Research article Special Issues

Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications

  • Published: 30 May 2025
  • MSC : 60B12, 62G30

  • The modeling of bivariate data in statistics often requires constructing families of bivariate distributions with predefined marginals. In this study, we introduced a novel bivariate distribution, denoted as EP-WD-SAR, which combines the Sarmanov (SAR) copula with the Epanechnikov-Weibull marginal distribution (EP-WD). We analyzed its statistical properties, including product moments, correlation coefficient, moment-generating function, conditional distribution, and concomitants of order statistics. Additionally, we evaluated key reliability and information measures such as the hazard function, reversed hazard function, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy. Parameter estimation was performed using maximum likelihood, asymptotic confidence intervals, and Bayesian methods. Finally, we demonstrated the advantages of the EP-WD-SAR model over existing alternatives, including the bivariate Weibull-SAR, bivariate Epanechnikov-exponential-SAR, bivariate exponential-SAR, and bivariate Chen-SAR distributions through applications to real data sets.

    Citation: G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. O. Mohamed. Bivariate Epanechnikov-Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications[J]. AIMS Mathematics, 2025, 10(5): 12689-12725. doi: 10.3934/math.2025572

    Related Papers:

  • The modeling of bivariate data in statistics often requires constructing families of bivariate distributions with predefined marginals. In this study, we introduced a novel bivariate distribution, denoted as EP-WD-SAR, which combines the Sarmanov (SAR) copula with the Epanechnikov-Weibull marginal distribution (EP-WD). We analyzed its statistical properties, including product moments, correlation coefficient, moment-generating function, conditional distribution, and concomitants of order statistics. Additionally, we evaluated key reliability and information measures such as the hazard function, reversed hazard function, bivariate extropy, bivariate weighted extropy, and bivariate cumulative residual extropy. Parameter estimation was performed using maximum likelihood, asymptotic confidence intervals, and Bayesian methods. Finally, we demonstrated the advantages of the EP-WD-SAR model over existing alternatives, including the bivariate Weibull-SAR, bivariate Epanechnikov-exponential-SAR, bivariate exponential-SAR, and bivariate Chen-SAR distributions through applications to real data sets.



    加载中


    [1] J. I. McCool, Using the Weibull distribution: reliability, modeling, and inference, John Wiley & Sons, Inc., Hoboken, New Jersey, 2012. https://doi.org/10.1002/9781118351994
    [2] W. Weibull, A statistical theory of the strength of materials, Stockholm, 1939.
    [3] L. Alzoubi, A. Al-khazaleh, A. Al-Meanazel, M. M. Gharaibeh, Epanechinkov-Weibull distribution, J. Southwest Jiaotong Univ., 57 (2022), 949–958. https://doi.org/10.35741/issn.0258-2724.57.6.81 doi: 10.35741/issn.0258-2724.57.6.81
    [4] R. B. Nelsen, An introduction to copulas, 2 Eds., New York: Springer-Verlag, 2006.
    [5] A. Sklar, Random variables, joint distributions functions, and copulas, Kybernetica, 9 (1973), 449–460.
    [6] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. A. Abd Elgawad, A more flexible counterpart of a Haung-Kotz's copula-type, C. R. Acad. Bulg. Sci., 75 (2022), 952–958. https://doi.org/10.7546/CRABS.2022.07.02 doi: 10.7546/CRABS.2022.07.02
    [7] I. Iordanov, N. Chervenov, Copulas on Sobolev spaces, C. R. Acad. Bulg. Sci., 68 (2015), 11–18.
    [8] I. O. Sarmanov, New forms of correlation relationships between positive quantities applied in hydrology, In: Mathematical models in hydrology: proceedings of the Warsaw Symposium, IAHS Publication, 1974,104–109.
    [9] M. A. Abd Elgawad, H. M. Barakat, I. A. Husseiny, G. M. Mansour, S. A. Alyami, I. Elbatal, et al., Fisher information, asymptotic behavior, and applications for generalized order statistics and their concomitants based on the Sarmanov family, Axioms, 13 (2024), 17. https://doi.org/10.3390/axioms13010017
    [10] M. A. Alawady, H. M. Barakat, G. M. Mansour, I. A. Husseiny, Information measures and concomitants of k-record values based on Sarmanov family of bivariate distributions, Bull. Malays. Math. Sci. Soc., 46 (2023), 9. https://doi.org/10.1007/s40840-022-01396-9 doi: 10.1007/s40840-022-01396-9
    [11] H. M. Barakat, M. A. Alawady, I. A. Husseiny, G. M. Mansour, Sarmanov family of bivariate distributions: statistical properties-concomitants of order statistics-information measures, Bull. Malays. Math. Sci. Soc., 45 (2022), 49–83. https://doi.org/10.1007/s40840-022-01241-z doi: 10.1007/s40840-022-01241-z
    [12] H. M. Barakat, M. A. Alawady, G. M. Mansour, I. A. Husseiny, Sarmanov bivariate distribution: dependence structure-Fisher information in order statistics and their concomitants, Ricerche Math., 74 (2025), 185–206. https://doi.org/10.1007/s11587-022-00731-3 doi: 10.1007/s11587-022-00731-3
    [13] I. A. Husseiny, H. M. Barakat, G. M. Mansour, M. A. Alawady, Information measures in record and their concomitants. arising from Sarmanov family of bivariate distributions, J. Comput. Appl. Math., 408 (2022), 114120. https://doi.org/10.1016/j.cam.2022.114120 doi: 10.1016/j.cam.2022.114120
    [14] C. D. Lin, N. Balakrishnan, Continuous bivariate distributions, 2 Eds., Springer-Verlag New York, 2009. https://doi.org/10.1007/b101765
    [15] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed, Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data, AIMS Math., 9 (2024), 32299–32327. https://doi.org/10.3934/math.20241550 doi: 10.3934/math.20241550
    [16] H. A. David, H. N. Nagaraja, Concomitants of order statistics, In: Handbook of statistics, 16 (1998), 487–513. https://doi.org/10.1016/S0169-7161(98)16020-0
    [17] M. A. Abd Elgawad, I. A. Husseiny, H. M. Barakat, G. M. Mansour, H. Semary, A. F. Hashem, et al., Extropy and statistical features of dual generalized order statistics' concomitants arising from the Sarmanov family, Math. Slovaca, 74 (2024), 1299–1320. https://doi.org/10.1515/ms-2024-0095 doi: 10.1515/ms-2024-0095
    [18] H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from generalization of FGM bivariate-generalized exponential distribution, J. Stat. Theory Appl., 18 (2019), 309–322. https://doi.org/10.2991/jsta.d.190822.001 doi: 10.2991/jsta.d.190822.001
    [19] J. Scaria, N. U. Nair, Distribution of extremes of rth concomitant from the Morgenstern family, Stat. Pap., 49 (2008), 109–119. https://doi.org/10.1007/s00362-006-0365-0 doi: 10.1007/s00362-006-0365-0
    [20] F. Guess, F. Proschan, Mean residual life: theory and applications, In: Handbook of statistics, Elsevier, 7 (1988), 215–224. https://doi.org/10.1016/S0169-7161(88)07014-2
    [21] D. N. Shanbag, S. Kotz, Some new approaches to multivariate probability distributions, J. Multivariate Anal., 22 (1987), 189–211. https://doi.org/10.1016/0047-259X(87)90085-6 doi: 10.1016/0047-259X(87)90085-6
    [22] J. Kupka, S. Loo, The hazard and vitality measures of ageing, J. Appl. Probab., 26 (1989), 532–542. https://doi.org/10.2307/3214411 doi: 10.2307/3214411
    [23] S. Kotz, D. N. Shanbhag, Some new approaches to probability distributions, Adv. Appl. Probab., 12 (1980), 903–921. https://doi.org/10.2307/1426748 doi: 10.2307/1426748
    [24] P. G. Sankaran, U. Nair, On bivariate vitality functions, In: Proceeding of national Symposium on distribution theory, 1991.
    [25] N. Sreelakshmi, An introduction to copula-based bivariate reliability concepts, Commun. Stat.-Theory Methods, 47 (2018), 996–1012. https://doi.org/10.1080/03610926.2017.1316396 doi: 10.1080/03610926.2017.1316396
    [26] A. P. Basu, Bivariate failure rate, J. Amer. Stat. Assoc., 66 (1971), 103–104. https://doi.org/10.1080/01621459.1971.10482228
    [27] N. L. Johnson, S. Kotz, A vector multivariate hazard rate, J. Multivariate Anal., 5 (1975), 53–66. https://doi.org/10.1016/0047-259X(75)90055-X doi: 10.1016/0047-259X(75)90055-X
    [28] V. S. Vaidyanathan, A. Sharon Varghese, Morgenstern type bivariate Lindley distribution, Stat. Optim. Inf. Comput., 4 (2016), 132–146. https://doi.org/10.19139/soic.v4i2.183 doi: 10.19139/soic.v4i2.183
    [29] A. Xu, G. Fang, L. Zhuang, C. Gu, A multivariate student-t process model for dependent tail-weighted degradation data, IISE Trans., 2024, 1–17. https://doi.org/10.1080/24725854.2024.2389538
    [30] A. Xu, R. Wang, X. Weng, Q. Wu, L. Zhuang, Strategic integration of adaptive sampling and ensemble techniques in federated learning for aircraft engine remaining useful life prediction, Appl. Soft Comput., 175 (2025), 113067. https://doi.org/10.1016/j.asoc.2025.113067 doi: 10.1016/j.asoc.2025.113067
    [31] L. Zhuang, A. Xu, Y. Wang, Y. Tang, Remaining useful life prediction for two-phase degradation model based on reparameterized inverse Gaussian process, Eur. J. Oper. Res., 319 (2024), 877–890. https://doi.org/10.1016/j.ejor.2024.06.032 doi: 10.1016/j.ejor.2024.06.032
    [32] F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
    [33] N. Balakrishnan, F. Buono, M. Longobardi, On weighted extropies, Commun. Stat.-Theory Methods, 51 (2022), 6250–6267. https://doi.org/10.1080/03610926.2020.1860222
    [34] S. M. A. Jahanshahi, H. Zarei, A. H. Khammar, On cumulative residual extropy, Probab. Eng. Inf. Sci., 34 (2020), 605–625. https://doi.org/10.1017/S0269964819000196 doi: 10.1017/S0269964819000196
    [35] H. Joe, Dependence modeling with copulas, CRC Press, 2014. https://doi.org/10.1201/b17116
    [36] R. D. Gupta, D. Kundu, Generalized exponential distributions: statistical inferences, J. Stat. Theory Appl., 1 (2002), 101–118.
    [37] S. Dey, S. Singh, Y. M. Tripathi, A. Asgharzadeh, Estimation and prediction for a progressively censored generalized inverted exponential distribution, Stat. Methodol., 32 (2016), 185–202. https://doi.org/10.1016/j.stamet.2016.05.007 doi: 10.1016/j.stamet.2016.05.007
    [38] A. Hamdy, E. M. Almetwally, Bayesian and non-Bayesian inference for the generalized power akshaya distribution with application in medical, Comput. J. Math. Stat. Sci., 2 (2023), 31–51.
    [39] X. Jia, D. Wang, P. Jiang, B. Guo, Inference on the reliability of Weibull distribution with multiply type-Ⅰ censored data, Reliab. Eng. Syst. Saf., 150 (2016), 171–181. https://doi.org/10.1016/j.ress.2016.01.025 doi: 10.1016/j.ress.2016.01.025
    [40] B. Efron, Bootstrap methods: another look at the Jackknife, In: S. Kotz, N. L. Johnson, Breakthroughs in statistics, springer series in statistics, New York: Springer, 1992. https://doi.org/10.1007/978-1-4612-4380-9_41
    [41] S. Kotz, M. Pensky, The stress-strength model and its generalizations: theory and applications, World Scientific, New York, 2003.
    [42] S. G. Meintanis, Test of fit Marshall-Olkin distributions with applications, J. Stat. Plan. Infer., 137 (2007), 3954–3963. https://doi.org/10.1016/j.jspi.2007.04.013 doi: 10.1016/j.jspi.2007.04.013
    [43] S. Shoaee, On a new class of bivariate survival distributions based on the model of dependent lives and its generalization, Appl. Appl. Math., 15 (2020), 801–829.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(935) PDF downloads(52) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog