Citation: Yan-Xiao Liu, Ya-Ze Zhang, Ching-Nung Yang. Reducing file size and time complexity in secret sharing based document protection[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4802-4817. doi: 10.3934/mbe.2019242
[1] | Yue Liu, Wing-Cheong Lo . Analysis of spontaneous emergence of cell polarity with delayed negative feedback. Mathematical Biosciences and Engineering, 2019, 16(3): 1392-1413. doi: 10.3934/mbe.2019068 |
[2] | A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059 |
[3] | Jinhu Xu, Yicang Zhou . Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences and Engineering, 2016, 13(2): 343-367. doi: 10.3934/mbe.2015006 |
[4] | Urszula Foryś, Jan Poleszczuk . A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences and Engineering, 2011, 8(2): 627-641. doi: 10.3934/mbe.2011.8.627 |
[5] | Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190 |
[6] | Qiaojun Situ, Jinzhi Lei . A mathematical model of stem cell regeneration with epigenetic state transitions. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1379-1397. doi: 10.3934/mbe.2017071 |
[7] | Jie Lou, Tommaso Ruggeri, Claudio Tebaldi . Modeling Cancer in HIV-1 Infected Individuals: Equilibria, Cycles and Chaotic Behavior. Mathematical Biosciences and Engineering, 2006, 3(2): 313-324. doi: 10.3934/mbe.2006.3.313 |
[8] | Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325 |
[9] | A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464 |
[10] | Shaoli Wang, Jianhong Wu, Libin Rong . A note on the global properties of an age-structured viral dynamic model with multiple target cell populations. Mathematical Biosciences and Engineering, 2017, 14(3): 805-820. doi: 10.3934/mbe.2017044 |
[1] | Q. D. Sun, N. Wang, Y. D. Zhou, et al., Identification of influential online social network users based on Multi-Features, Int. J. Pattern Recognit. Artif. Intell., 30 (2016), 1–15. |
[2] | Q. D. Sun, N. Wang, S. C. Li, et al., Local spatial obesity analysis and estimation using online social network sensors, J. Biomed. Inform., 83 (2018), 54–62. |
[3] | A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613. |
[4] | G. R. Blakley, Safeguarding cryptographic keys, AFIPS Conference, 48 (1979), 313–317. |
[5] | X. X. Jia, Y. X. Song, D. S. Wang, et al., A collaborative secret sharing scheme based on the Chinese Remainder Theorem, Math. Biosci. Eng., 16 (2019), 1280–1299. |
[6] | X. X. Jia, D. S. Wang, D. X. Nie, et al., A new threshold changeable secret sharing scheme based on the Chinese Remainder Theorem, Inf. Sci., 473 (2019), 13–30. |
[7] | C. C. Thien and J. C. Lin, Secret image sharing, Comput. Graph., 26 (2002), 765–770. |
[8] | Y. X. Liu, C. N. Yang, C. M. Wu, et al. Threshold changeable secret image sharing scheme based on interpolation polynomial, Multimed. Tools Appl., (2019), (DOI: 10.1007/s11042-019-7205-4). |
[9] | Y. X. Liu and C. N. Yang, Scalable secret image sharing scheme with essential shadows. Signal Process. Image, 58 (2017), 49–55. |
[10] | S. F. Tu and C. S. Hsu, Protecting secret documents via a sharing and hiding scheme, Inf. Sci., 279 (2014), 52–59. |
[11] | C. C. Chang and T. X. Yu, Sharing a secret gray image in multiple images, First International Symposium on Cyber Worlds, (2002), 230–237. |
[12] | D. S. Tsai, G. Horng, T. H. Chen, et al., A novel secret image sharing scheme for true-color images with size constraint, Inf. Sci., 179 (2009), 3247–3254. |
[13] | R. Lukac and K.N. Plataniotis, Bit-level based secret sharing for image encryption, Pattern Recognit., 38 (2005), 767–772. |
[14] | Y. X. Liu, C. N. Yang and P. H. Yeh, Reducing shadow size in smooth scalable secret image sharing, Secur. Commun. Netw., 7 (2014), 2237–2244. |
[15] | R. Z. Wang and C. H. Su, Secret image sharing with smaller shadow images, Pattern Recogn. Lett., 27 (2006), 551–555. |
[16] | C. N. Yang, P. Li, C. C Wu, et al., Reducing shadow size in essential secret image sharing by conjunctive hierarchical approach, Signal Process. Image, 31 (2015), 1–9. |
[17] | C. N. Yang, J. F. Ouyang and L. Harn et al., Steganography and authentication in image sharing without parity bits, Opt. Commun., 285 (2012), 1725–1735. |
[18] | C. C. Chen and S. C. Chen, Two-layered structure for optimally essential secret image sharing scheme, J. Vis. Commun. Image R., 38 (2016), 595–601. |
1. | K. Eroumé, A. Vasilevich, S. Vermeulen, J. de Boer, A. Carlier, Ivan R. Nabi, On the influence of cell shape on dynamic reaction-diffusion polarization patterns, 2021, 16, 1932-6203, e0248293, 10.1371/journal.pone.0248293 | |
2. | Shabnam Khatibi, Karina Islas Rios, Lan K. Nguyen, 2018, Chapter 1, 978-1-4939-8611-8, 3, 10.1007/978-1-4939-8612-5_1 | |
3. | Ching‐Shan Chou, Travis I. Moore, Qing Nie, Tau‐Mu Yi, Alternative cell polarity behaviours arise from changes in G‐protein spatial dynamics, 2015, 9, 1751-8857, 52, 10.1049/iet-syb.2013.0018 | |
4. | A. Mogilner, J. Allard, R. Wollman, Cell Polarity: Quantitative Modeling as a Tool in Cell Biology, 2012, 336, 0036-8075, 175, 10.1126/science.1216380 | |
5. | Chenwei Tian, Qingyan Shi, Xinping Cui, Jingzhe Guo, Zhenbiao Yang, Junping Shi, Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth, 2019, 79, 0303-6812, 1319, 10.1007/s00285-019-01396-7 |