An approach to modeling the impact of disturbances in an
agricultural production network is presented. A stochastic model
and its approximate deterministic model for averages over sample
paths of the stochastic system are developed. Simulations,
sensitivity and generalized sensitivity analyses are given.
Finally, it is shown how diseases may be introduced into the
network and corresponding simulations are discussed.
Citation: P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 373-402. doi: 10.3934/mbe.2007.4.373
Related Papers:
[1]
Thomas Torku, Abdul Khaliq, Fathalla Rihan .
SEINN: A deep learning algorithm for the stochastic epidemic model. Mathematical Biosciences and Engineering, 2023, 20(9): 16330-16361.
doi: 10.3934/mbe.2023729
[2]
Giorgos Minas, David A Rand .
Parameter sensitivity analysis for biochemical reaction networks. Mathematical Biosciences and Engineering, 2019, 16(5): 3965-3987.
doi: 10.3934/mbe.2019196
[3]
Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang .
Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236.
doi: 10.3934/mbe.2022195
[4]
Linda J. S. Allen, P. van den Driessche .
Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458.
doi: 10.3934/mbe.2006.3.445
[5]
Sheng-I Chen, Chia-Yuan Wu .
A stochastic programming model of vaccine preparation and administration for seasonal influenza interventions. Mathematical Biosciences and Engineering, 2020, 17(4): 2984-2997.
doi: 10.3934/mbe.2020169
[6]
Shengnan Zhao, Sanling Yuan .
A coral reef benthic system with grazing intensity and immigrated macroalgae in deterministic and stochastic environments. Mathematical Biosciences and Engineering, 2022, 19(4): 3449-3471.
doi: 10.3934/mbe.2022159
[7]
David F. Anderson, Tung D. Nguyen .
Results on stochastic reaction networks with non-mass action kinetics. Mathematical Biosciences and Engineering, 2019, 16(4): 2118-2140.
doi: 10.3934/mbe.2019103
[8]
Yangjun Ma, Maoxing Liu, Qiang Hou, Jinqing Zhao .
Modelling seasonal HFMD with the recessive infection in Shandong, China. Mathematical Biosciences and Engineering, 2013, 10(4): 1159-1171.
doi: 10.3934/mbe.2013.10.1159
[9]
Damilola Olabode, Jordan Culp, Allison Fisher, Angela Tower, Dylan Hull-Nye, Xueying Wang .
Deterministic and stochastic models for the epidemic dynamics of COVID-19 in Wuhan, China. Mathematical Biosciences and Engineering, 2021, 18(1): 950-967.
doi: 10.3934/mbe.2021050
[10]
Hermann Mena, Lena-Maria Pfurtscheller, Jhoana P. Romero-Leiton .
Random perturbations in a mathematical model of bacterial resistance: Analysis and optimal control. Mathematical Biosciences and Engineering, 2020, 17(5): 4477-4499.
doi: 10.3934/mbe.2020247
Abstract
An approach to modeling the impact of disturbances in an
agricultural production network is presented. A stochastic model
and its approximate deterministic model for averages over sample
paths of the stochastic system are developed. Simulations,
sensitivity and generalized sensitivity analyses are given.
Finally, it is shown how diseases may be introduced into the
network and corresponding simulations are discussed.
Jose Faro, Bernardo von Haeften, Rui Gardner, Emilio Faro,
A Sensitivity Analysis Comparison of Three Models for the Dynamics of Germinal Centers,
2019,
10,
1664-3224,
10.3389/fimmu.2019.02038
3.
S. Pant, B. Fabrèges, J-F. Gerbeau, I. E. Vignon-Clementel,
A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis,
2014,
30,
20407939,
1614,
10.1002/cnm.2692
4.
H. T. Banks, Sava Dediu, Stacey L. Ernstberger, Franz Kappel,
Generalized sensitivities and optimal experimental design,
2010,
18,
0928-0219,
10.1515/jiip.2010.002
5.
H.T. Banks, Kathleen Holm, Nathan C. Wanner, Ariel Cintrón-Arias, Grace M. Kepler, Jeffrey D. Wetherington,
A mathematical model for the first-pass dynamics of antibiotics acting on the cardiovascular system,
2009,
50,
08957177,
959,
10.1016/j.mcm.2009.02.007
6.
H. T. Banks, S. Dediu, S. L. Ernstberger,
Sensitivity functions and their uses in inverse problems,
2007,
15,
0928-0219,
10.1515/jiip.2007.038
7.
H.T. Banks, Jared Catenacci, Shuhua Hu,
Stochastic vs. Deterministic Models for Systems with Delays,
2013,
46,
14746670,
61,
10.3182/20130925-3-FR-4043.00022
8.
H. Thomas Banks, Marie Davidian, John R. Samuels, Karyn L. Sutton,
2009,
Chapter 11,
978-90-481-2312-4,
249,
10.1007/978-90-481-2313-1_11
9.
Chloe Audebert, Petru Bucur, Mohamed Bekheit, Eric Vibert, Irene E. Vignon-Clementel, Jean-Frédéric Gerbeau,
Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling,
2017,
314,
00457825,
102,
10.1016/j.cma.2016.07.009
10.
Sanjay Pant,
Information sensitivity functions to assess parameter information gain and identifiability of dynamical systems,
2018,
15,
1742-5689,
20170871,
10.1098/rsif.2017.0871
11.
Chloe Audebert, Irene E. Vignon-Clementel,
Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue,
2018,
115,
09280987,
304,
10.1016/j.ejps.2018.01.008
12.
A comparison of computational efficiencies of stochastic algorithms in terms of two infection models,
2012,
9,
1551-0018,
487,
10.3934/mbe.2012.9.487
13.
H. T. Banks, M. Davidian, Shuhua Hu, Grace M. Kepler, E. S. Rosenberg,
Modelling HIV immune response and validation with clinical data,
2008,
2,
1751-3758,
357,
10.1080/17513750701813184
Multiple endemic states in age-structured SIR epidemic models,
2012,
9,
1551-0018,
577,
10.3934/mbe.2012.9.577
16.
H. T. Banks, Jared Catenacci, Shuhua Hu,
A Comparison of Stochastic Systems with Different Types of Delays,
2013,
31,
0736-2994,
913,
10.1080/07362994.2013.806217
17.
Nonlinear stochastic Markov processes and modeling uncertainty in populations,
2012,
9,
1551-0018,
1,
10.3934/mbe.2012.9.1
18.
Mohammad Munir,
Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test,
2018,
300,
00255564,
14,
10.1016/j.mbs.2018.03.014
19.
Angelie Reandelar Ferrolino, Victoria May Paguio Mendoza,
2019,
2192,
0094-243X,
060008,
10.1063/1.5139154
20.
D. F. Yusupov, G. Abdullayeva, O. Aliev, S. Hamrayeva,
2021,
2402,
0094-243X,
050002,
10.1063/5.0071987
P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 373-402. doi: 10.3934/mbe.2007.4.373
P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks[J]. Mathematical Biosciences and Engineering, 2007, 4(3): 373-402. doi: 10.3934/mbe.2007.4.373