Stochastic and deterministic models for agricultural production networks

  • Received: 01 February 2007 Accepted: 29 June 2018 Published: 01 May 2007
  • MSC : 60J20, 34A34, 49Q12, 92D30.

  • An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.

    Citation: P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 373-402. doi: 10.3934/mbe.2007.4.373

    Related Papers:

    [1] Thomas Torku, Abdul Khaliq, Fathalla Rihan . SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361. doi: 10.3934/mbe.2023729
    [2] Giorgos Minas, David A Rand . Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987. doi: 10.3934/mbe.2019196
    [3] Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang . Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195
    [4] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [5] Sheng-I Chen, Chia-Yuan Wu . A stochastic programming model of vaccine preparation and administration for seasonal influenza interventions. Mathematical Biosciences and Engineering, 2020, 17(4): 2984-2997. doi: 10.3934/mbe.2020169
    [6] Shengnan Zhao, Sanling Yuan . A coral reef benthic system with grazing intensity and immigrated macroalgae in deterministic and stochastic environments. Mathematical Biosciences and Engineering, 2022, 19(4): 3449-3471. doi: 10.3934/mbe.2022159
    [7] David F. Anderson, Tung D. Nguyen . Results on stochastic reaction networks with non-mass action kinetics. Mathematical Biosciences and Engineering, 2019, 16(4): 2118-2140. doi: 10.3934/mbe.2019103
    [8] Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao . Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences and Engineering, 2013, 10(4): 1159-1171. doi: 10.3934/mbe.2013.10.1159
    [9] Damilola Olabode, Jordan Culp, Allison Fisher, Angela Tower, Dylan Hull-Nye, Xueying Wang . Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Mathematical Biosciences and Engineering, 2021, 18(1): 950-967. doi: 10.3934/mbe.2021050
    [10] Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton . Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499. doi: 10.3934/mbe.2020247
  • An approach to modeling the impact of disturbances in an agricultural production network is presented. A stochastic model and its approximate deterministic model for averages over sample paths of the stochastic system are developed. Simulations, sensitivity and generalized sensitivity analyses are given. Finally, it is shown how diseases may be introduced into the network and corresponding simulations are discussed.


  • This article has been cited by:

    1. Amy D. Hagerman, Bruce A. McCarl, Jianhong Mu, 2010, 9780471761303, 10.1002/9780470087923.hhs696
    2. Jose Faro, Bernardo von Haeften, Rui Gardner, Emilio Faro, A Sensitivity Analysis Comparison of Three Models for the Dynamics of Germinal Centers, 2019, 10, 1664-3224, 10.3389/fimmu.2019.02038
    3. S. Pant, B. Fabrèges, J-F. Gerbeau, I. E. Vignon-Clementel, A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, 2014, 30, 20407939, 1614, 10.1002/cnm.2692
    4. H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel, Generalized sensitivities and optimal experimental design, 2010, 18, 0928-0219, 10.1515/jiip.2010.002
    5. H.T. Banks, Kathleen Holm, Nathan C. Wanner, Ariel Cintrón-Arias, Grace M. Kepler, Jeffrey D. Wetherington, A mathematical model for the first-pass dynamics of antibiotics acting on the cardiovascular system, 2009, 50, 08957177, 959, 10.1016/j.mcm.2009.02.007
    6. H. T. Banks, S. Dediu, S. L. Ernstberger, Sensitivity functions and their uses in inverse problems, 2007, 15, 0928-0219, 10.1515/jiip.2007.038
    7. H.T. Banks, Jared Catenacci, Shuhua Hu, Stochastic vs. Deterministic Models for Systems with Delays, 2013, 46, 14746670, 61, 10.3182/20130925-3-FR-4043.00022
    8. H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton, 2009, Chapter 11, 978-90-481-2312-4, 249, 10.1007/978-90-481-2313-1_11
    9. Chloe Audebert, Petru Bucur, Mohamed Bekheit, Eric Vibert, Irene E. Vignon-Clementel, Jean-Frédéric Gerbeau, Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling, 2017, 314, 00457825, 102, 10.1016/j.cma.2016.07.009
    10. Sanjay Pant, Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems, 2018, 15, 1742-5689, 20170871, 10.1098/rsif.2017.0871
    11. Chloe Audebert, Irene E. Vignon-Clementel, Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue, 2018, 115, 09280987, 304, 10.1016/j.ejps.2018.01.008
    12. A comparison of computational efficiencies of stochastic algorithms in terms of two infection models, 2012, 9, 1551-0018, 487, 10.3934/mbe.2012.9.487
    13. H. T. Banks, M. Davidian, Shuhua Hu, Grace M. Kepler, E. S. Rosenberg, Modelling HIV immune response and validation with clinical data, 2008, 2, 1751-3758, 357, 10.1080/17513750701813184
    14. Tejas Ghadiyali, Kalpesh Lad, Jayesh Dhodiya, 2018, Chapter 6, 978-981-10-6601-6, 51, 10.1007/978-981-10-6602-3_6
    15. Multiple endemic states in age-structured SIR epidemic models, 2012, 9, 1551-0018, 577, 10.3934/mbe.2012.9.577
    16. H. T. Banks, Jared Catenacci, Shuhua Hu, A Comparison of Stochastic Systems with Different Types of Delays, 2013, 31, 0736-2994, 913, 10.1080/07362994.2013.806217
    17. Nonlinear stochastic Markov processes and modeling uncertainty in populations, 2012, 9, 1551-0018, 1, 10.3934/mbe.2012.9.1
    18. Mohammad Munir, Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test, 2018, 300, 00255564, 14, 10.1016/j.mbs.2018.03.014
    19. Angelie Reandelar Ferrolino, Victoria May Paguio Mendoza, 2019, 2192, 0094-243X, 060008, 10.1063/1.5139154
    20. D. F. Yusupov, G. Abdullayeva, O. Aliev, S. Hamrayeva, 2021, 2402, 0094-243X, 050002, 10.1063/5.0071987
    21. José Faro, Emilio Faro, 2022, Chapter 10, 978-1-0716-1735-9, 111, 10.1007/978-1-0716-1736-6_10
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2931) PDF downloads(632) Cited by(21)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog