Research article Special Issues

A fit of CD4+ T cell immune response to an infection by lymphocytic choriomeningitis virus

  • We fit an immune response model to data reporting the CD4+ T cell numbers from the 28 days following the infection of mice with lymphocytic choriomeningitis virus LCMV. We used an ODE model that was previously used to describe qualitatively the behaviour of CD4+ T cells, regulatory T cells (Tregs) and interleukine-2 (IL-2) density. The model considered two clonotypes of T cells in order to fit simultaneously the two time series for the gp61 and NP309 epitopes. We observed the proliferation of T cells and, to a lower extent, Tregs during the immune activation phase following infection and subsequently, during the contraction phase, a smooth transition from faster to slower death rates. The six parameters that were optimized were: the beginning and ending times of the immune response, the growth rate of T cells, their capacity, and the two related with the homeostatic numbers of T cells that respond to each epitope. We showed that the ODE model was able to be calibrated thus providing a quantitative description of the data.

    Citation: Atefeh Afsar, Filipe Martins, Bruno M. P. M. Oliveira, Alberto A. Pinto. A fit of CD4+ T cell immune response to an infection by lymphocytic choriomeningitis virus[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7009-7021. doi: 10.3934/mbe.2019352

    Related Papers:

    [1] Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075
    [2] Tailei Zhang, Hui Li, Na Xie, Wenhui Fu, Kai Wang, Xiongjie Ding . Mathematical analysis and simulation of a Hepatitis B model with time delay: A case study for Xinjiang, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1757-1775. doi: 10.3934/mbe.2020092
    [3] Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060
    [4] Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283
    [5] Xiaowen Xiong, Yanqiu Li, Bingliang Li . Global stability of age-of-infection multiscale HCV model with therapy. Mathematical Biosciences and Engineering, 2021, 18(3): 2182-2205. doi: 10.3934/mbe.2021110
    [6] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
    [7] Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo . Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070
    [8] Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483
    [9] Junli Liu . Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239
    [10] Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409
  • We fit an immune response model to data reporting the CD4+ T cell numbers from the 28 days following the infection of mice with lymphocytic choriomeningitis virus LCMV. We used an ODE model that was previously used to describe qualitatively the behaviour of CD4+ T cells, regulatory T cells (Tregs) and interleukine-2 (IL-2) density. The model considered two clonotypes of T cells in order to fit simultaneously the two time series for the gp61 and NP309 epitopes. We observed the proliferation of T cells and, to a lower extent, Tregs during the immune activation phase following infection and subsequently, during the contraction phase, a smooth transition from faster to slower death rates. The six parameters that were optimized were: the beginning and ending times of the immune response, the growth rate of T cells, their capacity, and the two related with the homeostatic numbers of T cells that respond to each epitope. We showed that the ODE model was able to be calibrated thus providing a quantitative description of the data.




