Research article Special Issues

Reducing file size and time complexity in secret sharing based document protection

  • Received: 24 January 2019 Accepted: 25 April 2019 Published: 28 May 2019
  • Recently, Tu and Hsu proposed a secret sharing based document protecting scheme. In their scheme, a document is encrypted into n shares using Shamir's (k,n) secret sharing, where the n shares are tied in with a cover document. The document reconstruction can be accomplished by acknowledgement of any k shares and the cover document. In this work, we construct a new document protecting scheme which is extended from Tu-Hsu's work. In Tu-Hsu's approach, each inner code of secret document takes one byte length, and shares are generated from all inner codes with the computation in GF(257), where 257 is a Fermat Prime that satisfies 257=223+1. However, the share size expands when it equals to 255 or 256. In our scheme, each two inner codes of document is combined into one double-bytes inner code, and shares are generated from these combined inner codes with the computation in GF(65537) instead, where 65537 is also a Fermat Prime that satisfies 65537=224+1. Using this approach, the share size in our scheme can be reduced from Tu-Hsu's scheme. In addition, since the number of combined inner codes is half of the inner codes number in Tu-Hsu's scheme, our scheme is capable of saving almost half running time for share generation and document reconstruction from Tu-Hsu's scheme.

    Citation: Yan-Xiao Liu, Ya-Ze Zhang, Ching-Nung Yang. Reducing file size and time complexity in secret sharing based document protection[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4802-4817. doi: 10.3934/mbe.2019242

    Related Papers:

    [1] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2024, 11(3): 380-380. doi: 10.3934/environsci.2024018
    [2] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2025, 12(2): 252-252. doi: 10.3934/environsci.2025011
    [3] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2021, 8(2): 100-100. doi: 10.3934/environsci.2021007
    [4] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2022, 9(2): 217-217. doi: 10.3934/environsci.2022014
    [5] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2023, 10(2): 245-245. doi: 10.3934/environsci.2023014
    [6] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2018, 5(1): 64-66. doi: 10.3934/environsci.2018.1.64
    [7] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2016, 3(1): 140-140. doi: 10.3934/environsci.2016.1.140
    [8] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2019, 6(4): 262-264. doi: 10.3934/environsci.2019.4.262
    [9] Yifeng Wang . Journal summary from Editor in Chief. AIMS Environmental Science, 2017, 4(2): 287-288. doi: 10.3934/environsci.2017.2.287
    [10] Rukhsana Kokkadan, Resha Neznin, Praseeja Cheruparambath, Jerisa Cabilao, Salma Albouchi . A Study of Infaunal Abundance, Diversity and Distribution in Chettuva Mangrove, Kerala, India. AIMS Environmental Science, 2023, 10(1): 82-92. doi: 10.3934/environsci.2023005
  • Recently, Tu and Hsu proposed a secret sharing based document protecting scheme. In their scheme, a document is encrypted into n shares using Shamir's (k,n) secret sharing, where the n shares are tied in with a cover document. The document reconstruction can be accomplished by acknowledgement of any k shares and the cover document. In this work, we construct a new document protecting scheme which is extended from Tu-Hsu's work. In Tu-Hsu's approach, each inner code of secret document takes one byte length, and shares are generated from all inner codes with the computation in GF(257), where 257 is a Fermat Prime that satisfies 257=223+1. However, the share size expands when it equals to 255 or 256. In our scheme, each two inner codes of document is combined into one double-bytes inner code, and shares are generated from these combined inner codes with the computation in GF(65537) instead, where 65537 is also a Fermat Prime that satisfies 65537=224+1. Using this approach, the share size in our scheme can be reduced from Tu-Hsu's scheme. In addition, since the number of combined inner codes is half of the inner codes number in Tu-Hsu's scheme, our scheme is capable of saving almost half running time for share generation and document reconstruction from Tu-Hsu's scheme.


    Dear Editorial Board Members,

    It is my pleasure to share with you the year-end report for AIMS Environmental Science. The journal continues to improve its quality as indicated by steady increases in the number of manuscripts received and the number of articles published over the past three years (Figure 1). We have received 69 submissions with 28 published online. The most downloaded and cited papers are listed in Tables 1 and 2. The top read article received more than 11390 downloads.

    Figure 1.  Manuscript statistics.
    Table 1.  The top 10 articles with most pdf download: (By December 31th 2019).
    Title Usages
    Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy 11390
    Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia 2021
    Biophilic architecture: a review of the rationale and outcomes 2016
    Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review 1834
    Remote sensing of agricultural drought monitoring: A state of art review 1808
    Challenges and opportunities in municipal solid waste management in Mozambique: a review in the light of nexus thinking 1643
    Nitrate pollution of groundwater by pit latrines in developing countries 1524
    Assessment of repeated harvests on mercury and arsenic phytoextraction in a multi-contaminated industrial soil 1506
    Urban agriculture in the transition to low carbon cities through urban greening 1463
    A state-and-transition simulation modeling approach for estimating the historical range of variability 1438

     | Show Table
    DownLoad: CSV
    Table 2.  The top 10 articles with most cited: (By December 31th 2019).
    Title Number
    Biophilic architecture: a review of the rationale and outcomes 21
    Traffic-related air pollution and brain development 19
    Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles 15
    Quantifying the local-scale ecosystem services provided by urban treed streetscapes in Bolzano, Italy 14
    Nitrate pollution of groundwater by pit latrines in developing countries 13
    The mechanism of kaolin clay flocculation by a cation-independent bioflocculant produced by Chryseobacterium daeguense W6 12
    An integrated approach to modeling changes in land use, land cover, and disturbance and their impact on ecosystem carbon dynamics: a case study in the Sierra Nevada Mountains of California 11
    Climate change and land management impact rangeland condition and sage-grouse habitat in southeastern Oregon 11
    Catalytic hydrothermal liquefaction (HTL) of biomass for bio-crude production using Ni/HZSM-5 catalysts 11
    Influence of everyday activities and presence of people in common indoor environments on exposure to airborne fungi 10

     | Show Table
    DownLoad: CSV

    I would like to thank all the board members for serving on the Editorial Board and their dedication and contribution to the journal, especially to the editors for two special issues: Impacts of Microplastics in the Urban Environment Conference and Green built environment. The goal in 2020 is to solicit more manuscripts and increase paper citations. We will try our best to reduce the processing time and supply with a better experience for publication. To recognize the contribution of the Editorial Board members and authors during the years, we will continue to offer that (1) for authors invited, the article processing charge (APC) is automatically waived; (2) each editorial board member is entitled for some waivers. I am looking forward to continuing working with you to make the AIMS Environmental Science a sustainable and impactful journal. Please don’t hesitate to send me e-mails if you have new ideas and suggestions to help us to achieve this goal.

    Yifeng Wang, Ph.D.

    Editor in Chief, AIMS Environmental Science



    [1] Q. D. Sun, N. Wang, Y. D. Zhou, et al., Identification of influential online social network users based on Multi-Features, Int. J. Pattern Recognit. Artif. Intell., 30 (2016), 1–15.
    [2] Q. D. Sun, N. Wang, S. C. Li, et al., Local spatial obesity analysis and estimation using online social network sensors, J. Biomed. Inform., 83 (2018), 54–62.
    [3] A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613.
    [4] G. R. Blakley, Safeguarding cryptographic keys, AFIPS Conference, 48 (1979), 313–317.
    [5] X. X. Jia, Y. X. Song, D. S. Wang, et al., A collaborative secret sharing scheme based on the Chinese Remainder Theorem, Math. Biosci. Eng., 16 (2019), 1280–1299.
    [6] X. X. Jia, D. S. Wang, D. X. Nie, et al., A new threshold changeable secret sharing scheme based on the Chinese Remainder Theorem, Inf. Sci., 473 (2019), 13–30.
    [7] C. C. Thien and J. C. Lin, Secret image sharing, Comput. Graph., 26 (2002), 765–770.
    [8] Y. X. Liu, C. N. Yang, C. M. Wu, et al. Threshold changeable secret image sharing scheme based on interpolation polynomial, Multimed. Tools Appl., (2019), (DOI: 10.1007/s11042-019-7205-4).
    [9] Y. X. Liu and C. N. Yang, Scalable secret image sharing scheme with essential shadows. Signal Process. Image, 58 (2017), 49–55.
    [10] S. F. Tu and C. S. Hsu, Protecting secret documents via a sharing and hiding scheme, Inf. Sci., 279 (2014), 52–59.
    [11] C. C. Chang and T. X. Yu, Sharing a secret gray image in multiple images, First International Symposium on Cyber Worlds, (2002), 230–237.
    [12] D. S. Tsai, G. Horng, T. H. Chen, et al., A novel secret image sharing scheme for true-color images with size constraint, Inf. Sci., 179 (2009), 3247–3254.
    [13] R. Lukac and K.N. Plataniotis, Bit-level based secret sharing for image encryption, Pattern Recognit., 38 (2005), 767–772.
    [14] Y. X. Liu, C. N. Yang and P. H. Yeh, Reducing shadow size in smooth scalable secret image sharing, Secur. Commun. Netw., 7 (2014), 2237–2244.
    [15] R. Z. Wang and C. H. Su, Secret image sharing with smaller shadow images, Pattern Recogn. Lett., 27 (2006), 551–555.
    [16] C. N. Yang, P. Li, C. C Wu, et al., Reducing shadow size in essential secret image sharing by conjunctive hierarchical approach, Signal Process. Image, 31 (2015), 1–9.
    [17] C. N. Yang, J. F. Ouyang and L. Harn et al., Steganography and authentication in image sharing without parity bits, Opt. Commun., 285 (2012), 1725–1735.
    [18] C. C. Chen and S. C. Chen, Two-layered structure for optimally essential secret image sharing scheme, J. Vis. Commun. Image R., 38 (2016), 595–601.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4395) PDF downloads(474) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog