Citation: Atefeh Afsar, Filipe Martins, Bruno M. P. M. Oliveira, Alberto A. Pinto. A fit of CD4+ T cell immune response to an infection by lymphocytic choriomeningitis virus[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 7009-7021. doi: 10.3934/mbe.2019352
[1] | Amar Nath Chatterjee, Fahad Al Basir, Yasuhiro Takeuchi . Effect of DAA therapy in hepatitis C treatment — an impulsive control approach. Mathematical Biosciences and Engineering, 2021, 18(2): 1450-1464. doi: 10.3934/mbe.2021075 |
[2] | Tailei Zhang, Hui Li, Na Xie, Wenhui Fu, Kai Wang, Xiongjie Ding . Mathematical analysis and simulation of a Hepatitis B model with time delay: A case study for Xinjiang, China. Mathematical Biosciences and Engineering, 2020, 17(2): 1757-1775. doi: 10.3934/mbe.2020092 |
[3] | Suxia Zhang, Hongbin Guo, Robert Smith? . Dynamical analysis for a hepatitis B transmission model with immigration and infection age. Mathematical Biosciences and Engineering, 2018, 15(6): 1291-1313. doi: 10.3934/mbe.2018060 |
[4] | Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283 |
[5] | Xiaowen Xiong, Yanqiu Li, Bingliang Li . Global stability of age-of-infection multiscale HCV model with therapy. Mathematical Biosciences and Engineering, 2021, 18(3): 2182-2205. doi: 10.3934/mbe.2021110 |
[6] | Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019 |
[7] | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo . Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level. Mathematical Biosciences and Engineering, 2022, 19(2): 1515-1535. doi: 10.3934/mbe.2022070 |
[8] | Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483 |
[9] | Junli Liu . Threshold dynamics of a time-delayed hantavirus infection model in periodic environments. Mathematical Biosciences and Engineering, 2019, 16(5): 4758-4776. doi: 10.3934/mbe.2019239 |
[10] | Yicang Zhou, Zhien Ma . Global stability of a class of discrete age-structured SIS models with immigration. Mathematical Biosciences and Engineering, 2009, 6(2): 409-425. doi: 10.3934/mbe.2009.6.409 |
[1] | J. Banchereau, F. Briere, C. Caux, et al., Immunobiology of dendritic cells, Annu. Rev. Immunol., 18 (2000), 767–811. |
[2] | J. Zhu and W. E. Paul, CD4 T cells: fates, functions, and faults, Blood, 112 (2008), 1557–1569. |
[3] | N. J. Burroughs, B. M. P. M. Oliveira and A. A. Pinto, Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses, J. Theor. Biol., 241 (2006), 134–141. |
[4] | A. L. Cava, Tregs are regulated by cytokines: Implications for autoimmunity, Autoimmun. Rev., 8 (2008), 83–87. |
[5] | B.-I. Moon, T. H. Kim and J.-Y. Seoh, Functional modulation of regulatory T cells by IL-2, PLoS One, 10 (2015), 1–13. |
[6] | E. M. Shevach, R. S. McHugh, C. A. Piccirillo, et al., Control of T-cell activation by CD4+ CD25+ suppressor T cells, Immunol. Rev., 182 (2001), 58–67. |
[7] | A. M. Thornton and E. M. Shevach, CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukine 2 production, The Journal of Experimental Medicine, 188 (1998), 287–296. |
[8] | L. A. Turka and P. T. Walsh, IL-2 signaling and CD4+ CD25+ Foxp3+ regulatory T cells, Front. Biosci., 13 (2008), 1440–1446. |
[9] | S. Sakaguchi, Naturally arising CD4+ regulatory T cells for immunological self-tolerance and negative control of immune responses, Annu. Rev. Immunol., 22 (2004), 531–562. |
[10] | J. Zhu, H. Yamane and W. E. Paul, Differentiation of Effector CD4 T Cell Populations, Annu. Rev. Immunol., 28 (2010), 445–489. |
[11] | D. Homann, L. Teyton and M. B. Oldstone, Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory, Nat. Med., 7 (2001), 913–919. |
[12] | R. E. Callard and A. J. Yates, Immunology and mathematics: crossing the divide, Immunology, 115 (2005), 21–33. |
[13] | G. Lythe and C. Molina-París, Some deterministic and stochastic mathematical models of naïve T-cell homeostasis, Immunol. Rev., 285 (2018), 206–217. |
[14] | R. J. de Boer and P. Hogeweg, Immunological discrimination between self and non-self by precur-sor depletion and memory accumulation, J. Theor. Biol., 124 (1987), 343–369. |
[15] | A. Pinto, N. Burroughs, F. Ferreira, et al., Dynamics of immunological models, Acta Biotheor., 58 (2010), 391–404. |
[16] | K. Blyuss and L. Nicholson, The role of tunable activation thresholds in the dynamics of autoim-munity, J. Theor. Biol., 308 (2012), 45–55. |
[17] | S. Khailaie, F. Bahrami, M. Janahmadi, et al., A mathematical model of immune activation with a unified self-nonself concept, Front. Immunol., 4 (2013), 474. |
[18] | K. León, A. Lage, and J. Carneiro, Tolerance and immunity in a mathematical model of T-cell mediated suppression, J. Theor. Biol., 225 (2003), 107–126. |
[19] | C. Bianca and L. Brézin, Modeling the antigen recognition by B-cell and T-cell receptors through thermostatted kinetic theory methods, Int. J. Biomath., 10 (2017), 1750072. |
[20] | R. F. Alvarez, J. A. Barbuto and R. Venegeroles, A nonlinear mathematical model of cell-mediated immune response for tumor phenotypic heterogeneity, J. Theor. Biol., 471 (2019), 42–50. |
[21] | N. Burroughs, M. Ferreira, B. Oliveira, et al., Autoimmunity arising from bystander proliferation of T cells in an immune response model, Math. Comput. Modell., 53 (2011), 1389–1393. |
[22] | B. M. P. M. Oliveira, R. Trinchet, M. V. Otero-Espinar, et al., Modelling the suppression of au-toimmunity after pathogen infection, Math. Methods Appl. Sci., 41 (2018), 8565–8570. |
[23] | B. M. P. M. Oliveira, I. P. Figueiredo, N. J. Burroughs, et al., Approximate equilibria for a T cell and Treg model, Appl. Math. Inform. Sci., 9 (2015), 2221–2231. |
[24] | N. Burroughs, B. Oliveira, A. Pinto, et al., Immune response dynamics, Math. Comput. Modell., 53 (2011), 1410–1419. |
[25] | N. Burroughs, B. Oliveira, A. Pinto, et al., Sensibility of the quorum growth thresholds controlling local immune responses, Math. Comput. Modell., 47 (2008), 714–725. |
[26] | N. Burroughs, M. Ferreira, B. Oliveira, et al., A transcritical bifurcation in an immune response model, J. Differ. Eq. Appl., 17 (2011), 1101–1106. |
[27] | B. M. P. M. Oliveira, A. Yusuf, I. P. Figueiredo, et al., The effect of a linear tuning between the antigenic stimulations of T cells and Tregs. In Preparation. |
[28] | N. J. Burroughs, M. Ferreira, J. Martins, et al., Dynamics and biological thresholds, in Dynam-ics, Games and Science I, DYNA 2008, in Honor of Maur´ ıcio Peixoto and David Rand (editors A. A. Pinto, D. A. Rand, and M. M. Peixoto), volume 1 of Springer Proceedings in Mathematics, Springer-Verlag Berlin Heidelberg (2011), pp. 183–191. |
[29] | R. J. de Boer, D. Homann and A. S. Perelson, Different Dynamics of CD4+ and CD8+ T Cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection, J. Immunol., 171 (2003), 3928–3935. |
[30] | R. J. de Boer and A. S. Perelson, Quantifying T lymphocyte turnover, J. Theor. Biol., 327 (2013), 45–87. |
[31] | R. E. Callard, J. Stark and A. J. Yates, Fratricide: a mechanism for T memory-cell homeostasis, Trends Immunol., 24 (2003), 370–375. |
[32] | S. Nagata, Fas ligand-induced apoptosis, Annu. Rev. Genet., 33 (1999), 29–55. |
[33] | P. M. Anderson and M. A. Sorenson, Effects of route and formulation on clinical pharmacokinetics of interleukine-2, Clin. Pharmacokinet., 27 (1994), 19–31. |
[34] | A. R. Mclean and C. A. Michie, In vivo estimates of division and death rates of human t lympho-cytes., Proceedings of the National Academy of Sciences, 92 (1995), 3707–3711. |
[35] | C. Michie, A. McLean, C. Alcock, et al., Life-span of human lymphocyte subsets defined by CD45 isoforms, Nature, 360 (1992), 264–265. |
[36] | D. Moskophidis, M. Battegay, M. Vandenbroek, et al., Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus, J. Gen. Virol., 76 (1995), 381–391. |
[37] | H. Veiga-Fernandes, U. Walter, C. Bourgeois, et al., Response of naïve and memory CD8+ T cells to antigen stimulation in vivo, Nat. Immunol., 1 (2000), 47–53. 38. G. A. Seber and C. J. Wild, Nonlinear Regression, Wiley and Sons (2003). |
1. | F. Nazari, A.B. Gumel, E.H. Elbasha, Differential characteristics of primary infection and re-infection can cause backward bifurcation in HCV transmission dynamics, 2015, 263, 00255564, 51, 10.1016/j.mbs.2015.02.002 | |
2. | Wei Wang, Wanbiao Ma, Hepatitis C virus infection is blocked by HMGB1: A new nonlocal and time-delayed reaction–diffusion model, 2018, 320, 00963003, 633, 10.1016/j.amc.2017.09.046 | |
3. | A. Cousien, V. C. Tran, S. Deuffic-Burban, M. Jauffret-Roustide, J.-S. Dhersin, Y. Yazdanpanah, Dynamic modelling of hepatitis C virus transmission among people who inject drugs: a methodological review, 2015, 22, 13520504, 213, 10.1111/jvh.12337 | |
4. | David P. Durham, Laura A. Skrip, Robert Douglas Bruce, Silvia Vilarinho, Elamin H. Elbasha, Alison P. Galvani, Jeffrey P. Townsend, The Impact of Enhanced Screening and Treatment on Hepatitis C in the United States, 2016, 62, 1058-4838, 298, 10.1093/cid/civ894 | |
5. | Emily D. Bethea, Qiushi Chen, Chin Hur, Raymond T. Chung, Jagpreet Chhatwal, Should we treat acute hepatitis C? A decision and cost-effectiveness analysis, 2018, 67, 02709139, 837, 10.1002/hep.29611 | |
6. | Lauren E. Cipriano, Jeremy D. Goldhaber-Fiebert, Population Health and Cost-Effectiveness Implications of a “Treat All” Recommendation for HCV: A Review of the Model-Based Evidence, 2018, 3, 2381-4683, 238146831877663, 10.1177/2381468318776634 | |
7. | Wei Wang, Wanbiao Ma, Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling, 2018, 59, 10075704, 488, 10.1016/j.cnsns.2017.11.024 | |
8. | Cheng Ding, Xiaoxiao Liu, Shigui Yang, The value of infectious disease modeling and trend assessment: a public health perspective, 2021, 1478-7210, 1, 10.1080/14787210.2021.1882850 | |
9. | Ignacio Rozada, Daniel Coombs, Viviane D. Lima, Conditions for eradicating hepatitis C in people who inject drugs: A fibrosis aware model of hepatitis C virus transmission, 2016, 395, 00225193, 31, 10.1016/j.jtbi.2016.01.030 | |
10. | Karen Van Nuys, Ronald Brookmeyer, Jacquelyn W. Chou, David Dreyfus, Douglas Dieterich, Dana P. Goldman, Broad Hepatitis C Treatment Scenarios Return Substantial Health Gains, But Capacity Is A Concern, 2015, 34, 0278-2715, 1666, 10.1377/hlthaff.2014.1193 | |
11. | Ashley B Pitcher, Annick Borquez, Britt Skaathun, Natasha K Martin, Mathematical modeling of hepatitis c virus (HCV) prevention among people who inject drugs: A review of the literature and insights for elimination strategies, 2019, 481, 00225193, 194, 10.1016/j.jtbi.2018.11.013 | |
12. | Ruiqing Shi, Yunting Cui, Global analysis of a mathematical model for Hepatitis C virus transmissions, 2016, 217, 01681702, 8, 10.1016/j.virusres.2016.02.006 | |
13. | Mingwang Shen, Yanni Xiao, Weike Zhou, Zhen Li, Global Dynamics and Applications of an Epidemiological Model for Hepatitis C Virus Transmission in China, 2015, 2015, 1026-0226, 1, 10.1155/2015/543029 | |
14. | A. Nwankwo, D. Okuonghae, Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis, 2018, 80, 0092-8240, 437, 10.1007/s11538-017-0384-0 | |
15. | Yao Wang, Zeyu Zhao, Mingzhai Wang, Mikah Ngwanguong Hannah, Qingqing Hu, Jia Rui, Xingchun Liu, Yuanzhao Zhu, Jingwen Xu, Meng Yang, Jing-An Cui, Yanhua Su, Benhua Zhao, Tianmu Chen, The transmissibility of hepatitis C virus: a modelling study in Xiamen City, China, 2020, 148, 0950-2688, 10.1017/S0950268820002885 | |
16. | M. E. Woode, M. Abu‐Zaineh, J. Perriëns, F. Renaud, S. Wiktor, J.‐P. Moatti, Potential market size and impact of hepatitis C treatment in low‐ and middle‐income countries, 2016, 23, 1352-0504, 522, 10.1111/jvh.12516 | |
17. | Oluwasegun M. Ibrahim, Daniel Okuonghae, Monday N.O. Ikhile, Mathematical Modeling of the Population Dynamics of Age-Structured Criminal Gangs with Correctional Intervention Measures, 2022, 107, 0307904X, 39, 10.1016/j.apm.2022.02.005 | |
18. | S. P. Rajasekar, M. Pitchaimani, Quanxin Zhu, Probing a Stochastic Epidemic Hepatitis C Virus Model with a Chronically Infected Treated Population, 2022, 42, 0252-9602, 2087, 10.1007/s10473-022-0521-1 | |
19. | Louiza Tabharit, Maghnia Hamou Maamar, 2021, Mathematical Modeling of Chronic Hepatitis C Treatment’s Effect on the Evolution of its Complications, 978-1-6654-4171-1, 1, 10.1109/ICRAMI52622.2021.9585963 | |
20. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.1 | |
21. | Baolin Li, Fengqin Zhang, Xia Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response, 2022, 45, 0170-4214, 11930, 10.1002/mma.8547 | |
22. | Yuqiong Lan, Yanqiu Li, Dongmei Zheng, Global dynamics of an age-dependent multiscale hepatitis C virus model, 2022, 85, 0303-6812, 10.1007/s00285-022-01773-9 | |
23. | Dwi Lestari, Noorma Yulia Megawati, Nanang Susyanto, Fajar Adi-Kusumo, Qualitative behaviour of a stochastic hepatitis C epidemic model in cellular level, 2021, 19, 1551-0018, 1515, 10.3934/mbe.2022070 | |
24. | R. Rakkiyappan, V. Preethi Latha, F. A. Rihan, Global Dynamics of a Fractional-order Ebola Model with Delayed Immune Response on Complex Networks, 2021, 91, 0369-8203, 681, 10.1007/s40010-021-00756-7 | |
25. | Ke Qi, Zhijun Liu, Lianwen Wang, Qinglong Wang, A nonlinear HCV model in deterministic and randomly fluctuating environments, 2023, 46, 0170-4214, 4644, 10.1002/mma.8792 | |
26. | Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad, New applications related to hepatitis C model, 2022, 7, 2473-6988, 11362, 10.3934/math.2022634 | |
27. | Oluwakemi E. Abiodun, Olukayode Adebimpe, James A. Ndako, Olajumoke Oludoun, Benedicta Aladeitan, Michael Adeniyi, Mathematical modeling of HIV-HCV co-infection model: Impact of parameters on reproduction number, 2022, 11, 2046-1402, 1153, 10.12688/f1000research.124555.2 | |
28. | Vuk Vujović, Influence of environmental fluctuations on Hepatitis C transmission, 2022, 191, 03784754, 203, 10.1016/j.matcom.2021.08.008 | |
29. | Robert B Hood, Alison H Norris, Abigail Shoben, William C Miller, Randall E Harris, Laura W Pomeroy, Forecasting Hepatitis C Virus Status for Children in the United States: A Modeling Study, 2024, 1058-4838, 10.1093/cid/ciae157 | |
30. | Parvaiz Ahmad Naik, Mehmet Yavuz, Sania Qureshi, Mehraj-ud-din Naik, Kolade M. Owolabi, Amanullah Soomro, Abdul Hamid Ganie, Memory impacts in hepatitis C: A global analysis of a fractional-order model with an effective treatment, 2024, 01692607, 108306, 10.1016/j.cmpb.2024.108306 | |
31. | Shewafera Wondimagegnhu Teklu, Tsegaye Simon Lachamo, Tibebu Tulu Guya, Analyses of a stage structure hepatitis c virus compartmental model with optimal control theory, 2025, 11, 2363-6203, 10.1007/s40808-025-02288-0 |