    [1] J. Banchereau, F. Briere, C. Caux, et al., Immunobiology of dendritic cells, Annu. Rev. Immunol., 18 (2000), 767–811.
    [2] J. Zhu and W. E. Paul, CD4 T cells: fates, functions, and faults, Blood, 112 (2008), 1557–1569.
    [3] N. J. Burroughs, B. M. P. M. Oliveira and A. A. Pinto, Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses, J. Theor. Biol., 241 (2006), 134–141.
    [4] A. L. Cava, Tregs are regulated by cytokines: Implications for autoimmunity, Autoimmun. Rev., 8 (2008), 83–87.
    [5] B.-I. Moon, T. H. Kim and J.-Y. Seoh, Functional modulation of regulatory T cells by IL-2, PLoS One, 10 (2015), 1–13.
    [6] E. M. Shevach, R. S. McHugh, C. A. Piccirillo, et al., Control of T-cell activation by CD4+ CD25+ suppressor T cells, Immunol. Rev., 182 (2001), 58–67.
    [7] A. M. Thornton and E. M. Shevach, CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukine 2 production, The Journal of Experimental Medicine, 188 (1998), 287–296.
    [8] L. A. Turka and P. T. Walsh, IL-2 signaling and CD4+ CD25+ Foxp3+ regulatory T cells, Front. Biosci., 13 (2008), 1440–1446.
    [9] S. Sakaguchi, Naturally arising CD4+ regulatory T cells for immunological self-tolerance and negative control of immune responses, Annu. Rev. Immunol., 22 (2004), 531–562.
    [10] J. Zhu, H. Yamane and W. E. Paul, Differentiation of Effector CD4 T Cell Populations, Annu. Rev. Immunol., 28 (2010), 445–489.
    [11] D. Homann, L. Teyton and M. B. Oldstone, Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory, Nat. Med., 7 (2001), 913–919.
    [12] R. E. Callard and A. J. Yates, Immunology and mathematics: crossing the divide, Immunology, 115 (2005), 21–33.
    [13] G. Lythe and C. Molina-París, Some deterministic and stochastic mathematical models of naïve T-cell homeostasis, Immunol. Rev., 285 (2018), 206–217.
    [14] R. J. de Boer and P. Hogeweg, Immunological discrimination between self and non-self by precur-sor depletion and memory accumulation, J. Theor. Biol., 124 (1987), 343–369.
    [15] A. Pinto, N. Burroughs, F. Ferreira, et al., Dynamics of immunological models, Acta Biotheor., 58 (2010), 391–404.
    [16] K. Blyuss and L. Nicholson, The role of tunable activation thresholds in the dynamics of autoim-munity, J. Theor. Biol., 308 (2012), 45–55.
    [17] S. Khailaie, F. Bahrami, M. Janahmadi, et al., A mathematical model of immune activation with a unified self-nonself concept, Front. Immunol., 4 (2013), 474.
    [18] K. León, A. Lage, and J. Carneiro, Tolerance and immunity in a mathematical model of T-cell mediated suppression, J. Theor. Biol., 225 (2003), 107–126.
    [19] C. Bianca and L. Brézin, Modeling the antigen recognition by B-cell and T-cell receptors through thermostatted kinetic theory methods, Int. J. Biomath., 10 (2017), 1750072.
    [20] R. F. Alvarez, J. A. Barbuto and R. Venegeroles, A nonlinear mathematical model of cell-mediated immune response for tumor phenotypic heterogeneity, J. Theor. Biol., 471 (2019), 42–50.
    [21] N. Burroughs, M. Ferreira, B. Oliveira, et al., Autoimmunity arising from bystander proliferation of T cells in an immune response model, Math. Comput. Modell., 53 (2011), 1389–1393.
    [22] B. M. P. M. Oliveira, R. Trinchet, M. V. Otero-Espinar, et al., Modelling the suppression of au-toimmunity after pathogen infection, Math. Methods Appl. Sci., 41 (2018), 8565–8570.
    [23] B. M. P. M. Oliveira, I. P. Figueiredo, N. J. Burroughs, et al., Approximate equilibria for a T cell and Treg model, Appl. Math. Inform. Sci., 9 (2015), 2221–2231.
    [24] N. Burroughs, B. Oliveira, A. Pinto, et al., Immune response dynamics, Math. Comput. Modell., 53 (2011), 1410–1419.
    [25] N. Burroughs, B. Oliveira, A. Pinto, et al., Sensibility of the quorum growth thresholds controlling local immune responses, Math. Comput. Modell., 47 (2008), 714–725.
    [26] N. Burroughs, M. Ferreira, B. Oliveira, et al., A transcritical bifurcation in an immune response model, J. Differ. Eq. Appl., 17 (2011), 1101–1106.
    [27] B. M. P. M. Oliveira, A. Yusuf, I. P. Figueiredo, et al., The effect of a linear tuning between the antigenic stimulations of T cells and Tregs. In Preparation.
    [28] N. J. Burroughs, M. Ferreira, J. Martins, et al., Dynamics and biological thresholds, in Dynam-ics, Games and Science I, DYNA 2008, in Honor of Maur´ ıcio Peixoto and David Rand (editors A. A. Pinto, D. A. Rand, and M. M. Peixoto), volume 1 of Springer Proceedings in Mathematics, Springer-Verlag Berlin Heidelberg (2011), pp. 183–191.
    [29] R. J. de Boer, D. Homann and A. S. Perelson, Different Dynamics of CD4+ and CD8+ T Cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection, J. Immunol., 171 (2003), 3928–3935.
    [30] R. J. de Boer and A. S. Perelson, Quantifying T lymphocyte turnover, J. Theor. Biol., 327 (2013), 45–87.
    [31] R. E. Callard, J. Stark and A. J. Yates, Fratricide: a mechanism for T memory-cell homeostasis, Trends Immunol., 24 (2003), 370–375.
    [32] S. Nagata, Fas ligand-induced apoptosis, Annu. Rev. Genet., 33 (1999), 29–55.
    [33] P. M. Anderson and M. A. Sorenson, Effects of route and formulation on clinical pharmacokinetics of interleukine-2, Clin. Pharmacokinet., 27 (1994), 19–31.
    [34] A. R. Mclean and C. A. Michie, In vivo estimates of division and death rates of human t lympho-cytes., Proceedings of the National Academy of Sciences, 92 (1995), 3707–3711.
    [35] C. Michie, A. McLean, C. Alcock, et al., Life-span of human lymphocyte subsets defined by CD45 isoforms, Nature, 360 (1992), 264–265.
    [36] D. Moskophidis, M. Battegay, M. Vandenbroek, et al., Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus, J. Gen. Virol., 76 (1995), 381–391.
    [37] H. Veiga-Fernandes, U. Walter, C. Bourgeois, et al., Response of naïve and memory CD8+ T cells to antigen stimulation in vivo, Nat. Immunol., 1 (2000), 47–53. 38. G. A. Seber and C. J. Wild, Nonlinear Regression, Wiley and Sons (2003).
  • This article has been cited by:

    1. F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, 2015, 263, 00255564, 51, 10.1016/j.mbs.2015.02.002
    2. Wei Wang, Wanbiao Ma, Hepatitis C virus infection is blocked by HMGB1: A new nonlocal and time-delayed reaction–diffusion model, 2018, 320, 00963003, 633, 10.1016/j.amc.2017.09.046
    3. A. Cousien, V. C. Tran, S. Deuffic-Burban, M. Jauffret-Roustide, J.-S. Dhersin, Y. Yazdanpanah, Dynamic modelling of hepatitis C virus transmission among people who inject drugs: a methodological review, 2015, 22, 13520504, 213, 10.1111/jvh.12337
    4. David P. Durham, Laura A. Skrip, Robert Douglas Bruce, Silvia Vilarinho, Elamin H. Elbasha, Alison P. Galvani, Jeffrey P. Townsend, The Impact of Enhanced Screening and Treatment on Hepatitis C in the United States, 2016, 62, 1058-4838, 298, 10.1093/cid/civ894
    5. Emily D. Bethea, Qiushi Chen, Chin Hur, Raymond T. Chung, Jagpreet Chhatwal, Should we treat acute hepatitis C? A decision and cost-effectiveness analysis, 2018, 67, 02709139, 837, 10.1002/hep.29611
    6. Lauren E. Cipriano, Jeremy D. Goldhaber-Fiebert, Population Health and Cost-Effectiveness Implications of a “Treat All” Recommendation for HCV: A Review of the Model-Based Evidence, 2018, 3, 2381-4683, 238146831877663, 10.1177/2381468318776634
    7. Wei Wang, Wanbiao Ma, Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling, 2018, 59, 10075704, 488, 10.1016/j.cnsns.2017.11.024
    8. Cheng Ding, Xiaoxiao Liu, Shigui Yang, The value of infectious disease modeling and trend assessment: a public health perspective, 2021, 1478-7210, 1, 10.1080/14787210.2021.1882850
    9. Ignacio Rozada, Daniel Coombs, Viviane D. Lima, Conditions for eradicating hepatitis C in people who inject drugs: A fibrosis aware model of hepatitis C virus transmission, 2016, 395, 00225193, 31, 10.1016/j.jtbi.2016.01.030
    10. Karen Van Nuys, Ronald Brookmeyer, Jacquelyn W. Chou, David Dreyfus, Douglas Dieterich, Dana P. Goldman, Broad Hepatitis C Treatment Scenarios Return Substantial Health Gains, But Capacity Is A Concern, 2015, 34, 0278-2715, 1666, 10.1377/hlthaff.2014.1193
    11. Ashley B Pitcher, Annick Borquez, Britt Skaathun, Natasha K Martin, Mathematical modeling of hepatitis c virus (HCV) prevention among people who inject drugs: A review of the literature and insights for elimination strategies, 2019, 481, 00225193, 194, 10.1016/j.jtbi.2018.11.013
    12. Ruiqing Shi, Yunting Cui, Global analysis of a mathematical model for Hepatitis C virus transmissions, 2016, 217, 01681702, 8, 10.1016/j.virusres.2016.02.006
    13. Mingwang Shen, Yanni Xiao, Weike Zhou, Zhen Li, Global Dynamics and Applications of an Epidemiological Model for Hepatitis C Virus Transmission in China, 2015, 2015, 1026-0226, 1, 10.1155/2015/543029
    14. A. Nwankwo, D. Okuonghae, Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis, 2018, 80, 0092-8240, 437, 10.1007/s11538-017-0384-0
    15. Yao Wang, Zeyu Zhao, Mingzhai Wang, Mikah Ngwanguong Hannah, Qingqing Hu, Jia Rui, Xingchun Liu, Yuanzhao Zhu, Jingwen Xu, Meng Yang, Jing-An Cui, Yanhua Su, Benhua Zhao, Tianmu Chen, The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China, 2020, 148, 0950-2688, 10.1017/S0950268820002885
    16. M. E. Woode, M. Abu‐Zaineh, J. Perriëns, F. Renaud, S. Wiktor, J.‐P. Moatti, Potential market size and impact of hepatitis C treatment in low‐ and middle‐income countries, 2016, 23, 1352-0504, 522, 10.1111/jvh.12516
    17. Oluwasegun M. Ibrahim, Daniel Okuonghae, Monday N.O. Ikhile, Mathematical Modeling of the Population Dynamics of Age-Structured Criminal Gangs with Correctional Intervention Measures, 2022, 107, 0307904X, 39, 10.1016/j.apm.2022.02.005
    18. S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population, 2022, 42, 0252-9602, 2087, 10.1007/s10473-022-0521-1
    19. Louiza Tabharit, Maghnia Hamou Maamar, 2021, Mathematical Modeling of Chronic Hepatitis C Treatment’s Effect on the Evolution of its Complications, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585963
    20. Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.1
    21. Baolin Li, Fengqin Zhang, Xia Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response, 2022, 45, 0170-4214, 11930, 10.1002/mma.8547
    22. Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9
    23. Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo, Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level, 2021, 19, 1551-0018, 1515, 10.3934/mbe.2022070
    24. R. Rakkiyappan, V. Preethi Latha, F. A. Rihan, Global Dynamics of a Fractional-order Ebola Model with Delayed Immune Response on Complex Networks, 2021, 91, 0369-8203, 681, 10.1007/s40010-021-00756-7
    25. Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang, A nonlinear HCV model in deterministic and randomly fluctuating environments, 2023, 46, 0170-4214, 4644, 10.1002/mma.8792
    26. Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad, New applications related to hepatitis C model, 2022, 7, 2473-6988, 11362, 10.3934/math.2022634
    27. Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.2
    28. Vuk Vujović, Influence of environmental fluctuations on Hepatitis C transmission, 2022, 191, 03784754, 203, 10.1016/j.matcom.2021.08.008
    29. Robert B Hood, Alison H Norris, Abigail Shoben, William C Miller, Randall E Harris, Laura W Pomeroy, Forecasting Hepatitis C Virus Status for Children in the United States: A Modeling Study, 2024, 1058-4838, 10.1093/cid/ciae157
    30. Parvaiz Ahmad Naik, Mehmet Yavuz, Sania Qureshi, Mehraj-ud-din Naik, Kolade M. Owolabi, Amanullah Soomro, Abdul Hamid Ganie, Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment, 2024, 01692607, 108306, 10.1016/j.cmpb.2024.108306
    31. Shewafera Wondimagegnhu Teklu, Tsegaye Simon Lachamo, Tibebu Tulu Guya, Analyses of a stage structure hepatitis c virus compartmental model with optimal control theory, 2025, 11, 2363-6203, 10.1007/s40808-025-02288-0
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4596) PDF downloads(415) Cited by(6)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog