
Citation: Diego Fasoli, Stefano Panzeri. Mathematical studies of the dynamics of finite-size binary neural networks: A review of recent progress[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 8025-8059. doi: 10.3934/mbe.2019404
[1] | Chun-Chao Yeh, Ke-Jia Jhang, Chin-Chun Chang . An intelligent indoor positioning system based on pedestrian directional signage object detection: a case study of Taipei Main Station. Mathematical Biosciences and Engineering, 2020, 17(1): 266-285. doi: 10.3934/mbe.2020015 |
[2] | Xiaohao Chen, Maosheng Fu, Zhengyu Liu, Chaochuan Jia, Yu Liu . Harris hawks optimization algorithm and BP neural network for ultra-wideband indoor positioning. Mathematical Biosciences and Engineering, 2022, 19(9): 9098-9124. doi: 10.3934/mbe.2022423 |
[3] | Mingju Chen, Hongyang Li, Hongming Peng, Xingzhong Xiong, Ning Long . HPCDNet: Hybrid position coding and dual-frquency domain transform network for low-light image enhancement. Mathematical Biosciences and Engineering, 2024, 21(2): 1917-1937. doi: 10.3934/mbe.2024085 |
[4] | Diguo Zhai, Xinqi Bao, Xi Long, Taotao Ru, Guofu Zhou . Precise detection and localization of R-peaks from ECG signals. Mathematical Biosciences and Engineering, 2023, 20(11): 19191-19208. doi: 10.3934/mbe.2023848 |
[5] | Guohui Zhang, Gulbahar Tohti, Ping Chen, Mamtimin Geni, Yixuan Fan . SFEMM: A cotton binocular matching method based on YOLOv7x. Mathematical Biosciences and Engineering, 2024, 21(3): 3618-3630. doi: 10.3934/mbe.2024159 |
[6] | Kezhou Chen, Xu Lu, Rongjun Chen, Jun Liu . Wireless wearable biosensor smart physiological monitoring system for risk avoidance and rescue. Mathematical Biosciences and Engineering, 2022, 19(2): 1496-1514. doi: 10.3934/mbe.2022069 |
[7] | Bin Zhang, Linkun Sun, Yingjie Song, Weiping Shao, Yan Guo, Fang Yuan . DeepFireNet: A real-time video fire detection method based on multi-feature fusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7804-7818. doi: 10.3934/mbe.2020397 |
[8] | Yongmei Ren, Xiaohu Wang, Jie Yang . Maritime ship recognition based on convolutional neural network and linear weighted decision fusion for multimodal images. Mathematical Biosciences and Engineering, 2023, 20(10): 18545-18565. doi: 10.3934/mbe.2023823 |
[9] | Wen Li, Xuekun Yang, Guowu Yuan, Dan Xu . ABCNet: A comprehensive highway visibility prediction model based on attention, Bi-LSTM and CNN. Mathematical Biosciences and Engineering, 2024, 21(3): 4397-4420. doi: 10.3934/mbe.2024194 |
[10] | Yujun Zhang, Yufei Wang, Shuijia Li, Fengjuan Yao, Liuwei Tao, Yuxin Yan, Juan Zhao, Zhengming Gao . An enhanced adaptive comprehensive learning hybrid algorithm of Rao-1 and JAYA algorithm for parameter extraction of photovoltaic models. Mathematical Biosciences and Engineering, 2022, 19(6): 5610-5637. doi: 10.3934/mbe.2022263 |
Along with the rapid development of biology and biotechnology, the regulation and interaction of mRNAs and the produced proteins in genetic regulatory networks (GRNs) have attracted great research attention, and various related applications have been available to address the burgeoning areas [1,2,3]. Furthermore, much effort has been devoted to the biochemical dynamics of GRNs, which can better describe the expression mechanisms of genes from a dynamical system perspective [4,5]. The dynamical behaviors of GRNs can considerably provide deeper insights into the processing conditions. Generally speaking, differential equation and Boolean network models are employed and investigated to characterize complex properties of mRNA and protein concentrations in GRNs [6,7,8]. In particular, biological evidences have proved the existences of jumping mechanisms of GRNs. This means that the dynamical parameters of GRNs are varying according to different modes rather than kept constant owing to random abrupt changes during gene expressions. This means that the parameters of GRNs should be modified according to certain modes. With this context, mathematical models of Markovian jumping systems with Markov chains have been widely employed to mimic the intrinsic variate of GRNs [9,10,11]. As a result, many remarkable results on Markovian jumping GRNs have been reported in the literature, which includes stochastic state estimation [12], stability [13] and synchronization issues [14].
In addition, the accessibility of true jumping mode information of GRNs has also drawn much interest, especially for some actual applications. It is noteworthy that the exact mode information of GRNs in practical applications is always difficult or expensive to acquire, which is mostly because of detection delays or unpredictable disturbances during the transcription and translation processes [15,16]. Especially, the mode information characterized by Markov chains for state estimation or control issues is also challenging to main synchronous design. On the other hand, nonsynchronous analysis and synthesis methods are more meaningful and practical for Markovian jumping GRNs with mode-dependent designs. Lately, hidden Markovian jumping systems have been initially investigated by external mode observations and encouraging results of the so-called nonsynchronous designs have been reported accordingly. More precisely, on the basis of conditional probability between true modes and observed modes, the observed models for mode information are effectively utilized without synchronous mode operations [17,18,19].
On another active research line, distributed strategies for control systems have been extensively developed due to their increasing requirements for efficiency and robustness in engineering areas. Compared with traditional control techniques, the distributed architecture can process and fuse the information via multiple sensors with each domain data. With respect to its advances, many remarkable analysis and synthesis of distributed control systems can be found in recent works [20,21,22]. To name a few, in [23], a novel distributed-observer-based distributed control design is developed for affine nonlinear systems and is effectively applied to interconnected cruise control of intelligent vehicles. In [24], the distributed observer and controller design issue is discussed for spatially interconnected systems. In [25], the distributed state observers and disturbance observers are proposed for cooperative output regulation of LTI system to ensure the reference tracking properly. In [26], a distributed Nash equilibrium seeking scheme is designed with nonlinear dynamical system. In [27], the leader-following output consensus problem is concerned with distributed nonlinear observers. These notable works have proven that distributed frameworks can effective improve the system performance for complex dynamical systems. However, the problems of network communication burden must be faced among the nodes. It should be emphasized that traditional time-triggered periodic communication schedules have certain drawbacks in computation and network resources. Fortunately, the emerging event-triggered schemes are developed aiming at necessary transmission only when speechified triggering conditions are satisfied [28,29,30]. Hence, the event-triggered mechanism could lead to less network consumptions and could be more reliable in line with practical network implementation. Furthermore, in view of distributed control systems, distinguishing advantages can also been made by adopting event-triggered communications [31,32,33]. Nevertheless, there are challenging problems for distributed event-triggered control in corresponding algorithm complexity. For the consideration of GRNs with HMJPs, it is reasonable and significant to apply the distributed event-triggered design. Unfortunately, until now, distributed event-triggered state estimation problem of GRNs has not been entirely studied, not to mention the case of HMJPs with NSE. This motivates the authors for current study to shorten such a gap.
To deal with the aforementioned issue, the key idea in this paper is to investigate the distributed event-triggered state estimation problem for GRNs with HMJPs based on the NSE scheme. Compared with most existing literature, the primary novelties of our work are highlighted as follows:
1) The attempt to deal with the distributed NSE design of GRNs with HMJPs is made for the first time, which can better model GRNs dynamics and mode jumping phenomena during the state estimation procedures.
2) The distributed nonsynchronous state estimation framework is also introduced for GRNs with nonsynchronous event-triggered communications, such that more estimation efficiency for concentrations of mRNAs and proteins can be achieved with effective mode information utilization.
3) The sufficient mode-dependent analysis criteria are established by novel Lyapunov-Krasovski functions, and then the desired nonsynchronous mode-dependent estimator gains can be derived with convex optimization.
The remainder of this paper is stated by the following lines. Section 2 introduces some background information regarding GRNs with HMJPs and formulates the state estimation problem. Subsequent session of Section 3 presents the main theoretical developments with details. Section 4 approves the correctness of our developed results through a numerical example. Section 5 concludes the paper and addresses future challenges.
All referred notations are standardly utilized. Rn stands for n-Euclidean space. Matrix P>0 means that P is symmetric positive definite, and vise versa. (O,F,P) corresponds a probability space, where O denotes sample space, F represents δ-algebra of subsets within O and P stands for probability measurement. E means the mathematical expectation and ∗ implies a induced term in symmetry matrices, respectively.
Consider the equilibrium points of GRNs model shifted to the origin and the following GRNs model with HMJPs can be described by:
(ΣM):{˙xm(t)=−A(r(t))xm(t)+B(r(t))g(xp(t−dp(t)))+Em(r(t))ω1(t),˙xp(t)=−C(r(t))xp(t)+D(r(t))xm(t−dm(t))+Ep(r(t))ω2(t),zm(t)=Um(r(t))xm(t),zp(t)=Up(r(t))xp(t),xm(t)=φm(t),xp(t)=φp(t),∀t∈[−max(ˉdp,ˉdm),0), | (2.1) |
where xm(t)=[xm1(t),xm2(t),…,xmn(t)]T∈Rn, xp(t)=[xp1(t),xp2(t),…,xpn(t)]T∈Rn with xmi(t) and xpi(t), i=1,2,…,n representing the concentrations of mRNAs and proteins, respectively; zm(t)=[zm1(t),zm2(t),…,zml(t)]T∈Rl, zp(t)=[zp1(t),zp2(t),…,zpl(t)]T∈Rl with zmk(t) and zpk(t), k=1,2,…,l being the concentrations of certain mRNAs and proteins to be estimated through expression level; g(xp(t−dp(t)))=[g1(xp1(t−dp(t))),g2(xp2(t−dp(t))),…,gn(xpn(t−dp(t)))]T∈Rn stands for the nonlinear feedback regulation function of the protein on transcription, which satisfies the following assumption
0≤gi(xi)xi≤ςi,xi≠0;gi(0)=0,i=1,2,…,n,ς=diag{ς1,ς2,…,ςn}>0. |
i.e.,
gT(x)(g(x)−ςx)≤0; |
0≤dp(t)≤ˉdp and 0≤dm(t)≤ˉdm are the translation delay and the feedback regulation delay, respectively; ω1(t) and ω2(t) refers to the external disturbances that belongs to L2[0,∞).
The degradation or dilution rates of mRNAs and proteins can be described by known matrices A(r(t))=diag{a1(r(t)),a2(r(t)),…,an(r(t))}, C(r(t))=diag{c1(r(t)),c2(r(t)),…,cn(r(t))}, D(r(t))=diag{d1(r(t)),d2(r(t)),…,dn(r(t))}, and the coupling matrix B(r(t))=(bij(r(t)))∈Rn can be defined by the following
bij(r(t))={ˉbij(r(t))0−ˉbij(r(t))iftranscriptionfactorjisanactivatorofgenei,ifthereisnolinkfromnodejtoi,iftranscriptionfactorjisanrepressorofgenei. |
Furthermore, Um(r(t)), Up(r(t)), Em(r(t)) and Ep(r(t)) are also known matrices for a certain mode r(t).
Moreover, the continuous-time discrete-state Markov process r(t)∈S={1,…,N} on (O,F,P) is given to model the HMJPs, which can be defined by Π=(πij)N×N, with
Pr(r(t+Δ)=j|r(t)=i)={πijΔ+o(Δ), i≠j,1+πiiΔ+o(Δ), i=j,, | (2.2) |
and πii=−N∑j=1,i≠jπij.
In this paper, a direct graph G={V,E,A} is given to describe the communication topology of N sensor nodes, where V={v1,v2,⋯,vN} and E⊆V×V stand for the set of nodes and edges, respectively, A=[aij]∈RN×N represent the adjacency matrix with aii=0 for any i. A is associated with the edges of G are positive, i.e., aij>0⟺εij∈E. In addition, the corresponding Laplacian matrix of G is defined as L.
Moreover, the distributed measurement is achieved by N mode-dependent sensor nodes as follows:
(ΣS):{ylm(t)=Hlm(r(t))xm(t)+Glm(r(t))ω3(t),ylp(t)=Hlp(r(t))xp(t)+Glp(r(t))ω4(t), | (2.3) |
where ylm(t) and ylp(t), l=1,2,…,N, represent the measurements of mRNAs and proteins on sensor l, respectively; ω3(t) and ω4(t) are measurement disturbances; Hlm(r(t)), Hlp(r(t)), Glm(r(t)), Glp(r(t)) are known constant matrices.
Then, define the sensor estimation errors ˜ylm(t) and ˜ylp(t) as follows
{˜ylm(t)=ylm(t)−Hlm(r(t))ˆxlm(t),˜ylp(t)=ylp(t)−Hlp(r(t))ˆxlp(t), | (2.4) |
where ˆxlm(t) and ˆxlp(t) denote the filter state for sensor l.
By considering the event-triggered strategy for data transmission with ZOHs, it is assumed that the sampling period hk with sampling instants tk is assumed to be hk=tk+1−tk≤ˉh, ˉh>0. Furthermore, the transmission instant tlδ for sensor l is determined by the event generation functions as follows:
tlδ+1=mintk>tlδ{tk‖˜yl(tk)−˜yl(tlδ)‖≥κ‖˜yl(tlδ)‖}, | (2.5) |
where ˜yl(tk)=[(˜ylm(t))T,(˜ylp(t))T]T and 0<κ<1 is a scalar parameter.
Consequently, the following distributed mode-dependent state estimation filter (ΣF) can be designed for system (ΣM):
(ΣF):{˙ˆxlm(t)=−A(r(t))ˆxm(t)+B(r(t))g(ˆxp(t−dp(t)))+Flm(σ(t))˜ylm(tlδ)+Klm(σ(t))N∑s=1als[˜ysm(tsδ∗)−˜ylm(tlδ)],˙ˆxlp(t)=−C(r(t))ˆxp(t)+D(r(t))ˆxm(t−dm(t))+Flp(σ(t))˜ylp(tlδ)+Klp(σ(t))N∑s=1als[˜ysp(tsδ∗)−˜ylp(tlδ)],ˆzlm(t)=Um(r(t))ˆxlm(t),ˆzlp(t)=Up(r(t))ˆxlp(t), | (2.6) |
where t∈[tlδ,tlδ+1), δ∗=argminμ{t−tsμ|t≥tsμ}, ˆzlm(t) and ˆzlp(t) stand for estimation of zm(t) and zp(t), respectively; Flm(σ(t)),Flp(σ(t)) and Klm(σ(t)),Klp(σ(t)) represent the nonsynchronous mode-dependent filter gains to be determined later. More precisely, σ(t)∈F={1,…,F} represents another Markov process corresponds to r(t) with
Pr{σ(t)=ρ|r(t)=i}=λiρ, |
and ∑Fρ=1λiρ=1.
Remark 1. As event-triggered control strategy for networked control systems becomes more important, it is reasonable to investigate the analysis and synthesis issues for GRNs over sensor networks with event-triggered schemes. In comparison with common time-triggered strategies with extensive data transmissions, the event-triggered framework can considerably reduce the communication burden by generated events. Moreover, our developed event-triggered mechanism is related with both measurements of mRNAs and proteins, which is more efficient for potential applications.
Then, it can be deduced by dividing [tlδ,tlδ+1) into ∪tlδ+1−hk+1ιk=tlδ[ιk,ιk+1) that
{˙ˆxlm(t)=−A(r(t))ˆxlm(t)+B(r(t))g(ˆxlp(t−dp(t)))+Flm(σ(t))˜ylm(ιk)−Flm(σ(t))εlm(ιk)+Klm(σ(t))N∑s=1als[˜ysm(ιk)−˜ylm(ιk)]−Klm(σ(t))N∑s=1als[εsm(ιk)−εlm(ιk)],˙ˆxlp(t)=−C(r(t))ˆxlp(t)+D(r(t))ˆxlm(t−dm(t))+Flp(σ(t))˜ylp(ιk)−Flp(σ(t))εlp(ιk)+Klp(σ(t))N∑s=1als[˜ysp(ιk)−˜ylp(ιk)]−Klp(σ(t))N∑s=1als[εsp(ιk)−εlp(ιk)],ˆzlm(t)=Um(r(t))ˆxlm(t),ˆzlp(t)=Up(r(t))ˆxlp(t), | (2.7) |
where εlm(ιk)=˜ylm(ιk)−˜ylm(tlδ) and εlp(ιk)=˜ylp(ιk)−˜ylp(tlδ), tlδ≤ιk<tlδ+1, represent the event-triggered measurement errors, respectively.
As a result, by denoting elm(t)=x(t)−ˆxlm(t), elp(t)=x(t)−ˆxlp(t), ˜zlm(t)=z(t)−ˆzlm(t) and ˜zlp(t)=z(t)−ˆzlp(t), one can deduce that
{˙elm(t)=−A(r(t))elm(t)+B(r(t))g(xp(t−dp(t)))−B(r(t))g(ˆxlp(t−dp(t)))−Flm(σ(t))Hlm(r(t))elm(ιk)+Flm(σ(t))εlm(ιk)−Klm(σ(t))N∑s=1als[Hsm(r(t))esm(ιk)−Hlm(r(t))elm(ιk)]+Km(σ(t))N∑s=1als[εsm(ιk)−εlm(ιk)]+Em(r(t))ω1(t)−Flm(σ(t))Glm(r(t))ω3(ιk)−Klm(σ(t))N∑s=1als[Gsm(r(t))ω3(ιk)−Glm(r(t))ω3(ιk)],˙elp(t)=−C(r(t))elp(t)+D(r(t))elm(t−dm(t))−Flp(σ(t))Hlp(r(t))elp(ιk)+Flp(σ(t))εlp(ιk)−Klp(σ(t))N∑s=1als[Hsp(r(t))esp(ιk)−Hlp(r(t))elp(ιk)]+Klp(σ(t))N∑s=1als[εsp(ιk)−εlp(ιk)]+Ep(r(t))ω2(t)−Flp(σ(t))Glp(r(t))ω4(ιk)−Klp(σ(t))N∑s=1als[Gsp(r(t))ω4(ιk)−Glp(r(t))ω4(ιk)],˜zlm(t)=Um(r(t))elm(t),˜zlp(t)=Up(r(t))elp(t), | (2.8) |
For simplicity, the resulting closed-loop filter system can be rewritten as follows:
{˙em(t)=−ˉA(i)em(t)+ˉB(i)ˉg(ep(t−dp(t)))−(ˉFm(ρ)−ˉKm(ρ)ˉL)ˉHm(i)em(ιk)+(ˉFm(ρ)−ˉKm(ρ)ˉL)εm(ιk)+ˉEm(i)ω1(t)−(ˉFm(ρ)−ˉKm(ρ)ˉL)ˉGm(i)ω3(ιk),˙ep(t)=−ˉC(i)ep(t)+ˉD(i)em(t−dm(t))−(ˉFp(ρ)−ˉKp(ρ)ˉL)ˉHp(i)ep(ιk)+(ˉFp(ρ)−ˉKp(ρ)ˉL)εp(ιk)+ˉEp(i)ω2(t)−(ˉFp(ρ)−ˉKp(ρ)ˉL)ˉGp(i)ω4(ιk),˜zm(t)=ˉUm(i)em(t),˜zp(t)=ˉUp(i)ep(t), t∈[ιk,ιk+1), | (2.9) |
where
em(t)=[eTm1(t),eTm2(t),…,eTmN(t)]T,ep(t)=[eTp1(t),eTp2(t),…,eTpN(t)]T,˜zm(t)=[˜zTm1(t),˜zTm2(t),…,˜zTmN(t)]T,˜zp(t)=[˜zTp1(t),˜zTp2(t),…,˜zTpN(t)]T,εm(t)=[εTm1(t),εTm2(t),…,εTmN(t)]T,εp(t)=[εTp1(t),εTp2(t),…,εTpN(t)]T,ˉA(i)=IN⊗A(i),ˉB(i)=IN⊗B(i),g(ep(t))=[(g(ep(t))−g(ˆep1(t)))T,(g(ep(t))−g(ˆep2(t)))T,…,(g(ep(t))−g(ˆep2(t)))T]T,ˉFm(ρ)=diag{F1m(ρ),F2m(ρ),…,FNm(ρ)},ˉFp(ρ)=diag{F1p(ρ),F2p(ρ),…,FNp(ρ)},ˉKm(ρ)=diag{K1m(ρ),K2m(ρ),…,KNm(ρ)},ˉKp(ρ)=diag{K1p(ρ),K2p(ρ),…,KNp(ρ)},ˉHm(i)=diag{H1m(i),H2m(i),…,HNm(i)},ˉHp(i)=diag{H1p(i),H2p(i),…,HNp(i)},ˉEm(i)=1N⊗Em(i),ˉEp(i)=1N⊗Ep(i),ˉUm(i)=1N⊗Um(i),ˉUp(i)=1N⊗Up(i),ˉGm(i)=[(G1m(i))T,(G2m(i))T,…,(GNm(i))T]T,ˉGp(i)=[(G1p(i))T,(G2p(i))T,…,(GNp(i))T]T,ˉL=L⊗In. |
Remark 2. It is noticed that the adoption of conditional probability has been proved to be effective to cope with the Markov or semi-Markov jump systems with limited mode information. For the GRNs with hidden Markovian jumping parameters, lack of true operation modes of Markov chains would lead to control performance degradation or even unstable with mode-dependent designs. In this paper, the nonsynchronous mode information corresponds to the distributed sensor mode information, which implies that mode information mismatch between true GRNs model and our developed distributed state estimators is considered during the design. As a consequence, we have developed a novel distributed nonsynchronous filter framework, where the observed Markovian jumping modes are utilized for more practical distributed event-triggered state estimators.
Consequently, by applying the input-delay approach, it can be obtained that
{˙em(t)=−ˉA(i)em(t)+ˉB(i)ˉg(ep(t−dp(t)))−(ˉFm(ρ)−ˉKm(ρ)ˉL)ˉHm(i)em(t−τ(t))+(ˉFm(ρ)−ˉKm(ρ)ˉL)εm(t−τ(t))+ˉEm(i)ω1(t)−(ˉFm(ρ)−ˉKm(ρ)ˉL)ˉGm(i)ω3(t−τ(t)),˙ep(t)=−ˉC(i)ep(t)+ˉD(i)em(t−dm(t))−(ˉFp(ρ)−ˉKp(ρ)ˉL)ˉHp(i)ep(t−τ(t))+(ˉFp(ρ)−ˉKp(ρ)ˉL)εp(t−τ(t))+ˉEp(i)ω2(t)−(ˉFp(ρ)−ˉKp(ρ)ˉL)ˉGp(i)ω4(t−τ(t)),˜zm(t)=ˉUm(i)em(t),˜zp(t)=ˉUp(i)ep(t), t∈[ιk,ιk+1), | (2.10) |
where τ(t):=t−ιk with 0≤τ(t)≤ˉτ.
The aim of our paper is to design the desired nonsynchronous state estimator gains, such that the modified H∞ performance γ can be satisfied in the mean-square sense for augmented state estimation error system with zero initial conditions, if it can hold that
E{∫∞0(˜zTm(t)˜zm(t)+˜zTp(t)˜zp(t))dt}≤γ∫∞0(ωT1(t)ω1(t)+ωT2(t)ω2(t)+ωT3(t−τ(t))ω3(t−τ(t))+ωT4(t−τ(t))ω4(t−τ(t))dt. | (2.11) |
In the sequel, the following lemmas are employed for later theoretical derivations.
Lemma 1. [34] For any matrix M>0, scalars ˉξ>0, ξ(t) satisfying 0≤ξ(t)≤ˉξ, vector function ˙x(t):[−ˉξ,0]→Rn such that the concerned integrations are well defined in (2.12), then
−τ∫tt−ˉξ˙xT(s)M˙x(s)ds≤ζT(t)Uζ(t), | (2.12) |
where
ζ(t)=[xT(t),xT(t−ξ(t)),xT(t−ˉξ)]T,U=[−MM0∗−2MM∗∗−M]. |
Lemma 2. [35] If there exists a parameter ε and real matrices X, Y, Z, W, and it holds that
[XZ+εWT∗−εYT−εY]<0, | (2.13) |
then one has
X+ZTε−TWT+Wε−1Z<0. | (2.14) |
In this section, sufficient modified H∞ performance conditions are first established for the augmented state estimation error system and the distributed state estimator gains are further designed in terms of convex optimization.
Theorem 1. For given ˉdp, ˉdm, ˉτ and mode-dependent filter gains Flm(ρ),Flp(ρ) and Klm(ρ),Klp(ρ), the modified H∞ filtering can be satisfied over distributed sensor networks according to Definition 1, if there exist mode-dependent matrices Pm(i)>0, Pp(i)>0, and matrices Qm>0, Qp>0, Qτ>0, Rm>0, Rp>0, Rτ>0, such that Ξi<0, for all i∈N, k=1,2,…,N and ρ∈F, k=1,2,…,F, where
Ξ(i)=[Ξ1(i)Ξ2(i)∗Ξ3(i)],Ξ1(i)=[Ξ11(i)Ξ12(i)∗Ξ13(i)],Ξ11(i)=[Ξ111(i)Ξ112(i)00Rm00∗Ξ113(i)Rτ0000∗∗−Qτ−Rτ0000∗∗∗−Qm−RmRTm00∗∗∗∗−2Rm00∗∗∗∗∗−Qp−RpRp∗∗∗∗∗∗−2Rp],Ξ111(i)=−2Pm(i)ˉA(i)+Qm+Qτ−Rm−Rτ+ˉUTm(i)ˉUm(i)+∑j∈NπijPm(j),Ξ112(i)=−F∑ρ=1λiρPm(i)ˉFm(ρ)ˉHm(i)+F∑ρ=1λiρPm(i)ˉKm(ρ)ˉLˉHm(i)+Rτ,Ξ113(i)=−2Rτ+κ2ˉHTm(i)ˉHm(i),Ξ12(i)=[000Pm(i)ˉB(i)Ξ111(i)0000−κ2ˉHTm(i)0000000000ˉDT(i)Pp(i)000000000Rp00ς0],Ξ121(i)=F∑ρ=1λiρPm(i)ˉFm(ρ)−F∑ρ=1λiρPm(i)ˉKm(ρ)ˉL,Ξ13(i)=[Ξ131(i)Ξ132(i)000∗Ξ133(i)Rτ00∗∗−Rτ00∗∗∗−2I0∗∗∗∗κ2I−I],Ξ131(i)=−2Pp(i)ˉC(i)+Qp+Qτ−Rp−Rτ+ˉUTp(i)ˉUp(i)+∑j∈NπijPp(i),Ξ132(i)=−F∑ρ=1λiρPp(i)ˉFp(ρ)ˉHp(i)+F∑ρ=1λiρPp(i)ˉKp(ρ)ˉLˉHp(i)+Rτ,Ξ133(i)=−Qτ−2Rτ+κ2ˉHTp(i)ˉHp(i),Ξ2(i)=[Ξ21(i),Ξ22(i)],Ξ21(i)=[0Pm(i)ˉEm(i)0Ξ211(i)0000κ2ˉHTm(i)ˉGm(i)00000000000000000000000000],Ξ22(i)=[−ˉdmˉAT(i)0−ˉτˉAT(i)0Ξ212(i)0Ξ213(i)0000000000ˉdpˉDT(i)0ˉτˉDT(i)00000000],Ξ211(i)=−F∑ρ=1λiρPm(i)ˉFm(ρ)ˉGm(i)+F∑ρ=1λiρPm(i)ˉKm(ρ)ˉLˉGm(i),Ξ212(i)=−ˉdmF∑ρ=1λiρˉHTm(i)ˉFTm(ρ)+ˉdmF∑ρ=1λiρˉHTm(i)ˉLTˉKTm(ρ),Ξ213(i)=−ˉτF∑ρ=1λiρˉHTm(i)ˉFTm(ρ)+ˉτF∑ρ=1λiρˉHTm(i)ˉLTˉKTm(ρ), |
and
Ξ3(i)=[Ξ31(i)Ξ32(i)∗Ξ33(i)],Ξ31(i)=[Ξ311(i)0Pp(i)ˉEp(i)0Ξ312(i)−κ2ˉHTp(i)000κ2ˉHTp(i)ˉGp(i)0000000000000−ˉGm(i)0κ2I−I000−ˉGp(i)∗−γI000∗∗−γI00∗∗∗κ2ˉGTm(i)ˉGm(i)−γI0∗∗∗∗κ2ˉGTp(i)ˉGp(i)−γI],Ξ311(i)=F∑ρ=1λiρPp(i)ˉFp(ρ)−F∑ρ=1λiρPp(i)ˉKp(ρ)ˉL,Ξ312(i)=−F∑ρ=1λiρPp(i)ˉFp(ρ)ˉGp(i)+F∑ρ=1λiρPp(i)ˉKp(ρ)ˉLˉGp(i),Ξ32(i)=[0−ˉdpˉCT(i)0−ˉτˉCT(i)0Ξ321(i)0Ξ322(i)0000ˉdmˉBT(i)0ˉτˉBT(i)0Ξ323(i)0Ξ324(i)00Ξ325(i)0Ξ326(i)ˉdmˉEm(i)0ˉτˉEm(i)00ˉdpˉETp(i)0ˉτˉETp(i)],Ξ321(i)=−ˉdpF∑ρ=1λiρˉHTp(i)ˉFTp(ρ)+ˉdpF∑ρ=1λiρˉHTp(i)ˉLTˉKTp(ρ),Ξ322(i)=−ˉτF∑ρ=1λiρˉHTp(i)ˉFTp(ρ)+ˉτF∑ρ=1λiρˉHTp(i)ˉLTˉKTp(ρ),Ξ323(i)=ˉdmF∑ρ=1λiρˉFTm(ρ)−ˉdmF∑ρ=1λiρˉLTˉKTm(ρ),Ξ324(i)=ˉτF∑ρ=1λiρˉFTm(ρ)−ˉτF∑ρ=1λiρˉLTˉKTm(ρ),Ξ325(i)=ˉdpF∑ρ=1λiρˉFTp(ρ)−ˉdpF∑ρ=1λiρˉLTˉKTp(ρ),Ξ326(i)=ˉτF∑ρ=1λiρˉFTp(ρ)−ˉτF∑ρ=1λiρˉLTˉKTp(ρ),Ξ33(i)=[Ξ331(i)0Ξ332(i)00Ξ333(i)0Ξ334(i)−R−1m000∗−R−1p00∗∗−R−1τ0∗∗∗−R−1τ],Ξ331(i)=−ˉdmF∑ρ=1λiρˉGTm(i)ˉFTm(ρ)+ˉdmF∑ρ=1λiρˉGTm(i)ˉLTˉKTm(ρ),Ξ332(i)=−ˉτF∑ρ=1λiρˉGTm(i)ˉFTm(ρ)+ˉτF∑ρ=1λiρˉGTm(i)ˉLTˉKTm(ρ),Ξ333(i)=−ˉdpF∑ρ=1λiρˉGTp(i)ˉFTp(ρ)+ˉdpF∑ρ=1λiρˉGTp(i)ˉLTˉKTp(ρ),Ξ334(i)=−ˉτF∑ρ=1λiρˉGTp(i)ˉFTp(ρ)+ˉτF∑ρ=1λiρˉGTp(i)ˉLTˉKTp(ρ). |
Proof. Construct the following mode-dependent Lyapunov-Krasovski functions:
V(i,t)=V1(i,t)+V2(i,t)+V3(i,t), | (3.1) |
where
V1(i,t)=eTm(t)Pm(i)em(t)+eTp(t)Pp(i)ep(t),V2(i,t)=∫tt−ˉdmeTm(s)Qmem(s)ds+∫tt−ˉdpeTp(s)Qpep(s)ds+∫tt−ˉτ(eTm(s)Qτem(s)+eTp(s)Qτep(s))ds,V3(i,t)=ˉdm∫0−ˉdm∫tt+φeTm(φ)Rmem(φ)dφds+ˉdp∫0−ˉdp∫tt+φeTp(φ)Rpep(φ)dφds+ˉτ∫0−ˉτ∫tt+φ(eTm(φ)Rτem(φ)+eTp(φ)Rτep(φ))dφds. |
Then, for all r(t)=i and σ(t)=ρ, by defining the weak infinitesimal operator L of V(i,t) as follows
LV(i,t)=limΔ→0+1Δ{E{V(r(t+Δ),t+Δ)|r(t)=i,t}−V(i,t)}, | (3.2) |
it can be deduced that
LV1(i,t)=E{2eTm(t)Pm(i)˙em(t)+2eTp(t)Pp(i)˙ep(t)+∑j∈NπijeTm(t)Pm(j)em(t)+∑j∈NπijeTp(t)Pp(i)ep(t)}=2eTm(t)[−Pm(i)ˉA(i)]em(t)+2eTm(t)[Pm(i)ˉB(i)]ˉg(ep(t−dp(t)))+2F∑ρ=1λiρeTm(t)[−Pm(i)(ˉFm(ρ)+ˉKm(ρ)ˉL)ˉHm(i)]em(t−τ(t))+2F∑ρ=1λiρeTm(t)[Pm(i)(ˉFm(ρ)−ˉKm(ρ)ˉL)]εm(t−τ(t))+2eTm(t)[Pm(i)ˉEm(i)]ω1(t)+2F∑ρ=1λiρeTm(t)[−Pm(i)(ˉFm(ρ)−ˉKm(ρ)ˉL)ˉGm(i)]ω3(t−τ(t))+2eTp(t)[−Pp(i)ˉC(i)]ep(t)+2eTp(t)[Pp(i)ˉD(i)]em(t−dm(t))+2eTp(t)[Pp(i)ˉEp(i)]ω2(t)+2F∑ρ=1λiρeTp(t)[−Pp(i)(ˉFp(ρ)−ˉKp(ρ)ˉL)ˉHp(i)]ep(t−τ(t))+2F∑ρ=1λiρeTp(t)[Pp(i)(ˉFp(ρ)−ˉKp(ρ)ˉL)]εp(t−τ(t))+2F∑ρ=1λiρeTp(t)[−Pp(i)(ˉFp(ρ)−ˉKp(ρ)ˉL)ˉGp(i)]ω4(t−τ(t))+∑j∈NπijeTm(t)Pm(j)em(t)+∑j∈NπijeTp(t)Pp(i)ep(t). | (3.3) |
Similarly, it can be deduced that
\begin{align} \mathcal{L}V_{2}(i,t) = & e_{m}^{T}\left( t\right) Q_{m}e_{m}\left( t\right) -e_{m}^{T}\left( t-\bar{d}_{m}\right) Q_{m}e_{m}\left( t-\bar{d}_{m}\right) +e_{p}^{T}\left( t\right) Q_{p}e_{p}\left( t\right) \\ & -e_{p}^{T}\left( t-\bar{d}_{p}\right) Q_{p}e_{p}\left( t-\bar{d} _{p}\right) +e_{m}^{T}\left( t\right) Q_{\tau }e_{m}\left( t\right) +e_{p}^{T}\left( t\right) Q_{\tau }e_{p}\left( t\right) \\ & -e_{m}^{T}\left( t-\bar{\tau}\right) Q_{\tau }e_{m}\left( t-\bar{\tau} \right) -e_{p}^{T}\left( t-\bar{\tau}\right) Q_{\tau }e_{p}\left( t-\bar{\tau }\right) \\ = & e_{m}^{T}\left( t\right) (Q_{m}+Q_{\tau })e_{m}\left( t\right) +e_{p}^{T}\left( t\right) (Q_{p}+Q_{\tau })e_{p}\left( t\right) -e_{m}^{T}\left( t-\bar{d}_{m}\right) Q_{m}e_{m}\left( t-\bar{d}_{m}\right) \\ & -e_{p}^{T}\left( t-\bar{d}_{p}\right) Q_{m}e_{p}\left( t-\bar{d} _{p}\right) -e_{m}^{T}\left( t-\bar{\tau}\right) Q_{\tau }e_{m}\left( t-\bar{ \tau}\right) -e_{p}^{T}\left( t-\bar{\tau}\right) Q_{\tau }e_{p}\left( t- \bar{\tau}\right) , \end{align} | (3.4) |
and
\begin{align} \mathcal{L}V_{3}(i,t) = & \mathbb{E}\{\bar{d}_{m}^{2}\dot{e}_{m}^{T}\left( t\right) R_{m}\dot{e}_{m}\left( t\right) +\bar{d}_{p}^{2}\dot{e} _{p}^{T}\left( t\right) R_{p}\dot{e}_{p}\left( t\right) \\ & +\bar{\tau}^{2}\dot{e}_{m}^{T}\left( t\right) R_{\tau }\dot{e}_{m}\left( t\right) +\bar{\tau}^{2}\dot{e}_{p}^{T}\left( t\right) R_{\tau }\dot{e} _{p}\left( t\right) \\ & -\bar{d}_{m}\int_{t-\bar{d}_{m}}^{t}\dot{e}_{m}^{T}\left( \varphi \right) R_{m}\dot{e}_{m}\left( \varphi \right) d\varphi -\bar{d}_{p}\int_{t-\bar{d} _{p}}^{t}\dot{e}_{p}^{T}\left( \varphi \right) R_{p}\dot{e}_{p}\left( \varphi \right) d\varphi \\ & -\bar{\tau}\int_{t-\bar{\tau}}^{t}\dot{e}_{m}^{T}\left( \varphi \right) R_{\tau }\dot{e}_{m}\left( \varphi \right) d\varphi -\bar{\tau}\int_{t-\bar{ \tau}}^{t}\dot{e}_{p}^{T}\left( \varphi \right) R_{\tau }\dot{e}_{p}\left( \varphi \right) d\varphi \} \\ = &\psi ^{T}(t)(\digamma _{m}R_{m}\digamma _{m}^{T}+\digamma _{p}R_{p}\digamma _{p}^{T}+\digamma _{\tau }R_{\tau }\digamma _{\tau }^{T})\psi (t) \\ &-\bar{d}_{m}\int_{t-\bar{d}_{m}}^{t}\dot{e}_{m}^{T}\left( \varphi \right) R_{m}\dot{e}_{m}\left( \varphi \right) d\varphi -\bar{d}_{p}\int_{t-\bar{d} _{p}}^{t}\dot{e}_{p}^{T}\left( \varphi \right) R_{p}\dot{e}_{p}\left( \varphi \right) d\varphi \\ &-\bar{\tau}\int_{t-\bar{\tau}}^{t}\dot{e}_{m}^{T}\left( \varphi \right) R_{\tau }\dot{e}_{m}\left( \varphi \right) d\varphi -\bar{\tau}\int_{t-\bar{ \tau}}^{t}\dot{e}_{p}^{T}\left( \varphi \right) R_{\tau }\dot{e}_{p}\left( \varphi \right) d\varphi, \end{align} | (3.5) |
where \psi ^{T}(t) = [e_{m}^{T}(t), e_{m}^{T}(t-\tau (t)), e_{m}^{T}(t-\bar{\tau }), e_{m}^{T}\left(t-\bar{d}_{m}\right), e_{m}^{T}\left(t-d_{m}(t)\right), e_{p}^{T}\left(t-\bar{d}_{p}\right), e_{p}^{T}\left(t-d_{p}(t)\right), e_{p}^{T}(t), e_{p}^{T}(t-\tau (t)), e_{p}^{T}(t-\bar{\tau}), \bar{g} ^{T}\left(e_{p}\left(t-d_{p}(t)\right) \right), \varepsilon _{m}^{T}(t-\tau (t)), \varepsilon _{p}^{T}(t-\tau (t)), \omega _{1}^{T}(t), \omega _{2}^{T}(t), \omega _{3}^{T}(t-\tau (t)), \omega _{4}^{T}(t-\tau (t))]^{T} and
\begin{equation*} \digamma _{m} = \left[ \begin{array}{c} -\bar{d}_{m}\bar{A}^{T}\left( i\right) \\ -\bar{d}_{m}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \bar{d}_{m}\bar{B}^{T}\left( i\right) \\ \bar{d}_{m}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{m}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ \bar{d}_{m}\bar{E}_{m}\left( i\right) \\ 0 \\ -\bar{d}_{m}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \end{array} \right] ,\\ \digamma _{p} = \left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \bar{d}_{p}\bar{D}^{T}\left( i\right) \\ 0 \\ 0 \\ -\bar{d}_{p}\bar{C}^{T}\left( i\right) \\ -\bar{d}_{p}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ \bar{d}_{p}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{p}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ \bar{d}_{p}\bar{E}_{p}^{T}\left( i\right) \\ 0 \\ -\bar{d}_{p}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \end{array} \right] , \end{equation*} |
\begin{equation*} \digamma _{\tau } = \left[ \begin{array}{c} -\bar{\tau}\bar{A}^{T}\left( i\right) \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \bar{\tau}\bar{B}^{T}\left( i\right) \\ \bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{m}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ \bar{\tau}\bar{E}_{m}\left( i\right) \\ 0 \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \end{array} \right] \\+\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \bar{\tau}\bar{D}^{T}\left( i\right) \\ 0 \\ 0 \\ -\bar{\tau}\bar{C}^{T}\left( i\right) \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ \bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{p}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ \bar{\tau}\bar{E}_{p}^{T}\left( i\right) \\ 0 \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \end{array} \right] . \end{equation*} |
In the sequel, by virtue of Lemma 1, one can obtain that
\begin{align} &-\bar{d}_{m}\int_{t-\bar{d}_{m}}^{t}\dot{e}_{m}^{T}\left( \varphi \right) R_{m}\dot{e}_{m}\left( \varphi \right) d\varphi \\ \leq &\left[ \begin{array}{c} e_{m}^{T}(t) \\ e_{m}^{T}(t-d_{m}(t)) \\ e_{m}^{T}(t-\bar{d}_{m}) \end{array} \right] ^{T}\left[ \begin{array}{ccc} -R_{m} & R_{m} & 0 \\ \ast & -2R_{m} & R_{m} \\ \ast & \ast & -R_{m} \end{array} \right] \left[ \begin{array}{c} e_{m}(t) \\ e_{m}(t-d_{m}(t)) \\ e_{m}(t-\bar{d}_{m}) \end{array} \right] , \end{align} | (3.6) |
\begin{align} &-\bar{d}_{p}\int_{t-\bar{d}_{p}}^{t}\dot{e}_{p}^{T}\left( \varphi \right) R_{p}\dot{e}_{p}\left( \varphi \right) d\varphi \\ \leq &\left[ \begin{array}{c} e_{p}^{T}(t) \\ e_{p}^{T}(t-d_{p}(t)) \\ e_{p}^{T}(t-\bar{d}_{p}) \end{array} \right] ^{T}\left[ \begin{array}{ccc} -R_{p} & R_{p} & 0 \\ \ast & -2R_{p} & R_{p} \\ \ast & \ast & -R_{p} \end{array} \right] \left[ \begin{array}{c} e_{p}(t) \\ e_{p}(t-d_{p}(t)) \\ e_{p}(t-\bar{d}_{p}) \end{array} \right] \end{align} | (3.7) |
\begin{align} &-\bar{\tau}\int_{t-\bar{\tau}}^{t}\dot{e}_{m}^{T}\left( \varphi \right) R_{\tau }\dot{e}_{m}\left( \varphi \right) d\varphi \\ \leq &\left[ \begin{array}{c} e_{m}^{T}(t) \\ e_{m}^{T}(t-\tau (t)) \\ e_{m}^{T}(t-\bar{\tau}) \end{array} \right] ^{T}\left[ \begin{array}{ccc} -R_{\tau } & R_{\tau } & 0 \\ \ast & -2R_{\tau } & R_{\tau } \\ \ast & \ast & -R_{\tau } \end{array} \right] \left[ \begin{array}{c} e_{m}(t) \\ e_{m}(t-\tau (t)) \\ e_{m}(t-\bar{\tau}) \end{array} \right] , \end{align} | (3.8) |
\begin{align} &-\bar{\tau}\int_{t-\bar{\tau}}^{t}\dot{e}_{p}^{T}\left( \varphi \right) R_{\tau }\dot{e}_{p}\left( \varphi \right) d\varphi \\ \leq &\left[ \begin{array}{c} e_{p}^{T}(t) \\ e_{p}^{T}(t-\tau (t)) \\ e_{p}^{T}(t-\bar{\tau}) \end{array} \right] ^{T}\left[ \begin{array}{ccc} -R_{\tau } & R_{\tau } & 0 \\ \ast & -2R_{\tau } & R_{\tau } \\ \ast & \ast & -R_{\tau } \end{array} \right] \left[ \begin{array}{c} e_{p}(t) \\ e_{p}(t-\tau (t)) \\ e_{p}(t-\bar{\tau}) \end{array} \right] . \end{align} | (3.9) |
Then, it can be deduced that
\begin{align*} \mathcal{L}V(i,t)\leq \eta ^{T}\left( t\right)\Lambda \eta \left( t\right) \end{align*} |
where \eta ^{T}\left(t\right) = [\eta ^{T}_{1}\left(t\right), \eta ^{T} _{2}\left(t\right), \eta ^{T} _{3}\left(t\right), \eta ^{T} _{4}\left(t\right) ] with
\begin{align*} \eta ^{T} _{1}\left( t\right) = &\left[ \begin{array}{lllll} e ^{T}_{m}(t) & e ^{T}_{m}(t-\tau (t)) & e ^{T}_{m}(t-\bar{\tau}) & e ^{T}_{m}\left( t-\bar{d} _{m}\right) & e ^{T}_{m}\left( t-d_{m}(t)\right) \end{array} \right] , \\ \eta ^{T}_{2}\left( t\right) = &\left[ \begin{array}{lllll} e ^{T}_{p}\left( t-\bar{d}_{p}\right) & e ^{T}_{p}\left( t-d_{p}(t)\right) & e ^{T}_{p}(t) & e ^{T}_{p}(t-\tau (t)) & e ^{T}_{p}(t-\bar{\tau}) \end{array} \right] , \\ \eta ^{T}_{3}\left( t\right) = &\left[ \begin{array}{lll} \bar{g}^{T}\left( e _{p}\left( t-d_{p}(t)\right) \right) & \varepsilon ^{T} _{m}(t-\tau (t)) & \varepsilon ^{T} _{p}(t-\tau (t)) \end{array} \right] , \\ \eta ^{T} _{4}\left( t\right) = &\left[ \begin{array}{llll} \omega ^{T} _{1}(t) & \omega ^{T} _{2}(t) & \omega ^{T} _{3}(t-\tau (t)) & \omega ^{T} _{4}(t-\tau (t)) \end{array} \right] , \end{align*} |
and \Lambda = \Lambda _{1}+\Lambda _{2}R_{m}\Lambda _{2}^{T}+\Lambda _{3}R_{p}\Lambda _{3}^{T}+\Lambda _{4}R_{\tau }\Lambda _{4}^{T}+\Lambda _{5}R_{\tau }\Lambda _{5}^{T} with
\begin{align*} \Lambda _{1} = &\left[ \begin{array}{cc} \Lambda _{11} & \Lambda _{12} \\ \ast & \Lambda _{22} \end{array} \right] , \\ \Lambda _{11} = &\left[ \begin{array}{ccccccc} \Lambda _{111} & \Lambda _{112} & 0 & 0 & R_{m} & 0 & 0 \\ \ast & -2R_{\tau } & R_{\tau } & 0 & 0 & 0 & 0 \\ \ast & \ast & -Q_{\tau }-R_{\tau } & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & -Q_{m}-R_{m} & R_{m}^{T} & 0 & 0 \\ \ast & \ast & \ast & \ast & -2R_{m} & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & -Q_{m}-R_{p} & R_{p} \\ \ast & \ast & \ast & \ast & \ast & \ast & -2R_{p} \end{array} \right] , \\ \Lambda _{111} = &-2P_{m}(i)\bar{A}\left( i\right) +Q_{m}+Q_{\tau }-R_{m}-R_{\tau }+\sum\limits_{j\in \mathcal{N}}\pi _{ij}P_{m}(j), \\ \Lambda _{112} = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{m}(i)\bar{F} _{m}(\rho )\bar{H}_{m}(i)+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{m}(i)\bar{K} _{m}(\rho )\bar{L}\bar{H}_{m}(i)+R_{\tau } \\ \Lambda _{12} = &\left[ \begin{array}{cccccccccc} 0 & 0 & 0 & P_{m}(i)\bar{B}\left( i\right) & \Lambda _{121} & 0 & P_{m}(i) \bar{E}_{m}\left( i\right) & 0 & \Lambda _{122} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \bar{D}^{T}\left( i\right) P_{p}(i) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ R_{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right] , \\ \Lambda _{121} = &\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{m}(i)\bar{F} _{m}(\rho )-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{m}(i)\bar{K}_{m}(\rho ) \bar{L} \\ \Lambda _{122} = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{m}(i)\bar{F} _{m}(\rho )\bar{G}_{m}(i)+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{m}(i)\bar{K} _{m}(\rho )\bar{L}\bar{G}_{m}(i) \\ \Lambda _{22} = &\left[ \begin{array}{cccccccccc} \Lambda _{221} & \Lambda _{222} & 0 & 0 & 0 & \Lambda _{223} & 0 & P_{p}(i) \bar{E}_{p}\left( i\right) & 0 & \Lambda _{224} \\ \ast & -Q_{\tau }-2R_{\tau } & R_{\tau } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \ast & \ast & -R_{\tau } & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & \ast & 0 & 0 & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & 0 & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & \ast & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & \ast & \ast & 0 & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & \ast & \ast & \ast & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & \ast & \ast & \ast & \ast & 0 \end{array} \right] , \\ \Lambda _{221} = &-2P_{p}(i)\bar{C}\left( i\right) +Q_{p}+Q_{\tau }-R_{p}-R_{\tau }+\sum\limits_{j\in \mathcal{N}}\pi _{ij}P_{p}(i), \\ \Lambda _{222} = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{p}(i)\bar{F} _{p}(\rho )\bar{H}_{p}(i)+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{p}(i)\bar{K} _{p}(\rho )\bar{L}\bar{H}_{p}(i)+R_{\tau } \\ \Lambda _{223} = &\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{p}(i)\bar{F} _{p}(\rho )-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{p}(i)\bar{K}_{p}(\rho ) \bar{L} \\ \Lambda _{224} = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{p}(i)\bar{F} _{p}(\rho )\bar{G}_{p}(i)+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }P_{p}(i)\bar{K} _{p}(\rho )\bar{L}\bar{G}_{p}(i) \end{align*} |
\begin{align*} \Lambda _{2} = &\left[ \begin{array}{c} -\bar{d}_{m}\bar{A}^{T}\left( i\right) \\ -\bar{d}_{m}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \bar{d}_{m}\bar{B}^{T}\left( i\right) \\ \bar{d}_{m}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{m}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ \bar{d}_{m}\bar{E}_{m}\left( i\right) \\ 0 \\ -\bar{d}_{m}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \end{array} \right] , \\ \Lambda _{3} = &\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \bar{d}_{p}\bar{D}^{T}\left( i\right) \\ 0 \\ 0 \\ -\bar{d}_{p}\bar{C}^{T}\left( i\right) \\ -\bar{d}_{p}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ \bar{d}_{p}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{p}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ \bar{d}_{p}\bar{E}_{p}^{T}\left( i\right) \\ 0 \\ -\bar{d}_{p}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \end{array} \right] , \\ \Lambda _{4} = &\left[ \begin{array}{c} -\bar{\tau}\bar{A}^{T}\left( i\right) \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \bar{\tau}\bar{B}^{T}\left( i\right) \\ \bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{m}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \\ \bar{\tau}\bar{E}_{m}\left( i\right) \\ 0 \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{m}^{T}(i)(\bar{F} _{m}^{T}(\rho )-\bar{L}^{T}\bar{K}_{m}^{T}(\rho )) \\ 0 \end{array} \right] , \\ \Lambda _{5} = &\left[ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \bar{\tau}\bar{D}^{T}\left( i\right) \\ 0 \\ -\bar{\tau}\bar{C}^{T}\left( i\right) \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ 0 \\ 0 \\ \bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }(\bar{F}_{p}^{T}(\rho )-\bar{L} ^{T}\bar{K}_{p}^{T}(\rho )) \\ 0 \\ \bar{\tau}\bar{E}_{p}^{T}\left( i\right) \\ 0 \\ -\bar{\tau}\sum_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{p}^{T}(i)(\bar{F} _{p}^{T}(\rho )-\bar{L}^{T}\bar{K}_{p}^{T}(\rho )) \end{array} \right] . \end{align*} |
Furthermore, considering the nonlinear properties for the GRNs, it yields that
\begin{align} \left[ \begin{array}{c} \bar{g}\left( e_{p}\left( t-d_{p}(t)\right) \right) \\ e_{p}\left( t-d_{p}(t)\right) \end{array} \right] ^{T}\left[ \begin{array}{ll} -2I & \varsigma \\ \varsigma & 0 \end{array} \right] \left[ \begin{array}{c} \bar{g}\left( e_{p}\left( t-d_{p}(t)\right) \right) \\ e_{p}\left( t-d_{p}(t)\right) \end{array} \right] \geq 0. \end{align} | (3.10) |
In addition, by recalling the event-triggering conditions, one has
\begin{align} \sum\limits_{l = 1}^{N}\kappa ^{2}[\tilde{y}^{l}(\iota _{k})-\varepsilon ^{l}(\iota _{k})]^{T}[\tilde{y}^{l}(\iota _{k})-\varepsilon ^{l}(\iota _{k})]-\sum\limits_{l = 1}^{N}[\varepsilon ^{l}(\iota _{k})]^{T}\varepsilon ^{l}(\iota _{k})\geq 0, \end{align} | (3.11) |
where \tilde{y}^{l}(\iota _{k}) = [(\tilde{y}_{m}^{l}(t))^{T}, (\tilde{y} _{p}^{l}(t))^{T}]^{T} , \varepsilon ^{l}(\iota _{k}) = [(\varepsilon _{m}^{l}(\iota _{k}))^{T}, (\varepsilon _{p}^{l}(\iota _{k}))^{T}]^{T} and it can be further verified that
\begin{align} & \sum\limits_{l = 1}^{N}\kappa ^{2}[H_{m}^{l}(i)e_{m}^{l}(\iota _{k})+G_{m}^{l}(i)\omega _{3}(\iota _{k})-\varepsilon _{m}^{l}(\iota _{k})]^{T}[H_{m}^{l}(i)e_{m}^{l}(\iota _{k})+G_{m}^{l}(i)\omega _{3}(\iota _{k})-\varepsilon _{m}^{l}(\iota _{k})] \\ & +\sum\limits_{l = 1}^{N}\kappa ^{2}[H_{p}^{l}(i)e_{p}^{l}(\iota _{k})+G_{p}^{l}(i)\omega _{4}(\iota _{k})-\varepsilon _{p}^{l}(\iota _{k})]^{T}[H_{p}^{l}(i)e_{p}^{l}(\iota _{k})+G_{p}^{l}(i)\omega _{4}(\iota _{k})-\varepsilon _{p}^{l}(\iota _{k})] \\ & -(\varepsilon _{m}(t-\tau (t)))^{T}\varepsilon _{m}(t-\tau (t))-(\varepsilon _{p}(t-\tau (t)))^{T}\varepsilon _{p}(t-\tau (t))\geq 0. \end{align} | (3.12) |
As a consequence, it can be derived by Schur complement that the modified H_{\infty} performance can be achieved under the mean-square sense when \Xi(i) < 0 is satisfied according to Theorem 1, which implies that
\begin{align} &\mathcal{L}V(i,t)+e_{m}^{T}(t)\bar{U}_{m}^{T}\left( i\right) \bar{U} _{m}\left( i\right) e_{m}(t)+e_{p}^{T}(t)\bar{U}_{p}^{T}\left( i\right) \bar{ U}_{p}\left( i\right) e_{p}(t)-\gamma \omega _{1}^{T}(t)\omega _{1}(t) \\ &-\gamma \omega _{2}^{T}\left( t\right) \omega _{2}\left( t\right) -\gamma \omega _{3}^{T}(t-\tau (t))\omega _{3}(t-\tau (t))-\gamma \omega _{4}^{T}(t-\tau (t))\omega _{4}(t-\tau (t)) < 0 \end{align} | (3.13) |
and therefore completes the proof.
Remark 3. The above established sufficient convex optimization conditions are derived with aid of linear matrix inequality technique, which can be easily solved by Matlab LMI toolbox or other mathematical softwares. It should be pointed out that the matrix dimension dependents on both system mode information and the sensor networks structure, which means that the more system modes and sensors are involved, the more computational consumption is needed. As a result, the distributed state estimators should be well designed for practical system implements with considerable computational efficiency.
Theorem 2. For given \bar{d}_{p} , \bar{d}_{m} , \bar{\tau} and the modified H_{\infty } filtering can be satisfied over distributed sensor networks according to Definition 1, if there exist mode-dependent matrices P_{m}(i) > 0 , P_{p}(i) > 0 , X_{m}(i) > 0 , X_{p}(i) > 0 , Y_{F, m}\left(\rho \right) , Y_{F, p}\left(\rho \right) , Y_{K, m}\left(\rho \right) , Y_{K, p}\left(\rho \right), and matrices Q_{m} > 0 , Q_{p} > 0 , Q_{\tau } > 0 , R_{m} > 0 , R_{p} > 0 , R_{\tau } > 0 , such that \tilde{\Xi} _{i} < 0 , for all i\in \mathcal{N} , k = 1, 2, \ldots, N and \rho \in \mathcal{F} , k = 1, 2, \ldots, F , where
\begin{align*} \tilde{\Xi}(i) = &\left[ \begin{array}{ll} \tilde{\Xi}_{1}(i) & \tilde{\Xi}_{2}(i) \\ \ast & \tilde{\Xi}_{3}(i) \end{array} \right] , \\ \tilde{\Xi}_{1}(i) = &\left[ \begin{array}{ll} \tilde{\Xi}_{11}(i) & \tilde{\Xi}_{12}(i) \\ \ast & \tilde{\Xi}_{13}(i) \end{array} \right] , \\ \tilde{\Xi}_{11}(i) = &\left[ \begin{array}{ll} \tilde{\Xi}_{111}(i) & \tilde{\Xi}_{112}(i) \\ \ast & \tilde{\Xi}_{113}(i) \end{array} \right] , \\ \tilde{\Xi}_{111}(i) = &\left[ \begin{array}{ccccccc} \tilde{\Xi}_{1111}(i) & \tilde{\Xi}_{1112}(i) & 0 & 0 & R_{m} & 0 & 0 \\ \ast & \tilde{\Xi}_{1113}(i) & R_{\tau } & 0 & 0 & 0 & 0 \\ \ast & \ast & -Q_{\tau }-R_{\tau } & 0 & 0 & 0 & 0 \\ \ast & \ast & \ast & -Q_{m}-R_{m} & R_{m}^{T} & 0 & 0 \\ \ast & \ast & \ast & \ast & -2R_{m} & 0 & 0 \\ \ast & \ast & \ast & \ast & \ast & -Q_{p}-R_{p} & R_{p} \\ \ast & \ast & \ast & \ast & \ast & \ast & -2R_{p} \end{array} \right] , \\ \tilde{\Xi}_{112}(i) = &\left[ \begin{array}{cccccc} 0 & 0 & 0 & P_{m}(i)\bar{B}\left( i\right) & \tilde{\Xi}_{1121}(i) & 0 \\ 0 & 0 & 0 & 0 & -\kappa ^{2}\bar{H}_{m}^{T}\left( i\right) & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \bar{D}^{T}\left( i\right) P_{p}(i) & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ R_{p} & 0 & 0 & \varsigma & 0 & 0 \end{array} \right] , \\ \tilde{\Xi}_{113}(i) = &\left[ \begin{array}{cccccc} \tilde{\Xi}_{1131}(i) & \tilde{\Xi}_{1132}(i) & 0 & 0 & 0 & \tilde{\Xi} _{1133}(i) \\ \ast & \tilde{\Xi}_{1134}(i) & R_{\tau } & 0 & 0 & -\kappa ^{2}\bar{H} _{p}^{T}\left( i\right) \\ \ast & \ast & -R_{\tau } & 0 & 0 & 0 \\ \ast & \ast & \ast & -2I & 0 & 0 \\ \ast & \ast & \ast & \ast & \kappa ^{2}I-I & 0 \\ \ast & \ast & \ast & \ast & \ast & \kappa ^{2}I-I \end{array} \right] , \\ \tilde{\Xi}_{1111}(i) = &-2P_{m}(i)\bar{A}\left( i\right) +Q_{m}+Q_{\tau }-R_{m}-R_{\tau } \\ &+\bar{U}_{m}^{T}\left( i\right) \bar{U}_{m}\left( i\right) +\sum\limits_{j\in \mathcal{N}}\pi _{ij}P_{m}(j), \\ \tilde{\Xi}_{1112}(i) = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,m}(\rho ) \bar{H}_{m}(i) \\ &+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{K,m}(\rho )\bar{L}\bar{H} _{m}(i)+R_{\tau }, \\ \tilde{\Xi}_{1113}(i) = &-2R_{\tau }+\kappa ^{2}\bar{H}_{m}^{T}\left( i\right) \bar{H}_{m}\left( i\right) , \\ \tilde{\Xi}_{1121}(i) = &\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,m}(\rho )-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{K,m}(\rho )\bar{L}, \\ \tilde{\Xi}_{1131}(i) = &-2P_{p}(i)\bar{C}\left( i\right) +Q_{p }+Q_{\tau }-R_{p}-R_{\tau } \\ &+\bar{U}_{p}^{T}\left( i\right) \bar{U}_{p}\left( i\right) +\sum\limits_{j\in \mathcal{N}}\pi _{ij}P_{p}(i), \\ \tilde{\Xi}_{1132}(i) = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,p}(\rho ) \bar{H}_{p}(i) \\ &+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{K,p}(\rho )\bar{L}\bar{H} _{p}(i)+R_{\tau }, \\ \tilde{\Xi}_{1133}(i) = &\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,p}(\rho )-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{K,p}(\rho )\bar{L}, \\ \tilde{\Xi}_{1134}(i) = &-Q_{\tau }-2R_{\tau }+\kappa ^{2}\bar{H} _{p}^{T}\left( i\right) \bar{H}_{p}\left( i\right) , \end{align*} |
\begin{align*} \tilde{\Xi}_{12}(i) = &\left[ \begin{array}{cc} \tilde{\Xi}_{121}(i) & \tilde{\Xi}_{122}(i) \\ \tilde{\Xi}_{123}(i) & \tilde{\Xi}_{124}(i) \end{array} \right] , \\ \tilde{\Xi}_{121}(i) = &\left[ \begin{array}{cccc} P_{m}(i)\bar{E}_{m}\left( i\right) & 0 & \tilde{\Xi}_{1211}(i) & 0 \\ 0 & 0 & \kappa ^{2}\bar{H}_{m}^{T}\left( i\right) \bar{G}_{m}(i) & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & P_{p}(i)\bar{E}_{p}\left( i\right) & 0 & \tilde{\Xi}_{1212}(i) \end{array} \right] , \\ \tilde{\Xi}_{1211}(i) = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,m}(\rho ) \bar{G}_{m}(i) \\ &+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{K,m}(\rho )\bar{L}\bar{G}_{m}(i), \\ \tilde{\Xi}_{1212}(i) = &-\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,p}(\rho ) \bar{G}_{p}(i) \\ &+\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{K,p}(\rho )\bar{L}\bar{G}_{p}(i), \\ \tilde{\Xi}_{122}(i) = &\left[ \begin{array}{cccc} -\bar{d}_{m}\bar{A}^{T}\left( i\right) P_{m}\left( i\right) & 0 & -\bar{\tau}\bar{A}^{T}\left( i\right) P_{m}\left( i\right) & 0 \\ \tilde{\Xi}_{1221}(i) & 0 & \tilde{\Xi}_{1222}(i) & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & \bar{d}_{p}\bar{D}^{T}\left( i\right) P_{p}\left( i\right) & 0 & \bar{\tau}\bar{D}^{T}\left( i\right) P_{p}\left( i\right) \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -\bar{d}_{p}\bar{C}^{T}\left( i\right) P_{p}\left( i\right) & 0 & -\bar{\tau}\bar{C}^{T}\left( i\right) P_{p}\left( i\right) \end{array} \right] , \\ \tilde{\Xi}_{1221}(i) = &-\bar{d}_{m}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ H}_{m}^{T}(i)Y_{F,m}^{T}(\rho ) \\ &+\bar{d}_{m}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{m}^{T}(i)\bar{L} ^{T}Y_{K,m}^{T}(\rho ), \\ \tilde{\Xi}_{1222}(i) = &-\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ H}_{m}^{T}(i)Y_{F,m}^{T}(\rho ) \\ &+\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{m}^{T}(i)\bar{L} ^{T}Y_{K,m}^{T}(\rho ), \\ \tilde{\Xi}_{123}(i) = &\left[ \begin{array}{ccccc} 0 & 0 & 0 & \kappa ^{2}\bar{H}_{p}^{T}\left( i\right) \bar{G}_{p}(i) & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \bar{d}_{m}\bar{B}^{T}\left( i\right) P_{m}\left( i\right) \\ 0 & 0 & -\bar{G}_{m}(i) & 0 & \tilde{\Xi}_{1231}(i) \\ 0 & 0 & 0 & -\bar{G}_{p}(i) & 0 \end{array} \right] , \\ \tilde{\Xi}_{1231}(i) = &\bar{d}_{m}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,m}^{T}(\rho ) \\ &-\bar{d}_{m}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{L}^{T}Y_{K,m}^{T}(\rho ), \\ \tilde{\Xi}_{124}(i) = &\left[ \begin{array}{ccc} \tilde{\Xi}_{1241}(i) & 0 & \tilde{\Xi}_{1242}(i) \\ 0 & 0 & 0 \\ 0 & \bar{\tau}\bar{B}^{T}\left( i\right) P_{m}\left( i\right) & 0 \\ 0 & \tilde{\Xi}_{1243}(i) & 0 \\ \tilde{\Xi}_{1244}(i) & 0 & \tilde{\Xi}_{1245}(i) \end{array} \right] , \\ \tilde{\Xi}_{1241}(i) = &-\bar{d}_{p}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ H}_{p}^{T}(i)Y_{F,p}^{T}(\rho ) +\bar{d}_{p}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{p}^{T}(i)\bar{L} ^{T}Y_{K,p}^{T}(\rho ), \\ \tilde{\Xi}_{1242}(i) = &-\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ H}_{p}^{T}(i)Y_{F,p}^{T}(\rho ) +\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{H}_{p}^{T}(i)\bar{L} ^{T}Y_{K,p}^{T}(\rho ), \\ \tilde{\Xi}_{1243}(i) = &\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,m}^{T}(\rho )-\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{L}^{T}Y_{K,m}^{T}(\rho ), \\ \tilde{\Xi}_{1244}(i) = &\bar{d}_{p}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,p}^{T}(\rho ) -\bar{d}_{p}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{L}^{T}Y_{K,p}^{T}(\rho ), \\ \tilde{\Xi}_{1245}(i) = &\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }Y_{F,p}^{T}(\rho ) -\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{L}^{T}Y_{K,p}^{T}(\rho ), \end{align*} |
\begin{align*} \tilde{\Xi}_{13}(i) = &\left[ \begin{array}{cc} \tilde{\Xi}_{131}(i) & \tilde{\Xi}_{132}(i) \\ \ast & \tilde{\Xi}_{133}(i) \end{array} \right] , \\ \tilde{\Xi}_{131}(i) = &\left[ \begin{array}{cccc} -\gamma I & 0 & 0 & 0 \\ \ast & -\gamma I & 0 & 0 \\ \ast & \ast & \kappa ^{2}\bar{G}_{m}^{T}(i)\bar{G}_{m}(i)-\gamma I & 0 \\ \ast & \ast & \ast & \kappa ^{2}\bar{G}_{p}^{T}(i)\bar{G}_{p}(i)-\gamma I \end{array} \right] , \\ \tilde{\Xi}_{132}(i) = &\left[ \begin{array}{cccc} \bar{d}_{m}\bar{E}_{m}\left( i\right) P_{m}\left( i\right) & 0 & \bar{\tau} \bar{E}_{m}\left( i\right) P_{m}\left( i\right) & 0 \\ 0 & \bar{d}_{p}\bar{E}_{p}^{T}\left( i\right) P_{p}\left( i\right) & 0 & \bar{\tau}\bar{E}_{p}^{T}\left( i\right) P_{p}\left( i\right) \\ \tilde{\Xi}_{1311}(i) & 0 & \tilde{\Xi}_{1312}(i) & 0 \\ 0 & \tilde{\Xi}_{1313}(i) & 0 & \tilde{\Xi}_{1314}(i) \end{array} \right] , \\ \tilde{\Xi}_{133}(i) = &\left[ \begin{array}{cccc} R_{m}-2P_{m}\left( i\right) & 0 & 0 & 0 \\ \ast & R_{m}-2P_{p}\left( i\right) & 0 & 0 \\ \ast & \ast & R_{\tau }-2P_{m}\left( i\right) & 0 \\ \ast & \ast & \ast & R_{\tau }-2P_{p}\left( i\right) \end{array} \right] , \\ \tilde{\Xi}_{1311}(i) = &-\bar{d}_{m}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ G}_{m}^{T}(i)Y_{F,m}^{T}(\rho )+\bar{d}_{m}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{m}^{T}(i)\bar{L}^{T}Y_{K,m}^{T}(\rho ), \\ \tilde{\Xi}_{1312}(i) = &-\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ G}_{m}^{T}(i)Y_{F,m}^{T}(\rho )+\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{m}^{T}(i)\bar{L}^{T}Y_{K,m}^{T}(\rho ), \\ \tilde{\Xi}_{1313}(i) = &-\bar{d}_{p}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ G}_{p}^{T}(i)Y_{F,p}^{T}(\rho )+\bar{d}_{p}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{p}^{T}(i)\bar{L}^{T}Y_{K,p}^{T}(\rho ), \\ \tilde{\Xi}_{1314}(i) = &-\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{ G}_{p}^{T}(i)Y_{F,p}^{T}(\rho )+\bar{\tau}\sum\limits_{\rho = 1}^{F}\lambda _{i\rho }\bar{G}_{p}^{T}(i)\bar{L}^{T}Y_{K,p}^{T}(\rho ),\\ \tilde{\Xi}_{2}(i) = &\left[ \begin{array}{cc} \tilde{\Xi}_{21}(i) & \tilde{\Xi}_{22}(i) \\ \tilde{\Xi}_{23}(i) & \tilde{\Xi}_{24}(i) \end{array} \right] , \\ \tilde{\Xi}_{21}(i) = &\left[ \tilde{\Xi}_{211}(i),\tilde{\Xi}_{212}(i) \right] , \\ \tilde{\Xi}_{211}(i) = &\left[ \begin{array}{c} \lambda _{i1}(X_{m}\left( 1\right) -P_{m}(i)) \\ \epsilon _{m}\bar{H}_{m}^{T}(i)(Y_{F,m}^{T}(1)-\bar{L}^{T}Y_{K,m}^{T}(1)) \\ 0 \end{array} \right] , \\ \tilde{\Xi}_{212}(i) = &\left[ \begin{array}{ccc} \lambda _{i2}(X_{m}\left( 2\right) -P_{m}(i)) & \cdots & \lambda _{iF}(X_{m}\left( F\right) -P_{m}(i)) \\ \epsilon _{m}\bar{H}_{m}^{T}(i)(Y_{F,m}^{T}(2)-\bar{L}^{T}Y_{K,m}^{T}(2)) & \cdots & \epsilon _{m}\bar{H}_{m}^{T}(i)(Y_{F,m}^{T}(F)-\bar{L} ^{T}Y_{K,m}^{T}(F)) \\ 0 & \cdots & 0 \end{array} \right] , \\ \tilde{\Xi}_{22}(i) = &\left[ \tilde{\Xi}_{221}(i),\tilde{\Xi}_{222}(i) \right] , \\ \tilde{\Xi}_{221}(i) = &\left[ \begin{array}{c} 0 \\ \lambda _{i1}(X_{p}\left( 1\right) -P_{p}(i)) \\ \epsilon _{p}\bar{H}_{p}^{T}(i)(Y_{F,p}^{T}(1)-\bar{L}^{T}Y_{K,p}^{T}(1)) \\ 0 \end{array} \right] , \\ \tilde{\Xi}_{222}(i) = &\left[ \begin{array}{ccc} 0 & \cdots & 0 \\ \lambda _{i2}(X_{p}\left( 2\right) -P_{p}(i)) & \cdots & \lambda _{iF}(X_{p}\left( F\right) -P_{p}(i)) \\ \epsilon _{p}\bar{H}_{p}^{T}(i)(Y_{F,p}^{T}(2)-\bar{L}^{T}Y_{K,p}^{T}(2)) & \cdots & \epsilon _{p}\bar{H}_{p}^{T}(i)(Y_{F,p}^{T}(F)-\bar{L} ^{T}Y_{K,p}^{T}(F)) \\ 0 & \cdots & 0 \end{array} \right] , \\ \tilde{\Xi}_{23}(i) = &\left[ \tilde{\Xi}_{231}(i),\tilde{\Xi}_{232}(i) \right] , \\ \tilde{\Xi}_{231}(i) = &\left[ \begin{array}{c} \epsilon _{m}(\bar{L}^{T}Y_{K,m}^{T}(1)-Y_{F,m}^{T}(1)) \\ 0 \\ 0 \\ 0 \\ \epsilon _{m}\bar{G}_{m}^{T}(i)(Y_{F,m}^{T}(1)-\bar{L}^{T}Y_{K,m}^{T}(1)) \\ 0 \\ \bar{d}_{m}\lambda _{i1}(X_{m}\left( 1\right) -P_{m}(i)) \\ 0 \\ \bar{d}_{m}\lambda _{i1}(X_{m}\left( 1\right) -P_{m}(i)) \\ 0 \end{array} \right] , \\ \tilde{\Xi}_{232}(i) = &\left[ \begin{array}{ccc} \epsilon _{m}(\bar{L}^{T}Y_{K,m}^{T}(2)-Y_{F,m}^{T}(2)) & \cdots & \epsilon _{m}(\bar{L}^{T}Y_{K,m}^{T}(F)-Y_{F,m}^{T}(F)) \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \epsilon _{m}\bar{G}_{m}^{T}(i)(Y_{F,m}^{T}(2)-\bar{L}^{T}Y_{K,m}^{T}(2)) & \cdots & \epsilon _{m}^{T}\bar{G}_{m}^{T}(i)(Y_{F,m}^{T}(F)-\bar{L} ^{T}Y_{K,m}^{T}(F)) \\ 0 & \cdots & 0 \\ \bar{d}_{m}\lambda _{i2}(X_{m}\left( 2\right) -P_{m}(i)) & \cdots & \bar{d} _{m}\lambda _{iF}(X_{m}\left( F\right) -P_{m}(i)) \\ 0 & \cdots & 0 \\ \bar{d}_{m}\lambda _{i2}(X_{m}\left( 2\right) -P_{m}(i)) & \cdots & \bar{d} _{m}\lambda _{iF}(X_{m}\left( F\right) -P_{m}(i)) \\ 0 & \cdots & 0 \end{array} \right] , \\ \tilde{\Xi}_{24}(i) = &\left[ \tilde{\Xi}_{241}(i),\tilde{\Xi}_{242}(i) \right] , \\ \tilde{\Xi}_{241}(i) = &\left[ \begin{array}{c} 0 \\ \epsilon _{p}(\bar{L}^{T}Y_{K,p}^{T}(1)-Y_{F,p}^{T}(1)) \\ 0 \\ 0 \\ 0 \\ \epsilon _{p}\bar{G}_{p}^{T}(i)(Y_{F,p}^{T}(1)-\bar{L}^{T}Y_{K,p}^{T}(1)) \\ 0 \\ \bar{d}_{p}\lambda _{i1}(X_{p}\left( 1\right) -P_{p}(i)) \\ 0 \\ \bar{d}_{p}\lambda _{i1}(X_{p}\left( 1\right) -P_{p}(i)) \end{array} \right] , \\ \tilde{\Xi}_{242}(i) = &\left[ \begin{array}{ccc} 0 & \cdots & 0 \\ \epsilon _{p}(\bar{L}^{T}Y_{K,p}^{T}(2)-Y_{F,p}^{T}(2)) & \cdots & \epsilon _{p}(\bar{L}^{T}Y_{K,p}^{T}(F)-Y_{F,p}^{T}(F)) \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \epsilon _{p}\bar{G}_{p}^{T}(i)(Y_{F,p}^{T}(2)-\bar{L}^{T}Y_{K,p}^{T}(2)) & \cdots & \epsilon _{p}^{T}\bar{G}_{p}^{T}(i)(Y_{F,p}^{T}(F)-\bar{L} ^{T}Y_{K,p}^{T}(F)) \\ 0 & \cdots & 0 \\ \bar{d}_{p}\lambda _{i2}(X_{p}\left( 2\right) -P_{p}(i)) & \cdots & \bar{d} _{p}\lambda _{iF}(X_{p}\left( F\right) -P_{p}(i)) \\ 0 & \cdots & 0 \\ \bar{d}_{p}\lambda _{i2}(X_{p}\left( 2\right) -P_{p}(i)) & \cdots & \bar{d} _{p}\lambda _{iF}(X_{p}\left( F\right) -P_{p}(i)) \end{array} \right] , \end{align*} |
and
\begin{align} \tilde{\Xi}_{3}(i) = &\left[ \begin{array}{ll} \tilde{\Xi}_{31}(i) & \tilde{\Xi}_{32}(i) \\ \ast & \tilde{\Xi}_{33}(i) \end{array} \right] , \end{align} | (3.14) |
\begin{align} \tilde{\Xi}_{31}(i) = &\left[ \begin{array}{cccc} -2\epsilon _{m}X_{m}(1) & 0 & \cdots & 0 \\ \ast & -2\epsilon _{m}X_{m}(2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ast & \ast & \cdots & -2\epsilon _{m}X_{m}(F) \end{array} \right] \end{align} | (3.15) |
\begin{align} \tilde{\Xi}_{32}(i) = &0, \end{align} | (3.16) |
\begin{align} \tilde{\Xi}_{33}(i) = &\left[ \begin{array}{cccc} -2\epsilon _{p}X_{p}(1) & 0 & \cdots & 0 \\ \ast & -2\epsilon _{p}X_{p}(2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ast & \ast & \ast & -2\epsilon _{p}X_{p}(F) \end{array} \right] . \end{align} | (3.17) |
With the aforementioned feasible solutions, the desired mode-dependent filter gains F_{m}^{l}(\sigma (t)), F_{p}^{l}(\sigma (t)) and K_{m}^{l}(\sigma (t)), K_{p}^{l}(\sigma (t)) can be obtained by the following calculation:
\begin{align*} Y_{F,m}\left( \rho \right) X_{m}^{-1}\left( \rho \right) = &\bar{F} _{m}(\rho ), \\ Y_{F,p}\left( \rho \right) X_{p}^{-1}\left( \rho \right) = &\bar{F} _{p}(\rho ), \\ Y_{K,m}\left( \rho \right) X_{m}^{-1}\left( \rho \right) = &\bar{K} _{m}(\rho ), \\ Y_{K,p}\left( \rho \right) X_{p}^{-1}\left( \rho \right) = &\bar{K} _{p}(\rho ). \end{align*} |
Proof. By pre- and post-multiplying diag\{I, I, I, I, I, I, I, I, I, I, I, P_{m}\left(i\right), P_{p}\left(i\right), P_{m}\left(i\right), P_{p}\left(i\right) \} to \Xi(i) < 0 , Lemma 2 is employed accordingly.
Eventually, define Y_{F, m}\left(\rho \right) = X_{m}\left(\rho \right) \bar{F}_{m}(\rho) , Y_{F, p}\left(\rho \right) = X_{p}\left(\rho \right) \bar{F}_{p}(\rho) , Y_{K, m}\left(\rho \right) = X_{m}\left(\rho \right) \bar{K}_{m}(\rho) , Y_{K, p}\left(\rho \right) = X_{p}\left(\rho \right) \bar{K}_{p}(\rho) , then the remainder of proof will follow directly from Theorem 1.
Remark 4. The proposed modified H_{\infty} performance is more applicable for the distributed sensor networks design. In addition, the performance index \gamma can be further optimized by solving the following convex optimization problem:
\begin{align} &{\rm{minimize }}\; \gamma , \\ & {\rm{subject\; to } }\;\tilde{\Xi}_{i} < 0, i\in \mathcal{N}, \rho \in \mathcal{F}. \end{align} | (3.18) |
This section is dedicated to validate the applicability of our proposed distributed nonsynchronous designs, while illustrative studies have been performed with simulation results.
Consider the following HMJP GRNs model with a set of biological simulated parameters as
\begin{align*} A\left( 1\right) = &\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] ,A\left( 2\right) = \left[ \begin{array}{cc} 1.3 & 0 \\ 0 & 1.1 \end{array} \right] , \\ B\left( 1\right) = &\left[ \begin{array}{cc} 0.2 & 0.1 \\ 0.8 & 0.3 \end{array} \right] ,B\left( 2\right) = \left[ \begin{array}{cc} 0.3 & 0.2 \\ 0.1 & 0.2 \end{array} \right] , \\ C\left( 1\right) = &\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1.2 \end{array} \right] ,C\left( 2\right) = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] , \\ D\left( 1\right) = &\left[ \begin{array}{cc} 0.8 & 0 \\ 0 & 0.8 \end{array} \right] ,D\left( 2\right) = \left[ \begin{array}{cc} 1.1 & 0 \\ 0 & 1.3 \end{array} \right] , \\ E_{m}\left( 1\right) = &\left[ \begin{array}{l} 1.1 \\ 1 \end{array} \right] ,E_{m}\left( 2\right) = \left[ \begin{array}{l} 1.2 \\ 1.1 \end{array} \right] , \\ E_{p}\left( 1\right) = &\left[ \begin{array}{l} 1 \\ 1.1 \end{array} \right] ,E_{p}\left( 2\right) = \left[ \begin{array}{l} 1.2 \\ 1 \end{array} \right] , \\ U_{m}\left( 1\right) = &\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] ,U_{m}\left( 2\right) = \left[ \begin{array}{cc} 1.02 & 0 \\ 0 & 1.02 \end{array} \right] , \\ U_{p}\left( 1\right) = &\left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] ,U_{p}\left( 2\right) = \left[ \begin{array}{cc} 1.01 & 0 \\ 0 & 1.01 \end{array} \right] , \end{align*} |
where the transition rate matrix with two modes of hidden Marko chain are assumed by
\begin{equation*} \Pi = \left[ \begin{array}{cc} -0.2 & 0.2 \\ 0.8 & -0.8 \end{array} \right] . \end{equation*} |
For the sensor networks, it is assumed that two networked sensors are deployed for mRNAs as well as proteins, such that the communication topology matrix for each network is given by
\begin{equation*} \mathbb{L} = \left[ \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right] . \end{equation*} |
Moreover, the mode-dependent sensor parameters are set as follows:
\begin{align*} H_{m}^{1}\left( 1\right) & = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] ,H_{m}^{1}\left( 2\right) = \left[ \begin{array}{cc} 1.1 & 0 \\ 0 & 1.1 \end{array} \right] , \\ H_{m}^{2}\left( 1\right) & = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] ,H_{m}^{2}\left( 2\right) = \left[ \begin{array}{cc} 1.2 & 0 \\ 0 & 1.1 \end{array} \right] , \\ H_{p}^{1}\left( 1\right) & = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] ,H_{p}^{1}\left( 2\right) = \left[ \begin{array}{cc} 0.9 & 0 \\ 0 & 1.1 \end{array} \right] , \\ H_{p}^{2}\left( 1\right) & = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] ,H_{p}^{2}\left( 2\right) = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1.1 \end{array} \right] , \\ G_{m}^{1}\left( 1\right) & = \left[ \begin{array}{l} 1 \\ 1 \end{array} \right] ,G_{m}^{1}\left( 2\right) = \left[ \begin{array}{l} 1 \\ 1.1 \end{array} \right] , \\ G_{m}^{2}\left( 1\right) & = \left[ \begin{array}{l} 1 \\ 1 \end{array} \right] ,G_{m}^{2}\left( 2\right) = \left[ \begin{array}{l} 1.1 \\ 1 \end{array} \right] , \\ G_{p}^{1}\left( 1\right) & = \left[ \begin{array}{l} 1 \\ 1 \end{array} \right] ,G_{p}^{1}\left( 2\right) = \left[ \begin{array}{l} 0.9 \\ 1 \end{array} \right] , \\ G_{p}^{2}\left( 1\right) & = \left[ \begin{array}{l} 1 \\ 1 \end{array} \right] ,G_{p}^{2}\left( 2\right) = \left[ \begin{array}{l} 1 \\ 1.2 \end{array} \right] . \end{align*} |
In the simulation example, the sampling interval of networked sensors is set by h = 0.1 s. Furthermore, the probability matrix of observed modes is supposed to be
\begin{equation*} \Lambda = \left[ \begin{array}{cc} 0.7 & 0.3 \\ 0.2 & 0.8 \end{array} \right] , \end{equation*} |
which indicates that the nonsynchronous mode information is utilized instead of true system modes.
Consequently, with these simulation parameters, the optimized nonsynchronous mode-dependent filter gains are solved by Theorem 2 as follows:
\begin{align*} F_{m}^{1}\left( 1\right) & = \left[ \begin{array}{ll} 0.0071 & 0.0153 \\ -0.0353 & 0.0983 \end{array} \right] ,F_{m}^{1}\left( 2\right) = \left[ \begin{array}{ll} 0.0063 & 0.0147\\ -0.0387 & 0.1017 \end{array} \right] , \\ F_{m}^{2}\left( 1\right) & = \left[ \begin{array}{ll} 0.0130 & 0.0075\\ -0.0256 & 0.0718 \end{array} \right] ,F_{m}^{2}\left( 2\right) = \left[ \begin{array}{ll} 0.0141 & 0.0061\\ -0.0295 & 0.0782 \end{array} \right] , \\ F_{p}^{1}\left( 1\right) & = \left[ \begin{array}{ll} 0.0116 & 0.0051\\ -0.0122 & 0.0406 \end{array} \right] ,F_{p}^{1}\left( 2\right) = \left[ \begin{array}{ll} 0.0107 & 0.0088\\ -0.0133 & 0.0464 \end{array} \right] , \\ F_{p}^{2}\left( 1\right) & = \left[ \begin{array}{ll} 0.0106 & 0.0050\\ -0.0151 & 0.0461 \end{array} \right] ,F_{p}^{2}\left( 2\right) = \left[ \begin{array}{ll} 0.0089 & 0.0044\\ -0.0208 & 0.0444 \end{array} \right] , \\ K_{m}^{1}\left( 1\right) & = \left[ \begin{array}{ll} -0.0134 & -0.0113 \\ -0.0387 & -0.0323 \end{array} \right] ,K_{m}^{1}\left( 2\right) = \left[ \begin{array}{ll} -0.0135 & -0.0127\\ -0.0378 & -0.0351 \end{array} \right] , \\ K_{m}^{2}\left( 1\right) & = \left[ \begin{array}{ll} -0.0118 & -0.0082\\ -0.0263 & -0.0177 \end{array} \right] ,K_{m}^{2}\left( 2\right) = \left[ \begin{array}{ll} -0.0135 & -0.0115\\ -0.0283 & -0.0232 \end{array} \right] , \\ K_{p}^{1}\left( 1\right) & = \left[ \begin{array}{ll} -0.0080 & -0.0079\\ -0.0134 & -0.0149 \end{array} \right] ,K_{p}^{1}\left( 2\right) = \left[ \begin{array}{ll} -0.0079 & -0.0075\\ -0.0145 & -0.0153 \end{array} \right] , \\ K_{p}^{2}\left( 1\right) & = \left[ \begin{array}{ll} -0.0079 & -0.0066\\ -0.0145 & -0.0097 \end{array} \right] ,K_{p}^{2}\left( 2\right) = \left[ \begin{array}{ll} -0.0086 & -0.0061\\ -0.0170 & -0.0102 \end{array} \right] . \end{align*} |
As a result, the concentrations of mRNAs and proteins estimation errors over sensor networks are depicted in Figures 1–4, where the jumping modes of GRNs and sensors are illustrated in Figure 5, respectively. It can be seen that all the sensors can display effective estimations without true GRNs system mode information and thus provides an improved nonsynchronous distributed state estimation approach. Furthermore, the triggering events of the sensors are shown in Figures 6 and 7, respectively. Compared with common time-triggered strategies, one can clearly found that the event-triggered scheme can achieve a considerable improvement of communication efficiency. Therefore, these simulation results well demonstrate our distributed state estimation approach and supports our theoretical findings.
This paper is centered on the state estimation for GRNs with HMJPs over distributed sensor networks. More precisely, a novel event-triggered sensing scheme is developed for more effective estimation. In addition, since the modes of HMJPs might be nonsynchronous with the sensors, the nonsynchronous distributed state estimation is developed with aid of observed information, which is more practical for the implementations. On the basis of model transformation, sufficient mode-dependent conditions for ensuring the modified H_{\infty} performance are established and the desired nonsynchronous state estimation gains are designed by matrix manipulation techniques. In the end, numerical simulations are performed to show the usefulness and advantages of our theoretical results. It is noted that one interesting research issue of our future work is extending the current method to the cases with more complicated mode jumping features.
This work is supported by the National Natural Science Foundation of China under Grant 62173326 and the National Key Research and Development Plan of China under Grant 2020AAA0105900, and supported by Beijing Natural Science Foundation under Grant L211023.
The authors declare there is no conflict of interest.
[1] | W. W. Lytton, From computer to brain:Foundations of computational neuroscience, SpringerVerlag New York, 2002, URL https://doi.org/10.1007/b98859. |
[2] | B. Ermentrout, Neural networks as spatio-temporal pattern-forming systems, Rep. Prog. Phys., 61 (1998), 353-430, URL http://doi.org/10.1088/0034-4885/61/4/002. |
[3] | E. M. Izhikevich, Dynamical systems in neuroscience, MIT Press, 2007, URL https://mitpress.mit.edu/books/dynamical-systems-neuroscience. |
[4] | P. Ashwin, S. Coombes and R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosci., 6 (2016), 2, URL https://doi.org/10.1186/s13408-015-0033-6. |
[5] | S. I. Amari, Learning patterns and pattern sequences by self-organizing nets of threshold elements, IEEE Trans. Comput., C-21 (1972), 1197-1206, URL https://doi.org/10.1109/T-C.1972.223477. |
[6] | W. A. Little, The existence of persistent states in the brain, Math. Biosci., 19 (1974), 101-120, URL https://doi.org/10.1016/0025-5564(74)90031-5. |
[7] | J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. U.S.A., 79 (1982), 2554-2558, URL http://dx.doi.org/10.1073/pnas.79.8.2554. |
[8] | A. C. C. Coolen, Chapter 14, Statistical mechanics of recurrent neural networks I:Statics, vol. 4 of Handbook of Biological Physics, North-Holland, 2001, 553-618, URL https://doi.org/10.1016/S1383-8121(01)80017-8. |
[9] | A. C. C. Coolen, Chapter 15, Statistical mechanics of recurrent neural networks Ⅱ:Dynamics, vol. 4 of Handbook of Biological Physics, North-Holland, 2001, 619-684, URL https://doi.org/10.1016/S1383-8121(01)80018-X. |
[10] | D. Kernell, The adaptation and the relation between discharge frequency and current strength of cat lumbosacral motoneurones stimulated by long-lasting injected currents, Acta Physiol. Scand., 65 (1965), 65-73, URL https://doi.org/10.1111/j.1748-1716.1965.tb04250.x. |
[11] | D. Kernell, High-frequency repetitive firing of cat lumbosacral motoneurones stimulated by longlasting injected currents, Acta Physiol. Scand., 65 (1965), 74-86, URL https://doi.org/10.1111/j.1748-1716.1965.tb04251.x. |
[12] | P. Peretto, Collective properties of neural networks:A statistical physics approach, Biol. Cybern., 50 (1984), 51-62, URL https://doi.org/10.1007/BF00317939. |
[13] | I. Ginzburg and H. Sompolinsky, Theory of correlations in stochastic neural networks, Phys. Rev. E, 50 (1994), 3171-3191, URL https://doi.org/10.1103/PhysRevE.50.3171. |
[14] | D. Fasoli, A. Cattani and S. Panzeri, Pattern storage, bifurcations and groupwise correlation structure of an exactly solvable asymmetric neural network model, Neural Comput., 30 (2018), 1258-1295, URL https://doi.org/10.1162/NECO_a_01069. |
[15] | D. Fasoli and S. Panzeri, Optimized brute-force algorithms for the bifurcation analysis of a binary neural network model, Phys. Rev. E, 99 (2019), 012316, URL https://doi.org/10.1103/PhysRevE.99.012316. |
[16] | D. Fasoli and S. Panzeri, Stationary-state statistics of a binary neural network model with quenched disorder, Entropy, 21 (2019), 630, URL https://doi.org/10.3390/e21070630. |
[17] | D. J. Amit, Modeling brain function:The world of attractor neural networks, Cambridge University Press, 1989, URL https://doi.org/10.1017/CBO9780511623257. |
[18] | S. I. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern., 27 (1977), 77-87, URL https://doi.org/10.1007/BF00337259. |
[19] | C. van Vreeswijk and H. Sompolinsky, Chaos in neuronal networks with balanced excitatory and inhibitory activity, Science, 274 (1996), 1724-1726, URL https://doi.org/10.1126/science.274.5293.1724. |
[20] | S. I. Amari, Homogeneous nets of neuron-like elements, Biol. Cybern., 17 (1975), 211-220, URL https://doi.org/10.1007/BF00339367. |
[21] | D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett., 35 (1976), 1792-1796, URL https://doi.org/10.1103/PhysRevLett.35.1792. |
[22] | S. Kirkpatrick and D. Sherrington, Infinite-ranged models of spin-glasses, Phys. Rev. B, 17 (1978), 4384-4403, URL https://doi.org/10.1103/PhysRevB.17.4384. |
[23] |
M. Mézard, N. Sourlas, G. Toulouse, et al., Replica symmetry breaking and the nature of the spin glass phase, J. Phys., 45 (1984), 843-854, URL https://doi.org/10.1051/jphys:01984004505084300. doi: 10.1051/jphys:01984004505084300
![]() |
[24] | M. Mézard, G. Parisi and M. Virasoro, Spin glass theory and beyond:An introduction to the replica method and its applications, World Scientific Singapore, 1986, URL http://www.worldscientific.com/worldscibooks/10.1142/0271. |
[25] | R. J. Glauber, Time dependent statistics of the Ising model, J. Math. Phys., 4 (1963), 294-307, URL https://doi.org/10.1063/1.1703954. |
[26] | A. C. C. Coolen and D. Sherrington, Dynamics of fully connected attractor neural networks near saturation, Phys. Rev. Lett., 71 (1993), 3886-3889, URL https://doi.org/10.1103/PhysRevLett.71.3886. |
[27] | R. W. Williams and K. Herrup, The control of neuron number, Ann. Rev. Neurosci., 11 (1988), 423-453, URL https://doi.org/10.1146/annurev.ne.11.030188.002231. |
[28] | V. B. Mountcastle, The columnar organization of the neocortex, Brain, 120 (1997), 701-722, URL https://doi.org/10.1093/brain/120.4.701. |
[29] | M. Helmstaedter, C. P. de Kock, D. Feldmeyer, et al., Reconstruction of an average cortical column in silico, Brain Res. Rev., 55 (2007), 193-203, URL https://doi.org/10.1016/j.brainresrev.2007.07.011. |
[30] | H. S. Meyer, V. C. Wimmer, M. Oberlaender, et al., Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex, Cereb. Cortex, 20 (2010), 2277-2286, URL https://doi.org/10.1093/cercor/bhq067. |
[31] | M. De Luca, C. F. Beckmann, N. De Stefano, et al., fMRI resting state networks define distinct modes of long-distance interactions in the human brain, NeuroImage, 29 (2006), 1359-1367, URL https://doi.org/10.1016/j.neuroimage.2005.08.035. |
[32] | D. Mantini, M. G. Perrucci, C. Del Gratta, et al., Electrophysiological signatures of resting state networks in the human brain, Proc. Natl. Acad. Sci. USA, 104 (2007), 13170-13175, URL https://doi.org/10.1073/pnas.0700668104. |
[33] | R. D. Beer, On the dynamics of small continuous-time recurrent neural networks, Adapt. Behav., 3 (1995), 469-509, URL https://doi.org/10.1177/105971239500300405. |
[34] | F. Pasemann, Complex dynamics and the structure of small neural networks, Network-Comp. Neural, 13 (2002), 195-216, URL http://doi.org/10.1080/net.13.2.195.216. |
[35] | D. Fasoli, A. Cattani and S. Panzeri, The complexity of dynamics in small neural circuits, PLoS Comput. Biol., 12 (2016), e1004992, URL https://doi.org/10.1371/journal.pcbi.1004992. |
[36] | C. van Vreeswijk and H. Sompolinsky, Chaotic balanced state in a model of cortical circuits, Neural Comput., 10 (1998), 1321-1371, URL https://doi.org/10.1162/089976698300017214. |
[37] | B. Cessac, Increase in complexity in random neural networks, J. Phys. I France, 5 (1995), 409-432, URL http://doi.org/10.1051/jp1:1995135. |
[38] | A. Renart, J. De La Rocha, P. Bartho, et al., The asynchronous state in cortical circuits, Science, 327 (2010), 587-590, URL https://doi.org/10.1126/science.1179850. |
[39] | V. Pernice, B. Staude, S. Cardanobile, et al., Recurrent interactions in spiking networks with arbitrary topology, Phys. Rev. E, 85 (2012), 031916, URL https://doi.org/10.1103/PhysRevE.85.031916. |
[40] | J. Trousdale, Y. Hu, E. Shea-Brown, et al., Impact of network structure and cellular response on spike time correlations, PLoS Comput. Biol., 8 (2012), e1002408, URL https://doi.org/10.1371/journal.pcbi.1002408. |
[41] | T. Tetzlaff, M. Helias, G. T. Einevoll, et al., Decorrelation of neural-network activity by inhibitory feedback, PLoS Comput. Biol., 8 (2012), e1002596, URL https://doi.org/10.1371/journal.pcbi.1002596. |
[42] | M. Helias, T. Tetzlaff and M. Diesmann, Echoes in correlated neural systems, New J. Phys., 15 (2013), 023002, URL https://doi.org/10.1088/1367-2630/15/2/023002. |
[43] | T. Schwalger, M. Deger and W. Gerstner, Towards a theory of cortical columns:From spiking neurons to interacting neural populations of finite size, PLoS Comput. Biol., 13 (2017), e1005507, URL https://doi.org/10.1371/journal.pcbi.1005507. |
[44] | D. Dahmen, H. Bos and M. Helias, Correlated fluctuations in strongly coupled binary networks beyond equilibrium, Phys. Rev. X, 6 (2016), 031024, URL https://doi.org/10.1103/PhysRevX.6.031024. |
[45] | Y. A. Kuznetsov, Elements of applied bifurcation theory, vol. 112, Springer-Verlag New York, 1998, URL https://doi.org/10.1007/978-1-4757-3978-7. |
[46] | J. R. L. De Almeida and D. J. Thouless, Stability of the Sherrington-Kirkpatrick solution of a spin glass model, J. Phys. A:Math. Gen., 11 (1978), 983-990, URL https://doi.org/10.1088/0305-4470/11/5/028. |
[47] | R. I. Leine, D. H. Van Campen and B. L. Van De Vrande, Bifurcations in nonlinear discontinuous systems, Nonlinear Dyn., 23 (2000), 105-164, URL https://doi.org/10.1023/A:1008384928636. |
[48] | J. Awrejcewicz and C. H. Lamarque, Bifurcation and chaos in nonsmooth mechanical systems, World Scientific, 2003, URL http://doi.org/10.1142/5342. |
[49] | R. I. Leine and D. H. Van Campen, Bifurcation phenomena in non-smooth dynamical systems, Eur. J. Mech. A-Solid, 25 (2006), 595-616, URL https://doi.org/10.1016/j.euromechsol.2006.04.004. |
[50] | O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems:A survey, Physica D, 241 (2012), 1826-1844, URL https://doi.org/10.1016/j.physd.2012.08.002. |
[51] | J. Harris and B. Ermentrout, Bifurcations in the Wilson-Cowan equations with nonsmooth firing rate, SIAM J. Appl. Dyn. Syst., 14 (2015), 43-72, URL https://doi.org/10.1137/140977953. |
[52] | S. Parui and S. Banerjee, Border collision bifurcations at the change of state-space dimension, Chaos, 12 (2002), 1054-1069, URL https://doi.org/10.1063/1.1521390. |
[53] | B. Cessac and T. Viéville, On dynamics of integrate-and-fire neural networks with conductance based synapses, Front. Comput. Neurosci., 2 (2008), 2, URL https://doi.org/10.3389/neuro.10.002.2008. |
[54] | V. Avrutin, M. Schanz and S. Banerjee, Multi-parametric bifurcations in a piecewise-linear discontinuous map, Nonlinearity, 19 (2006), 1875-1906, URL https://doi.org/10.1088/0951-7715/19/8/007. |
[55] | R. Kötter, Neuroscience databases:A practical guide, Springer US, 2003, URL http://doi. org/10.1007/978-1-4615-1079-6. |
[56] | T. C. Potjans and M. Diesmann, The cell-type specific cortical microcircuit:Relating structure and activity in a full-scale spiking network model, Cereb. Cortex, 24 (2014), 785-806, URL https://doi.org/10.1093/cercor/bhs358. |
[57] | C. Boucsein, M. Nawrot, P. Schnepel, et al., Beyond the cortical column:Abundance and physiology of horizontal connections imply a strong role for inputs from the surround, Front. Neurosci., 5 (2011), 32, URL https://doi.org/10.3389/fnins.2011.00032. |
[58] | S. E. Palmer, O. Marre, M. J. Berry, et al., Predictive information in a sensory population, Proc. Natl. Acad. Sci. USA, 112 (2015), 6908-6913, URL https://doi.org/10.1073/pnas.1506855112. |
[59] | V. Rostami, P. Porta Mana, S. Grün, et al., Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models, PLoS Comput. Biol., 13 (2017), e1005762, URL https://doi.org/10.1371/journal.pcbi.1005762. |
[60] | S. I. Amari, Characteristics of random nets of analog neuron-like elements, IEEE Trans. Syst. Man Cybern., SMC-2 (1972), 643-657, URL https://doi.org/10.1109/TSMC.1972.4309193. |
[61] | G. Hermann and J. Touboul, Heterogeneous connections induce oscillations in large-scale networks, Phys. Rev. Lett., 109 (2012), 018702, URL https://doi.org/10.1103/PhysRevLett.109.018702. |
[62] | R. J. Vaughan and W. N. Venables, Permanent expressions for order statistic densities, J. R. Stat. Soc. Ser. B, 34 (1972), 308-310, URL http://www.jstor.org/stable/2985190. |
[63] | R. B. Bapat and M. I. Beg, Order statistics for nonidentically distributed variables and permanents, Sankhyā Ser. A, 51 (1989), 79-93, URL http://www.jstor.org/stable/25050725. |
[64] | R. B. Bapat, Permanents in probability and statistics, Linear Algebra Appl., 127 (1990), 3-25, URL https://doi.org/10.1016/0024-3795(90)90332-7. |
[65] | S. Hande, A note on order statistics for nondentically distributed variables, Sankhyā Ser. A, 56 (1994), 365-368, URL http://www.jstor.org/stable/25050995. |
[66] | C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization:Algorithms and complexity, Prentice Hall, 1982. |
[67] | O. Faugeras, J. Touboul and B. Cessac, A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs, Front. Comput. Neurosci., 3 (2009), 1, URL https://doi.org/10.3389/neuro.10.001.2009. |
[68] | T. Cabana and J. Touboul, Large deviations, dynamics and phase transitions in large stochastic and disordered neural networks, J. Stat. Phys., 153 (2013), 211-269, URL https://doi.org/10.1007/s10955-013-0818-5. |
[69] | K. Balasubramanian, Combinatorics and diagonals of matrices, PhD thesis, Indian Statistical Institute, 1980, URL http://library.isical.ac.in:8080/jspui/handle/10263/3603. |
[70] | E. Bax and J. Franklin, A finite-difference sieve to compute the permanent, Technical Report CalTech-CS-TR-96-04, 1996. |
[71] | E. Bax, Finite-difference algorithms for counting problems, PhD thesis, California Institute of Technology, 1998, URL https://thesis.library.caltech.edu/223/. |
[72] | D. G. Glynn, The permanent of a square matrix, Eur. J. Combin., 31 (2010), 1887-1891, URL https://doi.org/10.1016/j.ejc.2010.01.010. |
[73] | H. Sompolinsky and I. Kanter, Temporal association in asymmetric neural networks, Phys. Rev. Lett., 57 (1986), 2861-2864, URL http://dx.doi.org/10.1103/PhysRevLett.57.2861. |
[74] | D. Kleinfeld, Sequential state generation by model neural networks, Proc. Natl. Acad. Sci. U.S.A., 83 (1986), 9469-9473, URL http://dx.doi.org/10.1073/pnas.83.24.9469. |
[75] | S. Dehaene, J. P. Changeux and J. P. Nadal, Neural networks that learn temporal sequences by selection, Proc. Natl. Acad. Sci. U.S.A., 84 (1987), 2727-2731, URL https://doi.org/10.1073/pnas.84.9.2727. |
[76] | J. Buhmann and K. Schulten, Noise-driven temporal association in neural networks, Europhys Lett., 4 (1987), 1205, URL http://dx.doi.org/10.1209/0295-5075/4/10/021. |
[77] | J. DeFelipe, P. Marco, I. Busturia, et al., Estimation of the number of synapses in the cerebral cortex:Methodological considerations, Cereb. Cortex, 9 (1999), 722, URL http://dx.doi.org/10.1093/cercor/9.7.722. |
[78] | L. Personnaz, I. Guyon and G. Dreyfus, Collective computational properties of neural networks:New learning mechanisms, Phys. Rev. A, 34 (1986), 4217-4228, URL http://dx.doi.org/10.1103/PhysRevA.34.4217. |
[79] | M. Helias, T. Tetzlaff and M. Diesmann, The correlation structure of local neuronal networks intrinsically results from recurrent dynamics, PLoS Comput. Biol., 10 (2014), e1003428, URL https://doi.org/10.1371/journal.pcbi.1003428. |
[80] | G. Dumont, A. Payeur and A. Longtin, A stochastic-field description of finite-size spiking neural networks, PLoS Comput. Biol., 13 (2017), e1005691, URL https://doi.org/10.1371/journal.pcbi.1005691. |
[81] | M. A. Buice and C. C. Chow, Generalized activity equations for spiking neural network dynamics, Front. Comput. Neurosci., 7 (2013), 162, URL https://doi.org/10.3389/fncom.2013.00162. |
[82] | V. Klinshov and I. Franović, Mean-field dynamics of a random neural network with noise, Phys. Rev. E, 92 (2015), 062813, URL https://doi.org/10.1103/PhysRevE.92.062813. |
[83] | S. Hwang, V. Folli, E. Lanza, et al., On the number of limit cycles in asymmetric neural networks, J. Stat. Mech.:Theory Exp., 2019 (2019), 053402, URL https://doi.org/10.1088/1742-5468/ab11e3. |
[84] | O. Faugeras and J. MacLaurin, Asymptotic description of neural networks with correlated synaptic weights, Entropy, 17 (2015), 4701-4743, URL https://doi.org/10.3390/e17074701. |
[85] | D. Martí, N. Brunel and S. Ostojic, Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks, Phys. Rev. E, 97 (2018), 062314, URL https://doi.org/10.1103/PhysRevE.97.062314. |
[86] |
S. Panzeri, S. R. Schultz, A. Treves, et al., Correlations and the encoding of information in the nervous system, Proc. Biol. Sci., 266 (1999), 1001-1012, URL https://doi.org/10.1098/rspb.1999.0736. doi: 10.1098/rspb.1999.0736
![]() |
[87] | S. Panzeri, J. H. Macke, J. Gross, et al., Neural population coding:Combining insights from microscopic and mass signals, Trends Cogn. Sci., 19 (2015), 162-172, URL https://doi.org/10.1016/j.tics.2015.01.002. |
[88] | Y. Zuo, H. Safaai, G. Notaro, et al., Complementary contributions of spike timing and spike rate to perceptual decisions in rat S1 and S2 cortex, Curr. Biol., 25 (2015), 357-363, URL https://doi.org/10.1016/j.cub.2014.11.065. |
[89] | C. A. Runyan, E. Piasini, S. Panzeri, et al., Distinct timescales of population coding across cortex, Nature, 548 (2017), 92-96, URL https://doi.org/10.1038/nature23020. |
[90] | E. Zohary, M. N. Shadlen and W. T. Newsome, Correlated neuronal discharge rate and its implications for psychophysical performance, Nature, 370 (1994), 140-143, URL https://doi.org/10.1038/370140a0. |
[91] | W. Singer, Neuronal synchrony:A versatile code for the definition of relations?, Neuron, 24 (1999), 49-65, URL https://doi.org/10.1016/S0896-6273(00)80821-1. |
[92] | A. S. Ecker, P. Berens, G. A. Keliris, et al., Decorrelated neuronal firing in cortical microcircuits, Science, 327 (2010), 584-587, URL https://doi.org/10.1126/science.1179867. |
[93] | M. R. Cohen and A. Kohn, Measuring and interpreting neuronal correlations, Nat. Neurosci., 14 (2011), 811-819, URL https://doi.org/10.1038/nn.2842. |
[94] | R. Brette, Computing with neural synchrony, PLoS Comput. Biol., 8 (2012), e1002561, URL https://doi.org/10.1371/journal.pcbi.1002561. |
[95] | R. Moreno-Bote, J. Beck, I. Kanitscheider, et al., Information-limiting correlations, Nat. Neurosci., 17 (2014), 1410-1417, URL https://doi.org/10.1038/nn.3807. |
[96] | W.-C. A. Lee, V. Bonin, M. Reed, et al., Anatomy and function of an excitatory network in the visual cortex, Nature, 532 (2016), 370-374, URL https://doi.org/10.1038/nature17192. |
[97] | J. L. R. Rubenstein and M. M. Merzenich, Model of autism:Increased ratio of excitation/inhibition in key neural systems, Genes Brain Behav., 2 (2003), 255-267, URL https://doi.org/10.1034/j.1601-183X.2003.00037.x. |
[98] | H. Y. Zoghbi, Postnatal neurodevelopmental disorders:Meeting at the synapse?, Science, 302 (2003), 826-830, URL https://doi.org/10.1126/science.1089071. |
[99] | M. Sahin and M. Sur, Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders, Science, 350 (2015), aab3897, URL https://doi.org/10.1126/science.aab3897. |
[100] | J. P. K. Ip, N. Mellios and M. Sur, Rett syndrome:Insights into genetic, molecular and circuit mechanisms, Nat. Rev. Neurosci., 19 (2018), 368-382, URL https://doi.org/10.1038/s41583-018-0006-3. |
1. | Ahmad Tavana, Sam Ziamanesh, Hadi S. Salimi, Amir Aminzadeh Ghavifekr, Paolo Visconti, 2023, A GOA-Optimized Visible Light Communication System For Indoor High-Precision 3-D Positioning Service, 979-8-3503-1140-2, 2585, 10.1109/CoDIT58514.2023.10284069 | |
2. | 汝贵 Ru Gui, 秦岭 Qin Ling, 王凤英 Wang Fengying, 胡晓莉 Hu Xiaoli, 赵德胜 Zhao Desheng, 基于光电二极管阵列传感器的可见光定位系统, 2024, 44, 0253-2239, 2106005, 10.3788/AOS241001 | |
3. | Jiahui Wang, Xiangqing Wang, Chaochuan Jia, Cui Yang, Indoor Visible Light 3D Localization System Based on Black Wing Kite Algorithm, 2025, 13, 2169-3536, 20960, 10.1109/ACCESS.2025.3535528 | |
4. | Martin Dratnal, Lukas Danys, Radek Martinek, Bio-inspired optimization methods for visible light communication: a comprehensive review, 2025, 58, 1573-7462, 10.1007/s10462-025-11251-5 | |
5. | Xiaotong Mao, Lei Jing, Zhengrong Tong, Weihua Zhang, Peng Li, Xue Wang, Hao Wang, Tianyi Cao, Zhen Sun, Indoor visible light positioning system driven by deep neural network based on Kalman filtering and clustering optimization., 2025, 00304018, 132090, 10.1016/j.optcom.2025.132090 |