[1]
|
[ wikipedia. com, https://en.wikipedia.org/wiki/VonMises%E2%80%93Fisher_distribution, last accessed on 11/22/2016.
|
[2]
|
[ A. Banerjee,I. S. Dhillon,J. Ghosh,S. Sra, Clustering on the unit hypersphere using von Mises-Fisher distributions, Journal of Machine Learning Research, 6 (2005): 1345-1382.
|
[3]
|
[ E. Batschelet, null, Circular Statistics in Biology, Academic Press, London, 1981.
|
[4]
|
[ C. Beaulieu, The basis of anisotropic water diffusion in the nervous system -a technical review, NMR Biomed., 15 (2002): 435-455.
|
[5]
|
[ R. Bleck, An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates, Ocean Mod., 4 (2002): 55-88.
|
[6]
|
[ E. A. Codling,N. Bearon,G. J. Thorn, Thorn, Diffusion about the mean drift location in a
biased random walk, Ecology, 91 (2010): 3106-3113.
|
[7]
|
[ E. A. Codling,M. J. Plank,S. Benhamou, Random walk models in biology, J. Roy. Soc. Interface, 5 (2008): 813-834.
|
[8]
|
[ C. Darwin, Perception in the lower animals, Nature, 7 (1873): 360.
|
[9]
|
[ C. Engwer,T. Hillen,M. Knappitsch,C. Surulescu, Glioma follow white matter tracts: A multiscale DTI-based model, J. Math. Biol., 71 (2015): 551-582.
|
[10]
|
[ N. I. Fisher, null, Statistical Analysis of Circular Data, Cambridge University Press, Cambridge, 1993.
|
[11]
|
[ A. Giese,L. Kluwe,B. Laube,H. Meissner,M. E. Berens,M. Westphal, Migration of human glioma cells on myelin, Neurosurgery, 38 (1996): 755-764.
|
[12]
|
[ P. G. Gritsenko,O. Ilina,P. Friedl, Interstitial guidance of cancer invasion, Journal or Pathology, 226 (2012): 185-199.
|
[13]
|
[ H. Hatzikirou,A. Deutsch,C. Schaller,M. Simaon,K. Swanson, Mathematical modelling of glioblastoma tumour development: A review, Math. Models Meth. Appl. Sci., 15 (2005): 1779-1794.
|
[14]
|
[ T. Hillen, M5 mesoscopic and macroscopic models for mesenchymal motion, J. Math. Biol., 53 (2006): 585-616.
|
[15]
|
[ T. Hillen, E. Leonard and H. van Roessel, Partial Differential Equations; Theory and Completely Solved Problems, Wiley, Hoboken, NJ, 2012.
|
[16]
|
[ T. Hillen and K. Painter, Transport and anisotropic diffusion models for movement in oriented habitats, In: Lewis, M., Maini, P., Petrovskii, S. (Eds.), Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective, Springer, Heidelberg, 2071 (2013), 177-222.
|
[17]
|
[ T. Hillen, On the L2-moment closure of transport equations: The general case, Discr.Cont.Dyn.Systems, Series B, 5 (2005): 299-318.
|
[18]
|
[ A. R. C. James,A. K. Stuart-Smith, Distribution of caribou and wolves in relation to linear corridors, The Journal of Wildlife Management, 64 (2000): 154-159.
|
[19]
|
[ A. Jbabdi,E. Mandonnet,H. Duffau,L. Capelle,K. Swanson,M. Pelegrini-Issac,R. Guillevin,H. Benali, Simulation of anisotropic growth of low-grade gliomas using diffusion tensor imaging, Mang. Res. Med., 54 (2005): 616-624.
|
[20]
|
[ J. Kent, The Fisher-Bingham Distribution on the Sphere, J. Royal. Stat. Soc., 1982.
|
[21]
|
[ E. Konukoglu,O. Clatz,P. Bondiau,H. Delignette,N. Ayache, Extrapolation glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins, Medical Image Analysis, 14 (2010): 111-125.
|
[22]
|
[ K. V. Mardia and P. E. Jupp, Directional Statistics, Wiley, New York, 2000.
|
[23]
|
[ H. McKenzie,E. Merrill,R. Spiteri,M. Lewis, How linear features alter predator movement and the functional response, Royal Society Interface, 2 (2012): 205-216.
|
[24]
|
[ P. Moorcroft,M. A. Lewis, null, Mechanistic Home Range Analysis, Princeton University Press, USA, 2006.
|
[25]
|
[ J. A. Mortimer,A. Carr, Reproduction and migrations of the Ascension Island green turtle (chelonia mydas), Copeia, 1987 (1987): 103-113.
|
[26]
|
[ P. Mosayebi,D. Cobzas,A. Murtha,M. Jagersand, Tumor invasion margin on the Riemannian space of brain fibers, Medical Image Analysis, 16 (2011): 361-373.
|
[27]
|
[ A. Okubo and S. Levin, Diffusion and Ecological Problems: Modern Perspectives, Second edition. Interdisciplinary Applied Mathematics, 14. Springer-Verlag, New York, 2001.
|
[28]
|
[ H. Othmer,S. Dunbar,W. Alt, Models of dispersal in biological systems, Journal of Mathematical Biology, 26 (1988): 263-298.
|
[29]
|
[ K. Painter, Modelling migration strategies in the extracellular matrix, J. Math. Biol., 58 (2009): 511-543.
|
[30]
|
[ K. Painter,T. Hillen, Mathematical modelling of glioma growth: The use of diffusion tensor imaging DTI data to predict the anisotropic pathways of cancer invasion, J. Theor. Biol., 323 (2013): 25-39.
|
[31]
|
[ K. Painter,T. Hillen, Navigating the flow: Individual and continuum models for homing
in flowing environments, Royal Society Interface, 12 (2015): 20150,647.
|
[32]
|
[ K. J. Painter, Multiscale models for movement in oriented environments and their application to hilltopping in butterflies, Theor. Ecol., 7 (2014): 53-75.
|
[33]
|
[ J. Rao, Molecular mechanisms of glioma invasiveness: The role of proteases, Nature Reviews Cancer, 3 (2003): 489-501.
|
[34]
|
[ A. Swan, T. Hillen, J. Bowman and A. Murtha, A patient-specific anisotropic diffusion model for brain tumor spread, Bull. Math. Biol., to appear (2017).
|
[35]
|
[ K. Swanson,E. A. Jr,J. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Proliferation, 33 (2000): 317-329.
|
[36]
|
[ K. Swanson,R. Rostomily,E. Alvord Jr, Predicting survival of patients with glioblastoma by combining a mathematical model and pre-operative MR imaging characteristics: A proof of principle, British Journal of Cancer, 98 (2008): 113-119.
|
[37]
|
[ P. Turchin, Quantitative Analysis of Movement, Sinauer Assoc., Sunderland, 1998.
|
[38]
|
[ C. Xue,H. Othmer, Multiscale models of taxis-driven patterning in bacterial populations, SIAM Journal for Applied Mathematics, 70 (2009): 133-167.
|