A finite element method for growth in biological development

  • Received: 01 May 2006 Accepted: 29 June 2018 Published: 01 February 2007
  • MSC : 65M60, 76Z05.

  • We describe finite element simulations of limb growth based on Stokes flow models with a nonzero divergence representing growth due to nutrients in the early stages of limb bud development. We introduce a ''tissue pressure'' whose spatial derivatives yield the growth velocity in the limb and our explicit time advancing algorithm for such tissue flows is described in detail. The limb boundary is approached by spline functions to compute the curvature and the unit outward normal vector. At each time step, a mixed-hybrid finite element problem is solved, where the condition that the velocity is strictly normal to the limb boundary is treated by a Lagrange multiplier technique. Numerical results are presented.

    Citation: Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development[J]. Mathematical Biosciences and Engineering, 2007, 4(2): 339-353. doi: 10.3934/mbe.2007.4.339

    Related Papers:

    [1] Niksa Praljak, Shawn D. Ryan, Andrew Resnick . Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies. Mathematical Biosciences and Engineering, 2020, 17(2): 1787-1807. doi: 10.3934/mbe.2020094
    [2] Xiaoyu Du, Yijun Zhou, Lingzhen Li, Cecilia Persson, Stephen J. Ferguson . The porous cantilever beam as a model for spinal implants: Experimental, analytical and finite element analysis of dynamic properties. Mathematical Biosciences and Engineering, 2023, 20(4): 6273-6293. doi: 10.3934/mbe.2023270
    [3] Gonzalo Galiano, Julián Velasco . Finite element approximation of a population spatial adaptation model. Mathematical Biosciences and Engineering, 2013, 10(3): 637-647. doi: 10.3934/mbe.2013.10.637
    [4] Guanyu Wang, Gerhard R. F. Krueger . A General Mathematical Method for Investigating the Thymic Microenvironment, Thymocyte Development, and Immunopathogenesis. Mathematical Biosciences and Engineering, 2004, 1(2): 289-305. doi: 10.3934/mbe.2004.1.289
    [5] John Cleveland . Basic stage structure measure valued evolutionary game model. Mathematical Biosciences and Engineering, 2015, 12(2): 291-310. doi: 10.3934/mbe.2015.12.291
    [6] Colette Calmelet, Diane Sepich . Surface tension and modeling of cellular intercalation during zebrafish gastrulation. Mathematical Biosciences and Engineering, 2010, 7(2): 259-275. doi: 10.3934/mbe.2010.7.259
    [7] Ewa Majchrzak, Mikołaj Stryczyński . Dual-phase lag model of heat transfer between blood vessel and biological tissue. Mathematical Biosciences and Engineering, 2021, 18(2): 1573-1589. doi: 10.3934/mbe.2021081
    [8] Xiong Li, Hao Wang . A stoichiometrically derived algal growth model and its global analysis. Mathematical Biosciences and Engineering, 2010, 7(4): 825-836. doi: 10.3934/mbe.2010.7.825
    [9] Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444
    [10] Rui Zhu, Yuhang Chen, Qianqian Yu, Siqing Liu, Jianjie Wang, Zhili Zeng, Liming Cheng . Effects of contusion load on cervical spinal cord: A finite element study. Mathematical Biosciences and Engineering, 2020, 17(3): 2272-2283. doi: 10.3934/mbe.2020120
  • We describe finite element simulations of limb growth based on Stokes flow models with a nonzero divergence representing growth due to nutrients in the early stages of limb bud development. We introduce a ''tissue pressure'' whose spatial derivatives yield the growth velocity in the limb and our explicit time advancing algorithm for such tissue flows is described in detail. The limb boundary is approached by spline functions to compute the curvature and the unit outward normal vector. At each time step, a mixed-hybrid finite element problem is solved, where the condition that the velocity is strictly normal to the limb boundary is treated by a Lagrange multiplier technique. Numerical results are presented.


  • This article has been cited by:

    1. Yong-Tao Zhang, Mark S. Alber, Stuart A. Newman, Mathematical modeling of vertebrate limb development, 2013, 243, 00255564, 1, 10.1016/j.mbs.2012.11.003
    2. Ricardo Ruiz-Baier, Primal-mixed formulations for reaction–diffusion systems on deforming domains, 2015, 299, 00219991, 320, 10.1016/j.jcp.2015.07.018
    3. Bernd Boehm, Henrik Westerberg, Gaja Lesnicar-Pucko, Sahdia Raja, Michael Rautschka, James Cotterell, Jim Swoger, James Sharpe, Alfonso Martinez Arias, The Role of Spatially Controlled Cell Proliferation in Limb Bud Morphogenesis, 2010, 8, 1545-7885, e1000420, 10.1371/journal.pbio.1000420
    4. C. M. Murea, Arbitrary Lagrangian Eulerian approximation with remeshing for Navier-Stokes equations, 2010, 26, 20407939, 1435, 10.1002/cnm.1223
    5. Paramita Chatterjee, Tilmann Glimm, Bogdan Kaźmierczak, Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models, 2020, 322, 00255564, 108319, 10.1016/j.mbs.2020.108319
    6. Stuart A. Newman, Scott Christley, Tilmann Glimm, H.G.E. Hentschel, Bogdan Kazmierczak, Yong-Tao Zhang, Jianfeng Zhu, Mark Alber, 2008, 81, 9780123742537, 311, 10.1016/S0070-2153(07)81011-8
    7. Yipei Guo, Mor Nitzan, Michael P. Brenner, Alexandre V. Morozov, Programming cell growth into different cluster shapes using diffusible signals, 2021, 17, 1553-7358, e1009576, 10.1371/journal.pcbi.1009576
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2397) PDF downloads(533) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog