Research article Special Issues

A new Log-Lomax distribution, properties, stock price, and heart attack predictions using machine learning techniques

  • Published: 30 May 2025
  • MSC : 60E05, 62F10, 62H12

  • In this study, we introduced the log-Lomax distribution, a more versatile probabilistic model for capturing various statistical properties. The study was divided into two sections: Modeling stock price exchange rates with the proposed log-Lomax distribution and incorporating log-Lomax features into machine learning models for prediction. In the modeling section, we introduced the log-Lomax distribution, which employed a logarithmic transformation with an exponent parameter. The model was left- and right-skewed, monotonic, inverted, and bathtub-shaped. Some properties were obtained, and several parameter estimation techniques were evaluated using a simulation study. The model was applied to two Nigerian stock exchange rate datasets: Naira-to-Euro and Naira-to-Riyal, as well as the Worcester heart attack patient dataset. The prediction section used insights from modeling methods and machine learning workflows to improve accuracy and reduce overfitting. The predictions were evaluated in two ways: With raw data and features derived from the log-Lomax model. Employing log-Lomax model features, Random Forest, and XGBoost achieved 99.87% accuracy in the Euro dataset, respectively. Random Forest and XGBoost had accuracy rates of 98.67% and 99.33% on the Riyal dataset, respectively, and 91.25% and 88.75% on the heart attack dataset. Random Forests and XGBoost are the preferred models, as they consistently provide the best prediction performance and stability mix across datasets.

    Citation: Aliyu Ismail Ishaq, Abdullahi Ubale Usman, Hana N. Alqifari, Amani Almohaimeed, Hanita Daud, Sani Isah Abba, Ahmad Abubakar Suleiman. A new Log-Lomax distribution, properties, stock price, and heart attack predictions using machine learning techniques[J]. AIMS Mathematics, 2025, 10(5): 12761-12807. doi: 10.3934/math.2025575

    Related Papers:

  • In this study, we introduced the log-Lomax distribution, a more versatile probabilistic model for capturing various statistical properties. The study was divided into two sections: Modeling stock price exchange rates with the proposed log-Lomax distribution and incorporating log-Lomax features into machine learning models for prediction. In the modeling section, we introduced the log-Lomax distribution, which employed a logarithmic transformation with an exponent parameter. The model was left- and right-skewed, monotonic, inverted, and bathtub-shaped. Some properties were obtained, and several parameter estimation techniques were evaluated using a simulation study. The model was applied to two Nigerian stock exchange rate datasets: Naira-to-Euro and Naira-to-Riyal, as well as the Worcester heart attack patient dataset. The prediction section used insights from modeling methods and machine learning workflows to improve accuracy and reduce overfitting. The predictions were evaluated in two ways: With raw data and features derived from the log-Lomax model. Employing log-Lomax model features, Random Forest, and XGBoost achieved 99.87% accuracy in the Euro dataset, respectively. Random Forest and XGBoost had accuracy rates of 98.67% and 99.33% on the Riyal dataset, respectively, and 91.25% and 88.75% on the heart attack dataset. Random Forests and XGBoost are the preferred models, as they consistently provide the best prediction performance and stability mix across datasets.



    加载中


    [1] A. I. Ishaq, A. A. Abiodun, A. A. Suleiman, A. Usman, A. S. Mohammed, M. Tasiu, Modelling Nigerian inflation rates from January 2003 to June 2023 using newly developed inverse power Chi-Square distribution, In: 2023 4th International Conference on Data Analytics for Business and Industry (ICDABI), 2023,644–651. http://doi.org/10.1109/ICDABI60145.2023.10629442
    [2] A. A. Suleiman, H. Daud, M. Othman, A. Husin, A. I. Ishaq, R. Sokkalingam, et al., Forecasting the southeast Asian currencies against the British pound sterling using probability distributions, J. Data Sci. Insights, 1 (2023), 31–51.
    [3] M. A. Islam, M. Z. H. Majumder, M. S. Miah, S. Jannaty, Precision healthcare: A deep dive into machine learning algorithms and feature selection strategies for accurate heart disease prediction, Comput. Biol. Med., 176 (2024), 108432. https://doi.org/10.1016/j.compbiomed.2024.108432 doi: 10.1016/j.compbiomed.2024.108432
    [4] F. Bouchama, M. Kamal, Enhancing cyber threat detection through machine learning-based behavioral modeling of network traffic patterns, Int. J. Business Intell. Big Data Analyt., 4 (2021), 1–9.
    [5] S. Ahmad, S. Jha, A. Alam, M. Yaseen, H. A. M. Abdeljaber, A novel AI-based stock market prediction using machine learning algorithm, Sci. Prog., 2022 (2022), 4808088. https://doi.org/10.1155/2022/4808088 doi: 10.1155/2022/4808088
    [6] A. U. USMAN, S. B. Abdullahi, J. Ran, Y. Liping, A. A. Suleiman, H. Daud, et al., Modeling the dynamic behaviors of bank account fraudsters using combined simultaneous game theory with neural networks, preprint paper, 2024. http://doi.org/10.21203/rs.3.rs-3928159/v1
    [7] F. Kamalov, Forecasting significant stock price changes using neural networks, Comput. Applic., 32 (2020), 17655–17667. http://doi.org/10.1007/s00521-020-04942-3 doi: 10.1007/s00521-020-04942-3
    [8] U. Panitanarak, A. I. Ishaq, N. S. S. Singh, A. Usman, A. U. Usman, H. Daud, et al., Machine learning models in predicting failure times data using a novel version of the maxwell model, Eur. J. Stat., 5 (2025), 1. http://doi.org/10.28924/ada/stat.5.1 doi: 10.28924/ada/stat.5.1
    [9] K. S. Lomax, Business failures: Another example of the analysis of failure data, J. Amer. Stat. Assoc., 268 (1954), 847–852. http://doi.org/10.1080/01621459.1954.10501239 doi: 10.1080/01621459.1954.10501239
    [10] A. S. Hassan, S. M. Assar, A. Shelbaia, Optimum step-stress accelerated life test plan for Lomax distribution with an adaptive type-Ⅱ progressive hybrid censoring, J. Adv. Math. Comput. Sci., 13 (2016), 1–19. https://doi.org/10.9734/BJMCS/2016/21964 doi: 10.9734/BJMCS/2016/21964
    [11] C. M. Harris, The Pareto distribution as a queue service discipline, Oper. Res., 16 (1968), 307–313. http://doi.org/10.1287/opre.16.2.307 doi: 10.1287/opre.16.2.307
    [12] G. Gaudet, Distribution of personal wealth in Britain, Economic J., 88 (1978), 581–583. https://doi.org/10.2307/2232061 doi: 10.2307/2232061
    [13] J. Chen, R. G. Addie, M. Zukerman, T. D. Neame, Performance evaluation of a queue fed by a Poisson Lomax burst process, IEEE Commun. Lett., 19 (2014), 367–370. http://doi.org/10.1109/LCOMM.2014.2385083 doi: 10.1109/LCOMM.2014.2385083
    [14] M. C. Bryson, Heavy-tailed distributions: Properties and tests, Technometrics, 16 (1974), 61–68. http://doi.org/10.2307/1267493 doi: 10.2307/1267493
    [15] A. A. Khalaf, M. Ibrahim, M. Khaleel, Different transformation methods of the Lomax distribution: A review, Iraqi Stat. J., 1 (2024), 41–52. http://doi.org/10.62933/6w437q74 doi: 10.62933/6w437q74
    [16] J. K. Pokharel, G. Aryal, N. Khanal, C. P. Tsokos, Probability distributions for modeling stock market returns-an empirical inquiry, Int. J. Financial Stud., 12 (2024), 43. https://doi.org/10.3390/ijfs12020043 doi: 10.3390/ijfs12020043
    [17] V. B. V. Nagarjuna, R. V. Vardhan, C. Chesneau, Nadarajah-Haghighi Lomax distribution and its applications, Math. Comput. Appl, 27 (2022), 30. http://doi.org/10.3390/mca27020030 doi: 10.3390/mca27020030
    [18] A. J. Lemonte, G. M. Cordeiro, An extended Lomax distribution, Statistics, 47 (2013), 800–816. http://doi.org/10.1080/02331888.2011.568119 doi: 10.1080/02331888.2011.568119
    [19] A. H. El-Bassiouny, N. F. Abdo, H. S. Shahen, Exponential lomax distribution, Int. J. Comput. Appl., 121 (2015), 24–29. http://doi.org/10.5120/21602-4713 doi: 10.5120/21602-4713
    [20] N. M. Kilany, Weighted lomax distribution, SpringerPlus, 5 (2016), 1862. http://doi.org/10.1186/s40064-016-3489-2 doi: 10.1186/s40064-016-3489-2
    [21] M. H. Tahir, M. A. Hussain, G. M. Cordeiro, G. G. Hamedani, M. Mansoor, M. Zubair, The Gumbel-Lomax distribution: Properties and applications, J. Stat. Theory Appl., 15 (2016), 61–79. http://doi.org/10.2991/jsta.2016.15.1.6 doi: 10.2991/jsta.2016.15.1.6
    [22] A. A. Abiodun, A. I. Ishaq, On Maxwell-Lomax distribution: Properties and applications, Arab J. Basic Appl. Sci., 29 (2022), 221–232. http://doi.org/10.1080/25765299.2022.2093033 doi: 10.1080/25765299.2022.2093033
    [23] G. M. Cordeiro, E. E. E. Ortega, B. V. Popović, The gamma-Lomax distribution, J. Stat. Comput. Simul., 85 (2015), 305–319. http://doi.org/10.1080/00949655.2013.822869 doi: 10.1080/00949655.2013.822869
    [24] B. Alnssyan, The modified-Lomax distribution: Properties, estimation methods, and application, Symmetry, 15 (2023), 1367. http://doi.org/10.3390/sym15071367 doi: 10.3390/sym15071367
    [25] A. I. Ishaq, A. A. Abiodun, Adewole, The Maxwell-Weibull distribution in modeling lifetime datasets, Ann. Data Sci., 7 (2020), 639–662. http://doi.org/10.1007/s40745-020-00288-8 doi: 10.1007/s40745-020-00288-8
    [26] A. Shafiq, S. A. Lone, T. N. Sindhu, Y. El Khatib, Q. M. Al-Mdallal, T. Muhammad, A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-19, Results Phys., 28 (2021), 104638. http://doi.org/10.1016/j.rinp.2021.104638 doi: 10.1016/j.rinp.2021.104638
    [27] A. Z. Afify, M. Nassar, D. Kumar, G. M. Cordeiro, A new unit distribution: Properties, inference, and applications, Elect. J. Appl. Stat. Anal., 15 (2022), 438–462. http://doi.org/10.1285/i20705948v15n2p438 doi: 10.1285/i20705948v15n2p438
    [28] H. M. Alshanbari, A. M. Gemeay, A. H. El-Bagoury, S. K. Khosa, E. H. Hafez, A. H. Muse, A novel extension of Fréchet distribution: Application on real data and simulation, Alex. Eng. J., 61 (2022), 7917–7938. http://doi.org/10.1016/j.aej.2022.01.013 doi: 10.1016/j.aej.2022.01.013
    [29] E. Hossam, A. T. Abdulrahman, A. M. Gemeay, N. Alshammari, E. Alshawarbeh, N. K. Mashaqbah, A novel extension of gumbel distribution: Statistical inference with covid-19 application, Alex. Eng. J., 61 (2022), 8823–8842. http://doi.org/10.1016/j.aej.2022.01.071 doi: 10.1016/j.aej.2022.01.071
    [30] A. I. Ishaq, A. Usman, M. Tasi'u, A. A. Suleiman, A. G. Ahmad, A new odd F-Weibull distribution: properties and application of the monthly Nigerian naira to British pound exchange rate data, In: 2022 International Conference on Data Analytics for Business and Industry (ICDABI). 2022,326–332. http://doi.org/10.1109/ICDABI56818.2022.10041527
    [31] Y. L. Oh, F. P. Lim, C. Y. Chen, W. S. Ling, Y. F. Loh, Exponentiated Weibull Burr type X distribution's properties and its applications, Elect. J. Appl. Stat. Anal., 15 (2022), 553–573. http://doi.org/10.1285/i20705948v15n3p553 doi: 10.1285/i20705948v15n3p553
    [32] E. A. El-Sherpieny, H. Z. Muhammed, E. M. Almetwally, A new inverse Rayleigh distribution with applications of COVID-19 data: Properties, estimation methods and censored sample, Elect. J. Appl. Stat. Anal., 16 (2023), 449–472. http://doi.org/10.1285/i20705948v16n2p449 doi: 10.1285/i20705948v16n2p449
    [33] A. A. Suleiman, H. Daud, N. S. S. Singh, A. I. Ishaq, M. Othman, A new odd beta prime-burr X distribution with applications to petroleum rock sample data and COVID-19 mortality rate, Data, 8 (2023), 143. http://doi.org/10.3390/data8090143 doi: 10.3390/data8090143
    [34] N. Alotaibi, I. Elbatal, M. Shrahili, A. S. Al-Moisheer, M. Elgarhy, E. M. Almetwally, Statistical inference for the Kavya-Manoharan Kumaraswamy model under ranked set sampling with applications, Symmetry, 15 (2023), 587. http://doi.org/10.3390/sym15030587 doi: 10.3390/sym15030587
    [35] M. Alqawba, Y. Altayab, S. M. Zaidi, A. Z. Afify, The extended Kumaraswamy generated family: Properties, inference and applications in applied fields, Elect. J. Appl. Stat. Anal., 16 (2023), 740–763. http://doi.org/10.1285/i20705948v16n3p740 doi: 10.1285/i20705948v16n3p740
    [36] A. A. Suleiman, H. Daud, N. S. S. Singh, M. Othman, A. A. Ishaq, R. Sokkalingam, A novel odd beta prime-logistic distribution: Desirable mathematical properties and applications to engineering and environmental data, Sustainability, 15 (2023), 10239. http://doi.org/10.3390/su151310239 doi: 10.3390/su151310239
    [37] G. W. Liyanage, M. Gabanakgosi, B. Oluyede, Generalized Topp-Leone-G power series class of distributions: properties and applications, Elect. J. Appl. Stat. Anal., 16 (2023), 564–583. http://doi.org/10.1285/i20705948v16n3p564 doi: 10.1285/i20705948v16n3p564
    [38] A. I. Ishaq, U. Panitanarak, A. A. Abiodun, A. A. Suleiman, H. Daud, The generalized odd maxwell-kumaraswamy distribution: Its properties and applications, Contemp. Math., 5 (2024), 711–742. http://doi.org/10.37256/cm.5120242888 doi: 10.37256/cm.5120242888
    [39] A. A. Suleiman, H. Daud, A. I. Ishaq, M. Kayid, R. Sokkalingam, R. Y. Hamed, et al., A new Weibull distribution for modeling complex biomedical data, J. Rad. Res. Appl. Sci., 17 (2024), 101190. http://doi.org/10.1016/j.jrras.2024.101190 doi: 10.1016/j.jrras.2024.101190
    [40] H. Daud, A. S. Mohammed, A. I. Ishaq, B. Abba, Y. Zakari, J. Abdullahi, et al., Modeling and prediction of exchange rates using Topp-Leone Burr type X, machine learning and deep learning models, Eur. J. Stat., 4 (2024), 11. http://doi.org/10.28924/ada/stat.4.11 doi: 10.28924/ada/stat.4.11
    [41] H. Daud, A. A. Suleiman, A. I. Ishaq, N. Alsadat, M. Elgarhy, M. A. Usman, et al., A new extension of the Gumbel distribution with biomedical data analysis, J. Rad. Res. Appl. Sci., 17 (2024), 101055. http://doi.org/10.1016/j.jrras.2024.101055 doi: 10.1016/j.jrras.2024.101055
    [42] U. Panitanarak, A. I. Ishaq, A. A. Abiodun, H. Daud, A. A. Suleiman, A new Maxwell-Log logistic distribution and its applications for mortality rate data, J. Niger. Soc. Phys. Sci., 7 (2025), 1976–1976. http://doi.org/10.46481/jnsps.2025.1976 doi: 10.46481/jnsps.2025.1976
    [43] R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Commun. Stat.-Theory Meth., 27 (1998), 887–904. http://doi.org/10.1080/03610929808832134 doi: 10.1080/03610929808832134
    [44] D. W. Hosmer, S. Lemeshow, S. May, Applied survival analysis, In: Wiley Series in Probability and Statistics, 60 (2008).
    [45] A. Ganguly, D. Mitra, N. Balakrishnan, D. A. Kundu, A flexible model based on piecewise linear approximation for the analysis of left truncated right censored data with covariates, and applications to Worcester Heart Attack Study data and Channing House data, Stat. Med., 43 (2023), 233–255. http://doi.org/10.1002/sim.9954 doi: 10.1002/sim.9954
    [46] I. B. Abdul-Moniem, H. F. Abdel-Hameed, On exponentiated Lomax distribution, Int. J. Math. Arch., 3 (2012), 1–7.
    [47] E. A. Rady, W. A. Hassanein, T. A. Elhaddad, The power Lomax distribution with an application to bladder cancer data, SpringerPlus, 5 (2016), 1838. http://doi.org/10.1186/s40064-016-3464-y doi: 10.1186/s40064-016-3464-y
    [48] P. E. Oguntunde, M. A. Khaleel, H. I. Okagbue, O. A. Odetunmibi, The Topp-Leone Lomax (TLLo) distribution with applications to airbone communication transceiver dataset, Wirel. Per. Commun., 109 (2019), 349–360. http://doi.org/10.1007/s11277-019-06568-8 doi: 10.1007/s11277-019-06568-8
    [49] A. A. Abiodun, A. I. Ishaq, On Maxwell-Lomax distribution: Properties and applications, Arab J. Basic Appl. Sci., 29 (2022), 221–232. http://doi.org/10.1080/25765299.2022.2093033 doi: 10.1080/25765299.2022.2093033
    [50] M. Shabbir, A. Riaz, H. Gull, Rayleigh Lomax distribution, J. Middle East North Africa Sci., 4 (2018), 1–4.
    [51] P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling extremal events, British Actuar. J., 5 (1999), 465–465.
    [52] G. P. Patil, M. T. Boswell, S. W. Joshi, M. V. Ratnaparkhi, Dictionary and classified bibliography of statistical distributions in scientific work, Int. Co-operative Publishing House, 1985.
    [53] C. Kleiber, A guide to the Dagum distributions, In: Modeling Income Distributions and Lorenz Curves. Economic Studies in Equality, Social Exclusion and Well-Being, Springer, 2008, 97–117. https://doi.org/10.1007/978-0-387-72796-7_6
    [54] T. Nombebe, J. Allison, L. Santana, J. Visagie, On fitting the Lomax distribution: A comparison between minimum distance estimators and other estimation techniques, Computation, 11 (2023), 44. http://doi.org/10.3390/computation11030044. doi: 10.3390/computation11030044
    [55] P. Supsermpol, S. Thajchayapong, N. Chiadamrong, Predicting financial performance for listed companies in Thailand during the transition period: A class-based approach using logistic regression and random forest algorithm, J. Open Innov.: Technol. Market Complex., 9 (2023), 100–130. http://doi.org/10.1016/j.joitmc.2023.100130 doi: 10.1016/j.joitmc.2023.100130
    [56] A. Kurani, P. Doshi, A. Vakharia, M. Shah, A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting, Ann. Data Sci., 10 (2023), 183–208. http://doi.org/10.1007/s40745-021-00344-x doi: 10.1007/s40745-021-00344-x
    [57] C. J. Huang, D. X. Yang, Y. T. Chuang, Application of wrapper approach and composite classifier to the stock trend prediction, Expert Syst. Appl., 34 (2008), 2870–2878. http://doi.org/10.1016/j.eswa.2007.05.035 doi: 10.1016/j.eswa.2007.05.035
    [58] C. Sattarhoff, T. Lux, Thomas, Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities, Int. J. Forec., 39 (2023), 1678–1697. http://doi.org/10.1016/j.ijforecast.2022.08.009 doi: 10.1016/j.ijforecast.2022.08.009
    [59] M. Chen, Q. Liu, S. Chen, Y. Liu, C. H. Zhang, R. Liu, XGBoost-based algorithm interpretation and application on post-fault transient stability status prediction of power system, IEEE Access, 7 (2019), 13149–13158. http://doi.org/10.1109/ACCESS.2019.2893448 doi: 10.1109/ACCESS.2019.2893448
    [60] M. Heydarian, T. E. Doyle, R. Samavi, MLCM: Multi-label confusion matrix, IEEE Access, 10 (2022), 19083–19095. http://doi.org/10.1109/ACCESS.2022.3151048 doi: 10.1109/ACCESS.2022.3151048
    [61] A. U. Usman, S. B. Abdullahi, Y. L. Liping, B. Alghofaily, A. S. Almasoud, A. Rehman, Financial fraud detection using value-at-risk with machine learning in skewed data, IEEE Access, 12 (2024), 64285–64299. http://doi.org/10.1109/ACCESS.2024.3393154 doi: 10.1109/ACCESS.2024.3393154
    [62] S. Uddin, H. Lu, Confirming the statistically significant superiority of tree-based machine learning algorithms over their counterparts for tabular data, PLos One, 19 (2024), e0301541. https://doi.org/10.1371/journal.pone.0301541 doi: 10.1371/journal.pone.0301541
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1114) PDF downloads(58) Cited by(1)

Article outline

Figures and Tables

Figures(30)  /  Tables(26)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog