -0.325, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.44]^{I T^{+}}, &[0.5, 0.5]^{I I^{+}} \\ [0.3, 0.5]^{I F^{+}}, &[-0.22, -0.11]^{I T^{-}} \\ [-0.7, -0.32]^{I I^{-}}, &[-0.5, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.31, 0.48, 0.5, -0.62, -0.44, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.4]^{I T^{+}}, &[0.4, 0.6]^{I I^{+}} \\ [0.8, 0.85]^{I F^{+}}, &[-0.52, -0.3]^{I T^{-}} \\ [-0.65, -0.6]^{I I^{-}}, &[-0.87, -0.8]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.54, 0.55, 0.72, -0.5, -0.4, -0.44\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV

    Theorem 6. Let [(\mathbb{F}, \mathcal{H}) = \{\mathbb{F}(e) \mid e \in \mathcal{H}\}, (\mathbb{G}, \mathcal{H}) = \{\mathbb{G}(e) \mid e \in \mathcal{H}\}] \in \mathbb{C}_{B N S}^\omega . Then, the following are true.

    1. (\mathbb{F}, \mathcal{H}) \subseteq (\mathbb{G}, \mathcal{H}) \iff (\mathbb{F}, \mathcal{H}) \tilde{\cap} (\mathbb{G}, \mathcal{H}) = (\mathbb{F}, \mathcal{H}),

    2. (\mathbb{F}, \mathcal{H}) \subseteq (\mathbb{G}, \mathcal{H}) \iff (\mathbb{F}, \mathcal{H}) \tilde{\cup} (\mathbb{G}, \mathcal{H}) = (\mathbb{G}, \mathcal{H}).

    Proof.

    1. (\Longrightarrow) Suppose that (\mathbb{F}, \mathcal{H}) \subseteq(\mathbb{G}, \mathcal{H}) , then we have \mathbb{F}(e) \subseteq \mathbb{G}(e) for all e \in \mathcal{H} . Let (\mathbb{F}, \mathcal{H}) \cong(G G, \mathcal{H}) = (\mathcal{U}, \mathcal{H}) . \quad Since \mathcal{U}(e) = \mathbb{F}(e) \cap \mathbb{G}(e) = \mathbb{F}(e) for all e \in \mathcal{H} , then (\mathcal{U}, \mathcal{H}) = (\mathbb{F}, \mathcal{H}).

    (\Leftarrow) Suppose that (\mathbb{F}, \mathcal{H}) \tilde{\cap}(\mathbb{G}, \mathcal{H}) = (\mathbb{F}, \mathcal{H}) and let (\mathbb{F}, \mathcal{H}) \tilde{\cap}(\mathbb{G}, \mathcal{H}) = (\mathcal{U}, \mathcal{H}). \quad Since \mathcal{U}(e) = \mathbb{F}(e) \cap \mathbb{G}(e) for all e \in \mathcal{H} , we know that \mathbb{F}(e) \subseteq \mathbb{G}(e) for all e \in \mathcal{H} . Hence, (\mathbb{F}, \mathcal{H}) \subseteq(\mathbb{G}, \mathcal{H}) .

    2. (\Longrightarrow) Suppose that (\mathbb{F}, \mathcal{H}) \subseteq(\mathbb{G}, \mathcal{H}) , then we have \mathbb{F}(e) \subseteq \mathbb{G}(e) for all e \in \mathcal{H} . (\mathcal{U}, \mathcal{H}) = (\mathbb{G}, \mathcal{H}) .

    (\Leftarrow) Suppose that (\mathbb{F}, \mathcal{H}) \tilde{\cup}(\mathbb{G}, \mathcal{H}) = (\mathbb{G}, \mathcal{H}) and let (\mathbb{F}, \mathcal{H}) \tilde{\cup}(\mathbb{G}, \mathcal{H}) = (\mathcal{U}, \mathcal{H}) . Since \mathcal{U}(e) = \mathbb{F}(e) \cup \mathbb{G}(e) for all e \in \mathcal{H} , we know that \mathbb{F}(e) \subseteq \mathbb{G}(e) for all e \in \mathcal{H} . Hence, (\mathbb{F}, \mathcal{H}) \subseteq(\mathbb{G}, \mathcal{H}) .

    Similarity measures are essential for pattern recognition and clustering analysis, particularly in fuzzy soft sets. This section will introduce similarity measures for two CBNSSs based on the axioms of fuzzy soft sets [20], which will be applied in a pattern recognition context.

    Definition 27. Let \mathbb{S}_{C B N S S} be a mapping \mathbb{S}_{C B N S S}: \mathbb{C}_{B N S}^\omega \curlyeqprec \times \mathbb{C}_{B N S}^\omega \curlyeqprec \rightarrow [0, 1] , then the degree of similarity between \left(\mathbb{F}_1, \mathcal{H}\right) \in \mathbb{C}_{B N S}^\omega \curlyeqprec and \left(\mathbb{F}_2, \mathcal{H}\right) \in \mathbb{C}_{B N S}^\omega \curlyeqprec is defined as \mathbb{S}_{C B N S S}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right] , which satisfies the following properties:

    (\hat{P} 1) 0 \leq \mathbb{S}_{C B N S S}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right] \leq 1 ,

    (\hat{P} 2) \mathbb{S}_{C B N S S}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right] = \mathbb{S}_{C B N S S}\left[\left(\mathbb{F}_2, \mathcal{H}\right), \left(\mathbb{F}_1, \mathcal{H}\right)\right],

    (\hat{P} 3) \mathbb{S}_{ {CBNSS }}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right] = 1 \Longleftrightarrow\left(\mathbb{F}_1, \mathcal{H}\right) = \left(\mathbb{F}_2, \mathcal{H}\right) ,

    (\hat{P} 4) \mathbb{S}_{ {CBNSS }}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right] = 0 and \mathbb{S}_{ {CBNSS }}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_3, \mathcal{H}\right)\right] = 0 \quad\left(\mathbb{F}_3, \mathcal{H}\right) \in \mathbb{C}_{B N S}^\omega \curlyeqprec , then \mathbb{S}_{C B N S S}\left[\left(\mathbb{F}_2, \mathcal{H}\right), \left(\mathbb{F}_3, \mathcal{H}\right)\right] = 0 .

    Now, we introduce the formula to calculate the similarity between two CBNSSs as follows:

    Definition 28. Let \omega = \left\{\ddot{x}_1, \ddot{x}_2, \ldots, \ddot{x}_n\right\} be the universal set of elements and \hbar = \left\{e_1, e_2, \ldots, e_m\right\} be the universal set of parameters. \quad\left(\mathbb{F}_1, \mathcal{H}\right) = \left\{\mathbb{F}_1(e) \mid e \in \mathcal{H}\right\} = \left\{\langle e, \mathbb{F}_1^V(e), \mathbb{F}_1^B(e)\rangle: e \in \mathcal{H}\right\} and \left(\mathbb{F}_2, \mathcal{H}\right) = \left\{\mathbb{F}_2(e) \mid e \in \mathcal{H}\right\} = \left\{\langle e, \mathbb{F}_2^V(e), \mathbb{F}_2^B(e)\rangle: e \in \mathcal{H}\right\} are two families of CBNSSs in \omega . We define \mathbb{S}_{ {CBNSS }}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right] as follows:

    \mathbb{S}_{C B N S S}\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right] = \frac{1}{2 m} \sum\limits_{l = 1}^m\left[\mathbb{S}_{I B N S S}^l\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right]+\mathbb{S}_{B N S S}^l\left[\left(\mathbb{F}_1, \mathcal{H}\right), \left(\mathbb{F}_2, \mathcal{H}\right)\right]\right],

    where

    {S}^l_{{BNSS}}[(\mathbb{F}_1, \mathcal{H}), (\mathbb{F}_2, \mathcal{H})] =\\ \frac{ \sum _{j = 1}^n \sum _{i = 1}^m \left[ \begin{array}{c} \left[ \begin{array}{l} \min \left[ \mathbb{V}_{\ell F_1(e_i)}^{IT^+} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IT^+} (\ddot{x}_j) \right] + \min \left[ \mathbb{V}_{u F_1(e_i)}^{IT^+} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IT^+} (\ddot{x}_j) \right] \\ + \min \left[ \mathbb{V}_{\ell F_1(e_i)}^{II^+} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{II^+} (\ddot{x}_j) \right] + \min \left[ \mathbb{V}_{u F_1(e_i)}^{II^+} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{II^+} (\ddot{x}_j) \right] \\ + \min \left[ \mathbb{V}_{\ell F_1(e_i)}^{IF^+} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IF^+} (\ddot{x}_j) \right] + \min \left[ \mathbb{V}_{u F_1(e_i)}^{IF^+} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IF^+} (\ddot{x}_j) \right] \end{array} \right] \\ - \left[ \begin{array}{l} \min \left[ \mathbb{V}_{\ell F_1(e_i)}^{IT^-} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IT^-} (\ddot{x}_j) \right] + \min \left[ \mathbb{V}_{u F_1(e_i)}^{IT^-} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IT^-} (\ddot{x}_j) \right] \\ + \min \left[ \mathbb{V}_{\ell F_1(e_i)}^{II^-} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{II^-} (\ddot{x}_j) \right] + \min \left[ \mathbb{V}_{u F_1(e_i)}^{II^-} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{II^-} (\ddot{x}_j) \right] \\ + \min \left[ \mathbb{V}_{\ell F_1(e_i)}^{IF^-} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IF^-} (\ddot{x}_j) \right] + \min \left[ \mathbb{V}_{u F_1(e_i)}^{IF^-} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IF^-} (\ddot{x}_j) \right] \end{array} \right] \end{array} \right] }{ \sum _{j = 1}^n \sum _{i = 1}^m \left[ \begin{array}{c} \left[ \begin{array}{l} \max \left[ \mathbb{V}_{\ell F_1(e_i)}^{IT^+} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IT^+} (\ddot{x}_j) \right] + \max \left[ \mathbb{V}_{u F_1(e_i)}^{IT^+} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IT^+} (\ddot{x}_j) \right] \\ + \max \left[ \mathbb{V}_{\ell F_1(e_i)}^{II^+} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{II^+} (\ddot{x}_j) \right] + \max \left[ \mathbb{V}_{u F_1(e_i)}^{II^+} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{II^+} (\ddot{x}_j) \right] \\ + \max \left[ \mathbb{V}_{\ell F_1(e_i)}^{IF^+} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IF^+} (\ddot{x}_j) \right] + \max \left[ \mathbb{V}_{u F_1(e_i)}^{IF^+} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IF^+} (\ddot{x}_j) \right] \end{array} \right] \\ - \left[ \begin{array}{l} \max \left[ \mathbb{V}_{\ell F_1(e_i)}^{IT^-} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IT^-} (\ddot{x}_j) \right] + \max \left[ \mathbb{V}_{u F_1(e_i)}^{IT^-} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IT^-} (\ddot{x}_j) \right] \\ + \max \left[ \mathbb{V}_{\ell F_1(e_i)}^{II^-} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{II^-} (\ddot{x}_j) \right] + \max \left[ \mathbb{V}_{u F_1(e_i)}^{II^-} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{II^-} (\ddot{x}_j) \right] \\ + \max \left[ \mathbb{V}_{\ell F_1(e_i)}^{IF^-} (\ddot{x}_j), \mathbb{V}_{\ell F_2(e_i)}^{IF^-} (\ddot{x}_j) \right] + \max \left[ \mathbb{V}_{u F_1(e_i)}^{IF^-} (\ddot{x}_j), \mathbb{V}_{u F_2(e_i)}^{IF^-} (\ddot{x}_j) \right] \end{array} \right] \end{array} \right] },

    and

    {S}^l_{{BNSS}}[(\mathbb{F}_1, \mathcal{H}), (\mathbb{F}_2, \mathcal{H})] = \\ \frac{ \sum _{j = 1}^n \sum _{i = 1}^m \left[ \begin{array}{c} \left[ \begin{array}{l} \min \left[ \mathbb{B}^{T^+}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{T^+}_{F_2(e_i)}(\ddot{x}_j) \right] + \min \left[ \mathbb{B}^{I^+}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{I^+}_{F_2(e_i)}(\ddot{x}_j) \right] \\ + \min \left[ \mathbb{B}^{F^+}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{F^+}_{F_2(e_i)}(\ddot{x}_j) \right] \end{array} \right] \\ - \left[ \begin{array}{l} \min \left[ \mathbb{B}^{T^-}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{T^-}_{F_2(e_i)}(\ddot{x}_j) \right] + \min \left[ \mathbb{B}^{I^-}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{I^-}_{F_2(e_i)}(\ddot{x}_j) \right] \\ + \min \left[ \mathbb{B}^{F^-}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{F^-}_{F_2(e_i)}(\ddot{x}_j) \right] \end{array} \right] \end{array} \right] }{ \sum _{j = 1}^n \sum _{i = 1}^m \left[ \begin{array}{c} \left[ \begin{array}{l} \max \left[ \mathbb{B}^{T^+}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{T^+}_{F_2(e_i)}(\ddot{x}_j) \right] + \max \left[ \mathbb{B}^{I^+}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{I^+}_{F_2(e_i)}(\ddot{x}_j) \right] \\ + \max \left[ \mathbb{B}^{F^+}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{F^+}_{F_2(e_i)}(\ddot{x}_j) \right] \end{array} \right] \\ - \left[ \begin{array}{l} \max \left[ \mathbb{B}^{T^-}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{T^-}_{F_2(e_i)}(\ddot{x}_j) \right] + \max \left[ \mathbb{B}^{I^-}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{I^-}_{F_2(e_i)}(\ddot{x}_j) \right] \\ + \max \left[ \mathbb{B}^{F^-}_{F_1(e_i)}(\ddot{x}_j), \mathbb{B}^{F^-}_{F_2(e_i)}(\ddot{x}_j) \right] \end{array} \right] \end{array} \right] }.

    Then, {S}^c_{{BNSS}}[(\mathbb{F}_1, \mathcal{H}), (\mathbb{F}_2, \mathcal{H})] is a similarity measure between two CBNSSs (\mathbb{F}_1, \mathcal{H}) and (\mathbb{F}_2, \mathcal{H}) .

    This section presents a methodology for assessing similarity measures between two CBNSSs in pattern recognition. For example, determining if a person with specific symptoms has a certain disease can be framed as a supervised pattern recognition task. We construct an ideal CBNSS for the disease and one for the symptomatic individual. If the similarity measure between these CBNSSs is 0.55 or higher, it suggests a potential diagnosis of the disease.

    The algorithm of this method is as follows:

    \bf{Step 1.} To start, we construct an ideal CBNSS (\mathbb{F}, \mathcal{H}) = \langle\mathbb{F}^V(e), \mathbb{F}^B(e)\rangle for illness, which can be done with the help of a medical expert.

    \bf{Step 2.} Then, we construct CBNSSs \left(\mathbb{F}_l, \mathcal{H}\right) = \langle\mathbb{F}_l^V(e), \mathbb{F}_l^B(e)\rangle, l = 1, 2, \ldots, m , on \omega for ill person(s).

    \bf{Step 3.} The similarity measures between the ideal (\mathbb{F}, \mathcal{H}) = \langle\mathbb{F}^V(e), \mathbb{F}^B(e)\rangle for illness and the \left(\mathbb{F}_l, \mathcal{H}\right) = \langle\mathbb{F}_l^V(e), \mathbb{F}_l^B(e)\rangle, l = 1, 2, \ldots, m , for ill the person are calculated using the formula given in Definition 28.

    \bf{Step 4.} If \mathbb{S}_{CBNSS}\left[(\mathbb{F}, \mathcal{H}), \left(\mathbb{F}_l, \mathcal{H}\right)\right] \geq 0.55 , then the ill person is possibly suffering from the diseases, and if \mathbb{S}_{CBNSS}\left[(\mathbb{F}, \mathcal{H}), \left(\mathbb{F}_l, \mathcal{H}\right)\right] < 0.55 , then the ill person is possibly not suffering from the diseases.

    Example 11. This section presents a hypothetical numerical example derived from the aforementioned decision-making methodology to demonstrate the potential use of the similarity measure of CBNSS in addressing a medical diagnostic issue. The aim of this problem is to ascertain whether an individual exhibiting certain visible symptoms is afflicted with diabetes or is not suffering from the condition.

    Let \omega = \left\{\ddot{x}_1 = \right. Highdiabetes, \ddot{x}_2 = lowdiabetes \} be the reference set and \omega = \left\{e_1 = \right. sweating, e_2 = headache \} be a set of certain visible symptoms.

    [Step 1] To construct an ideal \operatorname{CBNSS}(\mathbb{F}, \mathcal{H}) = \langle\mathbb{F}^V(e), \mathbb{F}^B(e)\rangle for illness (diabetes), one can seek the assistance of a medical expert, as demonstrated in Table 10.

    Table 10.  Tabular representation of CBNSS (\mathcal{F}, \mathcal{H}) for diabetes.
    (\mathcal{F}, \mathcal{H}) e_1 e_2
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.3]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.9, -0.3]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.4, 0.5, -0.6, -0.44, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.1, 0.5]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.7]^{I F^{+}}, &[-0.6, -0.4]^{I T^{-}} \\ [-0.7, -0.3]^{I I^{-}}, &[-0.3, -0.3]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.1, 0.7, 0.9, -0.7, -0.2, -0.5\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.22, 0.45]^{I T^{+}}, &[0.4, 0.6]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.2, -0.1]^{I T^{-}} \\ [-0.4, -0.3]^{I I^{-}}, &[-0.7, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.6, 0.5, -0.2, -0.7, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.4]^{I T^{+}}, &[0.4, 0.5]^{I I^{+}} \\ [0.7, 0.8]^{I F^{+}}, &[-0.7, -0.2]^{I T^{-}} \\ [-0.6, -0.6]^{I I^{-}}, &[-0.8, -0.8]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.5, 0.6, 0.7, -0.5, -0.4, -0.4\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV

    [Step 2] Construct CBNSSs for ill persons (patients) X and Y, as illustrated in Tables 11 and 12.

    Table 11.  Tabular representation of CBNSS (\mathcal{F}_1, \mathcal{H}) for patient X .
    (\mathcal{F}_1, \mathcal{H}) e_1 e_2
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.5]^{I T^{+}}, &[0.3, 0.55]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.91, -0.3]^{I I^{-}}, &[-0.43, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.12, 0.4, 0.52, -0.6, -0.45, -0.3\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.1, 0.5]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.72]^{I F^{+}}, &[-0.6, -0.4]^{I T^{-}} \\ [-0.73, -0.3]^{I I^{-}}, &[-0.32, -0.30]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.12, 0.7, 0.8, -0.7, -0.2, -0.5\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.41]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.62]^{I F^{+}}, &[-0.3, -0.1]^{I T^{-}} \\ [-0.4, -0.3]^{I I^{-}}, &[-0.75, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.4, 0.6, 0.7, -0.2, -0.2, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.4]^{I T^{+}}, &[0.4, 0.5]^{I I^{+}} \\ [0.8, 0.85]^{I F^{+}}, &[-0.52, -0.3]^{I T^{-}} \\ [-0.64, -0.6]^{I I^{-}}, &[-0.8, -0.8]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.54, 0.64, 0.72, -0.5, -0.4, -0.44\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV
    Table 12.  Tabular representation of CBNSS (\mathcal{F}_2, \mathcal{H}) for patient Y .
    (\mathcal{F}_2, \mathcal{H}) e_1 e_2
    \ddot{x}_1 \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.3]^{I T^{+}}, &[0.11, 0.22]^{I I^{+}} \\ [0.1, 0.2]^{I F^{+}}, &[-0.88, -0.77]^{I T^{-}} \\ [-0.91, -0.8]^{I I^{-}}, &[-0.4, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.4, 0.31, 0.51, -0.8, -0.525, -0.9\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.2, 0.3]^{I T^{+}}, &[0.3, 0.5]^{I I^{+}} \\ [0.4, 0.6]^{I F^{+}}, &[-0.77, -0.5]^{I T^{-}} \\ [-0.9, -0.7]^{I I^{-}}, &[-0.8, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.3, 0.4, 0.5, -0.6, -0.99, -0.7\right\} \end{array} \right]
    \ddot{x}_2 \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.7]^{I T^{+}}, &[0.21, 0.5]^{I I^{+}} \\ [0.2, 0.4]^{I F^{+}}, &[-0.8, -0.3]^{I T^{-}} \\ [-0.5, -0.4]^{I I^{-}}, &[-0.7, -0.7]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.34, 0.61, 0.55, -0.8, -0.45, -0.5\right\} \end{array} \right] \left[\begin{array}{c} \left\{ \begin{aligned} [0.3, 0.44]^{I T^{+}}, &[0.5, 0.5]^{I I^{+}} \\ [0.3, 0.5]^{I F^{+}}, &[-0.8, -0.5]^{I T^{-}} \\ [-0.7, -0.7]^{I I^{-}}, &[-0.49, -0.4]^{I F^{-}} \end{aligned} \right\}\\ \left\{0.31, 0.48, 0.5, -0.62, -0.44, -0.5\right\} \end{array} \right]

     | Show Table
    DownLoad: CSV

    [Step 3] By Definition 28, similarity measure between (\mathbb{F}, \mathcal{H}) and \left(\mathbb{F}_1, \mathcal{H}\right) is given by \mathbb{S}_{ {CBNSS }}\left[(\mathbb{F}, \mathcal{H}), \left(\mathbb{F}_1, \mathcal{H}\right)\right] = 0.507 and similarity measure between (\mathbb{F}, \mathcal{H}) and \left(\mathbb{F}_2, \mathcal{H}\right) is given by \mathbb{S}_{ {CBNSS }}\left[(\mathbb{F}, \mathcal{H}), \left(\mathbb{F}_2, \mathcal{H}\right)\right] = 0.6 .

    [Step 4] Since \mathbb{S}_{ {CBNSS }}\left[(\mathbb{F}, \mathcal{H}), \left(\mathbb{F}_2, \mathcal{H}\right)\right] = 0.6 > 0.55 , therefore patient Y is possibly suffering from diseases. Again, since \mathbb{S}_{ {CBNSS }}\left[(\mathbb{F}, \mathcal{H}), \left(\mathbb{F}_1, \mathcal{H}\right)\right] = 0.507 < 0.55 , therefore patient X is possibly not suffering from diseases.

    This research has introduced CBNSs, a novel framework that significantly advances the capabilities of BNSs in addressing uncertainty and vagueness within data analysis. By integrating bipolarity and cubic sets, CBNSs offer a more comprehensive and accurate representation of information, outperforming existing methods in terms of accuracy, flexibility, and applicability.

    We have thoroughly investigated the structural properties of CBNSs and defined key operations related to them. Additionally, we have introduced CBNSSs as a flexible parameterization tool. To validate the practical utility of CBNSs, we conducted a case study in decision-making, demonstrating their effectiveness in handling complex scenarios with uncertainty and vagueness. While CBNSs offer significant advantages, it is important to acknowledge potential limitations. The applicability of CBNSs may be constrained by the availability and quality of data. Furthermore, the computational complexity of CBNS operations might be a consideration for large-scale applications.Future research could explore extending CBNSs (investigating potential extensions) or modifications of CBNSs to address specific domains or challenges, computational efficiency (developing more efficient algorithms for CBNS operations), and real-world applications (applying CBNSs to a wider range of real-world problems and domains).

    Khulud Fahad Bin Muhaya: Conceptualization, methodology, investigation and writing-original draft; Kholood Alsager: Writing-review and editing. All authors have read and approved the final version of the manuscript for publication.

    The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

    The authors declare that they have no competing interests.



    [1] M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79.
    [2] N. Yousfi, K. Hattaf and A. Tridane, Modeling the adaptive immune response in HBV infection, J. Math. Biol., 63 (2011), 933-957.
    [3] L. Gibelli, A. Elaiw, M. A. Alghamdi, et al., Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Math. Models Methods Appl. Sci., 27 (2017), 617-640.
    [4] A. M. Elaiw and M. A. Alshaikh, Stability of discrete-time HIV dynamics models with three categories of infected CD4+ T-cells, Adv. Differ. Equ., 2019 (2019), 407.
    [5] F. Zhang, J. Li, C. Zheng, et al., Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 464-476.
    [6] N. Bellomo and Y. Tao, Stabilization in a chemotaxis model for virus infection, Discrete Contin. Dyn. syst. Ser. S, 13 (2020), 105-117.
    [7] H. Shu, L. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL imune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302.
    [8] A. M. Elaiw, A. A. Raezah and S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Differ. Equ., 2018 (2018), 414.
    [9] M. Y. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, Nonlinear Anal. Real World Appl., 13 (2012), 1080-1092.
    [10] J. Pang and J-An Cui, Analysis of a hepatitis B viral infection model with immune response delay, Int. J. Biomath., 10 (2017).
    [11] C. Vargas-De-Leon, Global properties for a virus dynamics model with lytic and nonlytic immune responses, and nonlinear immune attack rates, J. Biol. Syst., 22 (2014), 449-462.
    [12] A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 51 (2005), 247-267.
    [13] A. M. Elaiw and M. A. Alshaikh, Stability analysis of a general discrete-time pathogen infection model with humoral immunity, J. Difference Equ. Appl., 2019 (2019), 1-24.
    [14] A. M. Elaiw, E. Kh. Elnahary and A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Difference Equ., 2018 (2018), 85.
    [15] T. Wang, Z. Hu and F. Liao, Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, J. Math. Anal. Appl., 411 (2014) 63-74.
    [16] A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl., 26 (2015), 161-190.
    [17] H. Miao, Z. Teng, C. Kang, et al., Stability analysis of a virus infection model with humoral immunity response and two time delays, Math. Methods Appl. Sci., 39 (2016), 3434-3449.
    [18] D. Wodarz, Killer cell dynamics: Mthematical and computational approaches to immunology, Springer Verlag, New York, 2007.
    [19] J. Wang, J. Pang, T. Kuniya, et al., Global threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays, Appl. Math. Comput., 241 (2014), 298-316.
    [20] A. Rezounenko, Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses, Discrete Contin. Dyn. Syst.Ser. B, 22 (2017), 1547-156.
    [21] Y. Yan and W. Wang, Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst.Ser. B, 17 (2012), 401-416.
    [22] P. Dubey, U. S. Dubey and B. Dubey, Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection, Math. Comput. Simul., 144 (2018), 120- 137.
    [23] A. M. Elaiw and N. H. AlShamrani, Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays, Math. Methods Appl. Sci., 36 (2018), 125-142.
    [24] R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425-444.
    [25] X. Lai and X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-tocell transmission, SIAM J. Appl. Math., 74 (2014), 898-917.
    [26] H. Pourbashash, S. S. Pilyugin, P. De Leenheer, et al., Global analysis of within host virus models with cell-to-cell viral transmission, Discrete Contin. Dyn. Syst.Ser. B, 10 (2014) 3341-3357.
    [27] J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal. Real World Appl., 34 (2017), 75-96.
    [28] S. S. Chen, C. Y. Cheng and Y. Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., 442 (2016), 642-672.
    [29] J. Lin, R. Xu and X. Tian, Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput., 315 (2017), 516-530.
    [30] A. M. Elaiw, A. Almatrafi, A. D. Hobiny, et al., Global properties of a general latent pathogen dynamics model with delayed pathogenic and cellular infections, Discrete Dyn. Nat. Soc., 2019 (2019).
    [31] A. D. Hobiny, A. M. Elaiw and A. Almatrafi, Stability of delayed pathogen dynamics models with latency and two routes of infection, Adv. Difference Equ., 2018 (2018), 276.
    [32] Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183-191.
    [33] A. M. Elaiw and A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Math. Methods Appl. Sci., 40 (2017), 5863-5880.
    [34] S. Pan and S. P. Chakrabarty, Threshold dynamics of HCV model with cell-to-cell transmission and a non-cytolytic cure in the presence of humoral immunity, Commun. Nonlinear Sci. Numer. Simul., 61 (2018), 180-197.
    [35] T. Guo, Z. Qiu and L. Rong, Analysis of an HIV model with immune responses and cell-to-cell transmission, Bull. Malays. Math. Sci. Soc., 2018 (2018), 1-27.
    [36] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708.
    [37] P. Georgescu and Y. H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math., 67 (2006), 337-353.
    [38] A. M. Elaiw and N. H. AlShamrani, Stability of a general delay-distributed virus dynamics model with multi-staged infected progression and immune response, Math. Methods Appl. Sci., 40 (2017), 699-719.
    [39] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883.
    [40] A. M. Elaiw and S. A. Azoz, Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math. Methods Appl. Sci., 36 (2013), 383-394.
    [41] A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal. Real World Appl., 11 (2010), 2253-2263.
    [42] A. M. Elaiw and N. A. Almuallem, Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating target cells, Appl. Math. Comput., 265 (2015), 1067- 1089.
    [43] A. M. Elaiw and N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, Math. Methods Appl. Sci., 39 (2016), 4-31.
    [44] A. M. Elaiw, I. A. Hassanien and S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49 (2012), 779-794.
    [45] A. M. Elaiw, Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynam., 69 (2012), 423-435.
    [46] J. K. Hale and S. V. Lunel, Introduction to functional differential equations, Springer-Verlag, New York, 1993.
    [47] X. Wang and L. Rong, HIV low viral load persistence under treatment: Insights from a model of cell-to-cell viral transmission, Appl. Math. Lett., 94 (2019), 44-51.
    [48] M. Y. Li and H. Shu, Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 70 (2010), 2434-2448.
    [49] A. M. Elaiw and E. Kh. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays, Mathematics, 7 (2019), 157.
    [50] A. M. Elaiw, S. F. Alshehaiween and A. D. Hobiny, Global properties of delay-distributed HIV dynamics model including impairment of B-cell functions, Mathematics, 7 (2019), 837.
    [51] C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-distributed or discrete, Nonlinear Anal. Real World Appl., 11 (2010), 55-59.
    [52] C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610.
    [53] N. Dixit and A. Perelson, Multiplicity of human immunodeficiency virus infections in lymphoid tissue, J. Virol., 78 (2004), 8942-8945.
    [54] C. C. McCluskey, Delay versus age-of-infection-Global stability, Appl. Math. Comput., 217 (2010), 3046-3049.
    [55] P. Magal, C. C. McCluskey and G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109-1140.
    [56] C. Browne, Immune response in virus model structured by cell infection-age, Math. Biosci. Eng., 13 (2016), 887-909.
    [57] X. Tian, R. Xu and J. Lin, Mathematical analysis of an age-structured HIV-1 infection model with CTL immune response, Math. Biosci. Eng., 16 (2019), 7850-7882.
    [58] A. M. Elaiw and A. D. AlAgha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), 124758.
    [59] A. Herz, S. Bonhoeffer, R. M. Anderson, et al., Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc.Natl. Acad. Sci., 93 (1996), 7247-7251.
  • This article has been cited by:

    1. Gözde Yaylalı Umul, A multi-attribute group decision-making algorithm based on soft intervals that considers the priority rankings of group members on attributes of objects, along with some applications, 2025, 10, 2473-6988, 4709, 10.3934/math.2025217
    2. Sheikh Rashid, Tahir Abbas, Muhammad Gulistan, Muhammad Usman Jamil, Muhammad M. Al-Shamiri, Decision analysis with known and unknown weights in the complex N-cubic fuzzy environment: An application of accident prediction models, 2025, 10, 2473-6988, 10359, 10.3934/math.2025472
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3888) PDF downloads(463) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog