In this paper, a new mathematical model of diffuse large B-cell lymphoma (DLBCL) in the germinal center and its microenvironment has been considered. The model is a five-dimensional system of first-order nonlinear ordinary differential equations that consists of interactions between centroblasts, centrocyts, plasmablasts, DLBCL cells, and effector cells. Our analysis focuses on understanding the long-term behavior of the DLBCL from a mathematical perspective. The cycle characteristics of DLBCL growth that can be used to detect the duration of the dormant states of the cancer cells and to choose the treatment methods are important to study. By using codimension-one and codimension-two bifurcations, we found Hopf bifurcations that show the appearance of the cycle and some bifurcations of the periodic solutions that are able to be used to characterize the cycle of the disease. In our case, by varying the carrying capacity parameter and the decay rate of effector cells due to the competition with DLBCL, the system undergoes a Hopf bifurcation and then is followed by a generalized Hopf bifurcation, a limit point bifurcation, and a branch point bifurcation. The occurrence of these bifurcations is crucial for understanding the role of effector cells in the regulation of the DLBCL cycle. Furthermore, the appearance of chaotic solutions reflects the irregularity of the system due to changes in initial conditions, highlighting potential uncertainty in the progression of DLBCL metastasis.
Citation: Sulasri Suddin, Fajar Adi-Kusumo, Mardiah Suci Hardianti, Gunardi. Bifurcation analysis of a diffuse large b-cell lymphoma growth model in germinal center[J]. AIMS Mathematics, 2025, 10(5): 12631-12660. doi: 10.3934/math.2025570
In this paper, a new mathematical model of diffuse large B-cell lymphoma (DLBCL) in the germinal center and its microenvironment has been considered. The model is a five-dimensional system of first-order nonlinear ordinary differential equations that consists of interactions between centroblasts, centrocyts, plasmablasts, DLBCL cells, and effector cells. Our analysis focuses on understanding the long-term behavior of the DLBCL from a mathematical perspective. The cycle characteristics of DLBCL growth that can be used to detect the duration of the dormant states of the cancer cells and to choose the treatment methods are important to study. By using codimension-one and codimension-two bifurcations, we found Hopf bifurcations that show the appearance of the cycle and some bifurcations of the periodic solutions that are able to be used to characterize the cycle of the disease. In our case, by varying the carrying capacity parameter and the decay rate of effector cells due to the competition with DLBCL, the system undergoes a Hopf bifurcation and then is followed by a generalized Hopf bifurcation, a limit point bifurcation, and a branch point bifurcation. The occurrence of these bifurcations is crucial for understanding the role of effector cells in the regulation of the DLBCL cycle. Furthermore, the appearance of chaotic solutions reflects the irregularity of the system due to changes in initial conditions, highlighting potential uncertainty in the progression of DLBCL metastasis.
| [1] |
F. Bray, M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram, et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians, 74 (2024), 229–263. https://doi.org/10.3322/caac.21834 doi: 10.3322/caac.21834
|
| [2] | Lymphoma, Cancer Australia, 2022. Available from: https://www.canceraustralia.gov.au/cancer-types/lymphoma/overview |
| [3] | R. L. Siegel, K. D. Miller, N. S. Wagle, A. Jemal, Cancer statistics, 2023, CA: A Cancer Journal for Clinicians, 73 (2023), 17–48. https://doi.org/10.3322/caac.21763 |
| [4] |
N. Anggorowati, Indrawati, A. L. Dhyanti, H. Arkananda, S. H. Rizki, S. A. Setiawan, et al., Sociodemographic and Clinicopathological features of Lymphoma patients in Indonesia: A report from special region of Yogyakarta province, Asian Pacific J. Envir. Canc., 4 (2022), 33–38. https://doi.org/10.31557/apjec.2021.4.1.33-38 doi: 10.31557/apjec.2021.4.1.33-38
|
| [5] |
A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature, 403 (2000), 503–511. https://doi.org/10.1038/35000501 doi: 10.1038/35000501
|
| [6] |
A. Rosenwald, G. Wright, K. Leroy, X. Yu, P. Gaulard, R. D. Gascoyne, et al., Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma, J. Exp. Med., 198 (2003), 851–862. https://doi.org/10.1084/jem.20031074 doi: 10.1084/jem.20031074
|
| [7] |
Y. Liu, S. K. Barta, Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment, Am. J. Hematol., 94 (2019), 604–616. https://doi.org/10.1002/ajh.25460 doi: 10.1002/ajh.25460
|
| [8] | The International Non-Hodgkin's Lymphoma Prognostic Factors Project, A predictive model For aggressive Non-Hodgkin's Lymphoma, The New England J. Medic., 329 (1993), 987–994. https://doi.org/10.1056/NEJM199309303291402 |
| [9] | L. H. Sehn, B. Berry, M. Chhanabhai, C. Fitzgerald, K. Gill, P. Hoskins. et al., The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP, Blood, 109 (2007), 1857–1861. https://doi.org/10.1182/blood-2006-08-038257 |
| [10] |
Z. Zhou, L. H. Sehn, A. W. Rademaker, L. I. Gordon, A. S. Lacasce, A. Crosby-Thompson, et al., An enhanced international prognostic index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era, Blood, 123 (2014), 837–842. https://doi.org/10.1182/blood-2013-09-524108 doi: 10.1182/blood-2013-09-524108
|
| [11] |
H. M. Byrne, Dissecting cancer through mathematics: From the cell to the animal model, Nat. Rev. Cancer, 10 (2010), 221–230. https://doi.org/10.1038/nrc2808 doi: 10.1038/nrc2808
|
| [12] |
L. G. de Pillis, A. Radunskaya, A mathematical tumour model with immune resistance and drug therapy: An optimal control approach, J. Theor. Med., 3 (2001), 79–100. https://doi.org/10.1080/10273660108833067 doi: 10.1080/10273660108833067
|
| [13] |
L. G. de Pillis, A. Radunskaya, A mathematical model of immune response to tumor invasion, Comput. Flu. Solid Mecha., 2003 (2003), 1661–1668. https://doi.org/10.1016/B978-008044046-0.50404-8 doi: 10.1016/B978-008044046-0.50404-8
|
| [14] |
T. S. N. Asih, S. Lenhart, S. Wise, L. Aryati, F. Adi-Kusumo, M. S. Hardianti, et al., The dynamics of HPV infection and cervical cancer cells, Bull. Math. Biol., 78 (2016), 4–20. https://doi.org/10.1007/s11538-015-0124-2 doi: 10.1007/s11538-015-0124-2
|
| [15] |
F. Adi-Kusumo, R. S. Winanda, Bifurcation analysis of the cervical cancer cells, effector cells, and IL-2 compounds interaction model with immunotherapy, Far East J. Math.l Sci., 99 (2016), 869–883. https://doi.org/10.17654/MS099060869 doi: 10.17654/MS099060869
|
| [16] |
S. Suddin, F. Adi-Kusumo, L. Aryati, Gunardi, Reaction-diffusion on a spatial mathematical model of cancer immunotherapy with effector cells and IL-2 compounds' interactions, Int. J. Differ. Equ., 2021 (2021), 5535447. https://doi.org/10.1155/2021/5535447 doi: 10.1155/2021/5535447
|
| [17] |
E. R. Sari, L. Aryati, F. Adi-Kusumo, An age-structured SIPC model of cervical cancer with immunotherapy, AIMS Math., 9 (2024), 14075–14105. https://doi.org/10.3934/math.2024685 doi: 10.3934/math.2024685
|
| [18] |
J. Malinzi, R. Ouifki, A. Eladdadi, D. F. M. Torres, K. A. J. White, Enhancement of chemotherapy using oncolytic virotherapy: Mathematical and optimal control analysis, Math. Biosci. Eng., 15 (2018), 1435–1463. https://doi.org/10.3934/mbe.2018066 doi: 10.3934/mbe.2018066
|
| [19] | F. Adi-Kusumo, L. Aryati, S. Risdayati, S. Norhidayah, Hopf bifurcation on a cancer therapy model by oncolytic virus involving the malignancy effect and therapeutic efficacy, Int. J. Math. Math. Sci., 2020 (2020). https://doi.org/10.1155/2020/4730715 |
| [20] | S. S. Balasubramaniam, H. M. Safuan, F. Adi-Kusumo, On the bifurcation of a cancer therapy model by oncolytic virus with malignancy effect, EKST, 4 (2024), 1–10. |
| [21] |
M. I. A. Fathoni, Gunardi, F. Adi-Kusumo, S. H. Hutajulu, Mathematical model analysis of breast cancer stages with side effects on heart in chemotherapy patients, AIP Conf. Proc., 2192 (2019), 060007. https://doi.org/10.1063/1.5139153 doi: 10.1063/1.5139153
|
| [22] |
M. I. A. Fathoni, F. Adi-Kusumo, Gunardi, S. H. Hutajulu, Dynamics of a breast cancer model for neutropenia case due to chemotherapy effects, Int. J. Differ. Equ., 2021 (2021), 1–8. https://doi.org/10.1155/2021/3401639 doi: 10.1155/2021/3401639
|
| [23] | M. I. A. Fathoni, F. Adi-Kusumo, Gunardi, S. H. Hutajulu, Mathematical model of the journey of breast cancer patients affected by chemotherapy response, Int. J. Differ. Equ., 17 (2022), 19–32. |
| [24] |
W.-L. Duan, H. Fang, C. H. Zeng, The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises, Chaos Soliton. Fract., 127 (2019), 96–102. https://doi.org/10.1016/j.chaos.2019.06.030 doi: 10.1016/j.chaos.2019.06.030
|
| [25] | W. L. Duan, The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises, Chaos Soliton. Fract., 141 (2020). https://doi.org/10.1016/j.chaos.2020.110303 |
| [26] |
T. Alarcón, R. Marches, K. M. Page, Mathematical models of the fate of lymphoma B cells after antigen receptor ligation with specific antibodies, J. Theor. Biol., 240 (2006), 54–71. https://doi.org/10.1016/j.jtbi.2005.08.028 doi: 10.1016/j.jtbi.2005.08.028
|
| [27] |
K. Roesch, D. Hasenclever, M. Scholz, Modelling lymphoma therapy and outcome, Bull. Math. Biol., 76 (2014), 401–430. https://doi.org/10.1007/s11538-013-9925-3 doi: 10.1007/s11538-013-9925-3
|
| [28] |
J. M. Chrobak, M. Bodnar, H. Herrero, About a generalized model of lymphoma, J. Math. Anal. Appl., 386 (2012), 813–829. https://doi.org/10.1016/j.jmaa.2011.08.043 doi: 10.1016/j.jmaa.2011.08.043
|
| [29] |
S. Sabir, O. León-Triana, S. Serrano, R. Barrio, V. M. Pérez-G, Mathematical model of CAR T-cell therapy for a B-Cell lymphoma lymph node, Bull. Math. Biol., 87 (2025), 1–33. https://doi.org/10.1007/s11538-025-01417-1 doi: 10.1007/s11538-025-01417-1
|
| [30] |
S. R. Ganesh, C. M. Roth, B. Parekkadan, Simulating interclonal interactions in diffuse large B-Cell lymphoma, Bioengineering, 10 (2023), 1–19. https://doi.org/10.3390/bioengineering10121360 doi: 10.3390/bioengineering10121360
|
| [31] | J. R. Cerhan, A. Kricker, O. Paltiel, C. R. Flowers, S. S. Wang, A. Monnereau, et al., Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: The InterLymph Non-Hodgkin Lymphoma subtypes project, JNCI Monographs, 2014 (2014), 15–25. https://doi.org/10.1093/jncimonographs/lgu010 |
| [32] |
M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai, T. Honjo, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme, Cell, 102 (2000), 553–563. https://doi.org/10.1016/s0092-8674(00)00078-7 doi: 10.1016/s0092-8674(00)00078-7
|
| [33] |
K. Basso, R. Dalla-Favera, Germinal centres and B cell lymphomagenesis, Nat. Rev. Immunol., 15 (2015), 172–184. https://doi.org/10.1038/nri3814 doi: 10.1038/nri3814
|
| [34] |
C. Mlynarczyk, L. Fontán, A. Melnick, Germinal center-derived lymphomas: The darkest side of humoral immunity, Immunol. Rev., 288 (2019), 214–239. https://doi.org/10.1111/imr.12755 doi: 10.1111/imr.12755
|
| [35] |
L. Pasqualucci, Molecular pathogenesis of germinal center-derived B cell lymphomas, Immunol. Rev., 288 (2019), 240–261. https://doi.org/10.1111/imr.12745 doi: 10.1111/imr.12745
|
| [36] |
L. Khodadadi, Q. Y. Cheng, A. Radbruch, F. Hiepe, The maintenance of memory plasma cells, Front. Immunol., 10 (2019), 1–17. https://doi.org/10.3389/fimmu.2019.00721 doi: 10.3389/fimmu.2019.00721
|
| [37] |
D. Kirschner, J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235–252. https://doi.org/10.1007/s002850050127 doi: 10.1007/s002850050127
|
| [38] |
M. Oprea, A. S. Perelson, Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts, J. Imunol., 158 (1997), 5155–5162. https://doi.org/10.4049/jimmunol.158.11.5155 doi: 10.4049/jimmunol.158.11.5155
|
| [39] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biology, 56 (1994), 295–321. https://doi.org/10.1007/BF02460644 doi: 10.1007/BF02460644
|
| [40] | Y. B. Jia, Roots of polynomials, Com S 477/577 Notes, 2017. |
| [41] |
N. Suefuji, D. Niino, F. Arakawa, K. Karube, Y. Kimura, J. Kiyasu, et al., Clinicopathological analysis of a composite lymphoma containing both T- and B-cell lymphomas, Pathol. Inter., 62 (2012), 690–698. https://doi.org/10.1111/j.1440-1827.2012.02858.x doi: 10.1111/j.1440-1827.2012.02858.x
|
| [42] |
A. Dhooge, W. Govaerts, Y. A. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM T. Mathe. Software, 29 (2003), 21–22. https://doi.org/10.1145/980175.980184 doi: 10.1145/980175.980184
|
| [43] |
T. D. Chan, D. Gatto, K. Wood, T. Camidge, A. Basten, R. Brink, Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts, J. Immunol., 183 (2009), 3139–3149. https://doi.org/10.4049/jimmunol.0901690 doi: 10.4049/jimmunol.0901690
|
| [44] |
L. G. de Pillis, A. E. Radunskaya, C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950–7958. https://doi.org/10.1158/0008-5472.CAN-05-0564 doi: 10.1158/0008-5472.CAN-05-0564
|
| [45] | P. Calabrese, D. Shibata, A simple algebraic cancer equation: Calculating how cancers may arise with normal mutation rates, BMC Cancer, 10 (2010). https://doi.org/10.1186/1471-2407-10-3 |
| [46] |
S. H. Kleinstein, J. P. Singh, Toward quantitative simulation of germinal center dynamics: Biological and modeling insights from experimental validation, J. Theor. Biol., 211 (2001), 253–275. https://doi.org/10.1006/jtbi.2001.2344 doi: 10.1006/jtbi.2001.2344
|
| [47] |
M. Meyer-Hermann, A. Deutsch, M. Or-Guil, Recycling probability and dynamical properties of germinal center reactions, J. Theor. Biol., 210 (2001), 265–285. https://doi.org/10.1006/jtbi.2001.2297 doi: 10.1006/jtbi.2001.2297
|
| [48] |
M. E. Meyer-Hermann, P. K. Maini, D. Iber, An analysis of B cell selection mechanisms in germinal centers, Math. Med. Biol., 23 (2006), 255–277. https://doi.org/10.1093/imammb/dql012 doi: 10.1093/imammb/dql012
|
| [49] | H. Endo, M. Inoue, Dormancy in cancer, Cancer Sci., 110 (2018), 474–480. https://doi.org/10.1111/cas.13917 |
| [50] |
M. de Charette, R. Houot, Hide or defend, the two strategies of lymphoma immune evasion: Potential implications for immunotherapy, Haematologica, 103 (2018), 1256–1268. https://doi.org/10.3324/haematol.2017.184192 doi: 10.3324/haematol.2017.184192
|