Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat

  • Received: 01 December 2011 Accepted: 29 June 2018 Published: 01 October 2012
  • MSC : Primary: 92D25; Secondary: 34K60.

  • In this paper a mathematical model of the population dynamics of a bacteriophage-sensitive and a bacteriophage-resistant bacteria in a chemostat where the resistant bacteria is an inferior competitor for nutrient is studied. The focus of the study is on persistence and extinction of bacterial strains and bacteriophage.

    Citation: Zhun Han, Hal L. Smith. Bacteriophage-resistant and bacteriophage-sensitive bacteria in a chemostat[J]. Mathematical Biosciences and Engineering, 2012, 9(4): 737-765. doi: 10.3934/mbe.2012.9.737

    Related Papers:

    [1] Mengshi Shu, Rui Fu, Wendi Wang . A bacteriophage model based on CRISPR/Cas immune system in a chemostat. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1361-1377. doi: 10.3934/mbe.2017070
    [2] Miller Cerón Gómez, Eduardo Ibarguen Mondragon, Eddy Lopez Molano, Arsenio Hidalgo-Troya, Maria A. Mármol-Martínez, Deisy Lorena Guerrero-Ceballos, Mario A. Pantoja, Camilo Paz-García, Jenny Gómez-Arrieta, Mariela Burbano-Rosero . Mathematical model of interaction Escherichia coli and Coliphages. Mathematical Biosciences and Engineering, 2023, 20(6): 9712-9727. doi: 10.3934/mbe.2023426
    [3] Frédéric Mazenc, Gonzalo Robledo, Daniel Sepúlveda . A stability analysis of a time-varying chemostat with pointwise delay. Mathematical Biosciences and Engineering, 2024, 21(2): 2691-2728. doi: 10.3934/mbe.2024119
    [4] Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629
    [5] Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
    [6] Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020
    [7] Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319
    [8] Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332
    [9] Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539
    [10] Alexis Erich S. Almocera, Sze-Bi Hsu, Polly W. Sy . Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi. Mathematical Biosciences and Engineering, 2019, 16(1): 516-537. doi: 10.3934/mbe.2019024
  • In this paper a mathematical model of the population dynamics of a bacteriophage-sensitive and a bacteriophage-resistant bacteria in a chemostat where the resistant bacteria is an inferior competitor for nutrient is studied. The focus of the study is on persistence and extinction of bacterial strains and bacteriophage.


  • This article has been cited by:

    1. Xinzhi Ren, Xianning Liu, A competition un-stirred chemostat model with virus in an aquatic system, 2019, 98, 0003-6811, 2329, 10.1080/00036811.2018.1460811
    2. Wendi Wang, Rui Fu, Mengshi Shu, A bacteriophage model based on CRISPR/Cas immune system in a chemostat, 2017, 14, 1551-0018, 1361, 10.3934/mbe.2017070
    3. Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy, 2018, 103, 9780128151839, 103, 10.1016/bs.aambs.2018.01.005
    4. Saptarshi Sinha, Rajdeep Kaur Grewal, Soumen Roy, 2020, Chapter 18, 978-1-0716-0388-8, 309, 10.1007/978-1-0716-0389-5_18
    5. Sukhitha W. Vidurupola, Analysis of deterministic and stochastic mathematical models with resistant bacteria and bacteria debris for bacteriophage dynamics, 2018, 316, 00963003, 215, 10.1016/j.amc.2017.08.022
    6. Daniel A. Korytowski, Hal L. Smith, How nested and monogamous infection networks in host-phage communities come to be, 2015, 8, 1874-1738, 111, 10.1007/s12080-014-0236-6
    7. Saroj Kumar Sahani, Sunita Gakkhar, A Mathematical Model for Phage Therapy with Impulsive Phage Dose, 2020, 28, 0971-3514, 75, 10.1007/s12591-016-0303-0
    8. Sukhitha W. Vidurupola, Linda J. S. Allen, Impact of Variability in Stochastic Models of Bacteria-Phage Dynamics Applicable to Phage Therapy, 2014, 32, 0736-2994, 427, 10.1080/07362994.2014.889922
    9. WENDI WANG, DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT, 2017, 25, 0218-3390, 697, 10.1142/S0218339017400010
    10. Hayriye Gulbudak, Paul L. Salceanu, Gail S. K. Wolkowicz, A delay model for persistent viral infections in replicating cells, 2021, 82, 0303-6812, 10.1007/s00285-021-01612-3
    11. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Htoo Kyaw Hlaing, Stability analysis and persistence of a phage therapy model, 2021, 18, 1551-0018, 5552, 10.3934/mbe.2021280
    12. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Stability and Hopf Bifurcation Analysis for a Phage Therapy Model with and without Time Delay, 2023, 12, 2075-1680, 772, 10.3390/axioms12080772
    13. Ei Ei Kyaw, Hongchan Zheng, Jingjing Wang, Hopf bifurcation analysis of a phage therapy model, 2023, 18, 2157-5452, 87, 10.2140/camcos.2023.18.87
    14. Zainab Dere, N.G. Cogan, Bhargav R. Karamched, Optimal control strategies for mitigating antibiotic resistance: Integrating virus dynamics for enhanced intervention design, 2025, 00255564, 109464, 10.1016/j.mbs.2025.109464
    15. Carli Peterson, Darsh Gandhi, Austin Carlson, Aaron Lubkemann, Emma Richardson, John Serralta, Michael S. Allen, Souvik Roy, Christopher M. Kribs, Hristo V. Kojouharov, A SIMPL Model of Phage-Bacteria Interactions Accounting for Mutation and Competition, 2025, 87, 0092-8240, 10.1007/s11538-025-01478-2
  • Reader Comments
  • © 2012 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2911) PDF downloads(540) Cited by(15)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog