A competition model of the chemostat with an external inhibitor

  • Received: 01 December 2004 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30.

  • A competition model of the chemostat with an external inhibitor is considered. This inhibitor is lethal to one competitor and results in the decrease of growth rate of this competitor. The existence and stability of the extinction equilibria are discussed by using Liapunov function. The necessary and sufficient condition guaranteeing the existence of the interior equilibrium is given. It is found by numerical simulation that the system may be globally stable or have a stable limit cycle if the interior equilibrium exists.

    Citation: Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou. A competition model of the chemostat with an external inhibitor[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 111-123. doi: 10.3934/mbe.2006.3.111

    Related Papers:

    [1] Alain Rapaport, Jérôme Harmand . Biological control of the chemostat with nonmonotonic response and different removal rates. Mathematical Biosciences and Engineering, 2008, 5(3): 539-547. doi: 10.3934/mbe.2008.5.539
    [2] Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari . Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences and Engineering, 2016, 13(4): 631-652. doi: 10.3934/mbe.2016012
    [3] Hal L. Smith, Horst R. Thieme . Chemostats and epidemics: Competition for nutrients/hosts. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1635-1650. doi: 10.3934/mbe.2013.10.1635
    [4] Harry J. Dudley, Zhiyong Jason Ren, David M. Bortz . Competitive exclusion in a DAE model for microbial electrolysis cells. Mathematical Biosciences and Engineering, 2020, 17(5): 6217-6239. doi: 10.3934/mbe.2020329
    [5] Jean-Jacques Kengwoung-Keumo . Competition between a nonallelopathic phytoplankton and an allelopathic phytoplankton species under predation. Mathematical Biosciences and Engineering, 2016, 13(4): 787-812. doi: 10.3934/mbe.2016018
    [6] Tewfik Sari, Frederic Mazenc . Global dynamics of the chemostat with different removal rates and variable yields. Mathematical Biosciences and Engineering, 2011, 8(3): 827-840. doi: 10.3934/mbe.2011.8.827
    [7] Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer . On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences and Engineering, 2007, 4(2): 319-338. doi: 10.3934/mbe.2007.4.319
    [8] Gonzalo Robledo . Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences and Engineering, 2009, 6(3): 629-647. doi: 10.3934/mbe.2009.6.629
    [9] Marion Weedermann . Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences and Engineering, 2012, 9(2): 445-459. doi: 10.3934/mbe.2012.9.445
    [10] Manel Dali Youcef, Alain Rapaport, Tewfik Sari . Study of performance criteria of serial configuration of two chemostats. Mathematical Biosciences and Engineering, 2020, 17(6): 6278-6309. doi: 10.3934/mbe.2020332
  • A competition model of the chemostat with an external inhibitor is considered. This inhibitor is lethal to one competitor and results in the decrease of growth rate of this competitor. The existence and stability of the extinction equilibria are discussed by using Liapunov function. The necessary and sufficient condition guaranteeing the existence of the interior equilibrium is given. It is found by numerical simulation that the system may be globally stable or have a stable limit cycle if the interior equilibrium exists.


  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2556) PDF downloads(501) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog