In this paper, we introduce a derivative-free RMIL conjugate gradient method designed for nonlinear systems of monotone equations with convex constraints. The proposed method represents a refinement of the RMIL method through its integration with projection techniques and a derivative-free line search strategy. When certain reasonable assumptions are satisfied, we can prove the global convergence of the proposed method. Numerical experiments demonstrate that the method is highly effective. Moreover, we employ the method to solve sparse signal restoration problems.
Citation: Xiaowei Fang. A derivative-free RMIL conjugate gradient method for constrained nonlinear systems of monotone equations[J]. AIMS Mathematics, 2025, 10(5): 11656-11675. doi: 10.3934/math.2025528
In this paper, we introduce a derivative-free RMIL conjugate gradient method designed for nonlinear systems of monotone equations with convex constraints. The proposed method represents a refinement of the RMIL method through its integration with projection techniques and a derivative-free line search strategy. When certain reasonable assumptions are satisfied, we can prove the global convergence of the proposed method. Numerical experiments demonstrate that the method is highly effective. Moreover, we employ the method to solve sparse signal restoration problems.
| [1] |
S. Prajna, P. A. Parrilo, A. Rantzer, Nonlinear control synthesis by convex optimization, IEEE Trans. Autom. Control., 49 (2004), 310–314. https://doi.org/10.1109/TAC.2003.823000 doi: 10.1109/TAC.2003.823000
|
| [2] |
Y. P. Hu, Y. J. Wang, An efficient projected gradient method for convex constrained monotone equations with applications in compressive sensing, J. Appl. Math. Phys., 8 (2020), 983–998. https://doi.org/10.4236/jamp.2020.86077 doi: 10.4236/jamp.2020.86077
|
| [3] |
J. K. Liu, L. Du, A gradient projection method for the sparse signal reconstruction in compressive sensing, Appl. Anal., 97 (2018), 2122–2131. https://doi.org/10.1080/00036811.2017.1359556 doi: 10.1080/00036811.2017.1359556
|
| [4] |
Y. H. Xiao, Q. Y. Wang, Q. J. Hu, Non-smooth equations based method for l1-norm problems with applications to compressive sensing, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3570–3577. https://doi.org/10.1016/j.na.2011.02.040 doi: 10.1016/j.na.2011.02.040
|
| [5] |
B. Ghaddar, J. Marecek, M. Mevissen, Optimal power flow as a polynomial optimization problem, IEEE Trans. Power Syst., 31 (2016), 539–546. https://doi.org/10.1109/tpwrs.2015.2390037 doi: 10.1109/tpwrs.2015.2390037
|
| [6] |
G. Zhou, K. C. Toh, Superliner convergence of a Newton-type algorithm for monotone equations, J. Optim. Theory Appl., 125 (2005), 205–221. https://doi.org/10.1007/s10957-004-1721-7 doi: 10.1007/s10957-004-1721-7
|
| [7] |
X. W. Fang, Q. Ni, M. L. Zeng, A modified quasi-Newton method for nonlinear equations, J. Comput. Appl. Math., 328 (2018), 44–58. https://doi.org/10.1016/j.cam.2017.06.024 doi: 10.1016/j.cam.2017.06.024
|
| [8] |
D. H. Li, M. Fukushima, A globally and superlinearly convergent Gauss-Newton based BFGS method for symmetric equations, SIAM. J. Numer. Anal., 37 (1999), 152–172. https://doi.org/10.1137/s0036142998335704 doi: 10.1137/s0036142998335704
|
| [9] |
G. L. Yuan, Z. X. Wei, X. W. Lu, A BFGS trust-region method for nonlinear equations, Computing, 92 (2011), 317–333. https://doi.org/10.1007/s00607-011-0146-z doi: 10.1007/s00607-011-0146-z
|
| [10] | M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, In: M. Fukushima, L. Qi, Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, Springer, 22 (1998), 355–369. https://doi.org/10.1007/978-1-4757-6388-1_18 |
| [11] |
Q. Li, D. H. Li, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J. Numer. Anal., 31 (2011), 1625–1635. https://doi.org/10.1093/imanum/drq015 doi: 10.1093/imanum/drq015
|
| [12] |
W. Y. Cheng, A PRP type method for systems of monotone equations, Math. Comput. Model., 50 (2009), 15–20. https://doi.org/10.1016/j.mcm.2009.04.007 doi: 10.1016/j.mcm.2009.04.007
|
| [13] |
A. M. Awwal, P. Kumam, K. Sitthithakerngkiet, A. M. Bakoji, A. S. Halilu, I. M. Sulaiman, et al., Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application, AIMS Math., 6 (2021), 8792-8814. https://doi.org/10.3934/math.2021510 doi: 10.3934/math.2021510
|
| [14] |
M. Ahookhosh, K. Amini, S. Bahrami, Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations, Numer. Algorithms, 64 (2013), 21–42. https://doi.org/10.1007/s11075-012-9653-z doi: 10.1007/s11075-012-9653-z
|
| [15] |
M. Rivaie, M. Mamat, L. W. June, I. Mohd, A new class of nonlinear conjugate gradient coefficients with global convergence properties, App. Math. Comput., 218 (2012), 11323–11332. https://doi.org/10.1016/j.amc.2012.05.030 doi: 10.1016/j.amc.2012.05.030
|
| [16] |
X. W. Fang, Q. Ni, A new derivative-free conjugate gradient method for large-scale nonlinear systems of equations, B. Aust. Math. Soc., 95 (2017), 500–511. https://doi.org/10.1017/s0004972717000168 doi: 10.1017/s0004972717000168
|
| [17] |
X. W. Fang, A class of new derivative-free gradient type methods for large-scale nonlinear systems of monotone equations, J. Inequal. Appl., 2020 (2020), 1–13. https://doi.org/10.1186/s13660-020-02361-5 doi: 10.1186/s13660-020-02361-5
|
| [18] |
P. Liu, H. Shao, Y. Wang, X. Wu, A three-term CGPM-based algorithm without Lipschitz continuity for constrained nonlinear monotone equations with applications, Appl. Numer. Math., 175 (2022), 98–107. https://doi.org/10.1016/j.apnum.2022.02.001 doi: 10.1016/j.apnum.2022.02.001
|
| [19] |
N. Zhang, J. K. Liu, B. Tang, A three-term projection method based on spectral secant equation for nonlinear monotone equations, Jpn. J. Ind. Appl. Math., 41 (2024), 617–635. https://doi.org/10.1007/s13160-023-00624-4 doi: 10.1007/s13160-023-00624-4
|
| [20] |
M. Abdullahi, A. B. Abubakar, S. B. Salihu, Global convergence via modified self-adaptive approach for solving constrained monotone nonlinear equations with application to signal recovery problems, Rairo-oper. Res., 57 (2023), 2561–2584. https://doi.org/10.1051/ro/2023099 doi: 10.1051/ro/2023099
|
| [21] |
M. Abdullahi, A. B. Abubakar, K. Muangchoo, Modified three-term derivative-free projection method for solving nonlinear monotone equations with application, Numer. Algorithms, 95 (2024), 1459-1474. https://doi.org/10.1007/s11075-023-01616-8 doi: 10.1007/s11075-023-01616-8
|
| [22] |
S. Aji, A. M. Awwal, A. B. Muhammadu, C. Khunpanuk, N. Pakkaranang, B. Panyanak, A new spectral method with inertial technique for solving system of nonlinear monotone equations and applications, AIMS Math., 8 (2023), 4442-4466. https://doi.org/10.3934/math.2023221 doi: 10.3934/math.2023221
|
| [23] |
P. Gao, T. Wang, X. Liu, Y. Wu, An efficient three-term conjugate gradient-based algorithm involving spectral quotient for solving convex constrained monotone nonlinear equations with applications, Comput. Appl. Math., 41 (2022), 89. https://doi.org/10.1007/s40314-022-01796-4 doi: 10.1007/s40314-022-01796-4
|
| [24] |
A. B. Abubakar, P. Kumam, H. Mohammad, A. H. Ibrahim, PRP-like algorithm for monotone operator equations, Japan J. Indust. Appl. Math., 38 (2021), 805–822. https://doi.org/10.1007/s13160-021-00462-2 doi: 10.1007/s13160-021-00462-2
|
| [25] |
J. Sabiu, S. Sirisubtawee, An inertial Dai-Liao conjugate method for convex constrained monotone equations that avoids the direction of maximum magnification, J. Appl. Math. Comput., 70 (2024), 4319–4351. https://doi.org/10.1007/s12190-024-02123-2 doi: 10.1007/s12190-024-02123-2
|
| [26] |
E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2001), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
|