This paper introduces and explores new concepts of $ (m, q) $-isometric multimappings in the context of extended metric structures. These newly defined concepts serve as extensions of the existing theory of $ (m, q) $-isometric multimappings in traditional metric spaces, as well as $ (m, q) $-$ \mathcal{G} $-isometric single mappings in generalized metric spaces. The study aims to broaden the understanding of isometric multimappings properties and their interactions within these extended spaces.
Citation: Hadi Obaid Alshammari, Abdulrahman Obaid Alshammari. A study of $ (m, q) $-isometric multimappings in the context of $ \mathcal{G} $-metric spaces[J]. AIMS Mathematics, 2025, 10(5): 11369-11381. doi: 10.3934/math.2025517
This paper introduces and explores new concepts of $ (m, q) $-isometric multimappings in the context of extended metric structures. These newly defined concepts serve as extensions of the existing theory of $ (m, q) $-isometric multimappings in traditional metric spaces, as well as $ (m, q) $-$ \mathcal{G} $-isometric single mappings in generalized metric spaces. The study aims to broaden the understanding of isometric multimappings properties and their interactions within these extended spaces.
| [1] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297. |
| [2] |
J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅰ, Integr. Equ. Oper. Theory, 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
|
| [3] |
K. Gherairi, Z. Hajjej, H. Li, H. Regeiba, $n$-quasi-A-$(m, q)$-isometry on a Banach space, AIMS Mathematics, 8 (2023), 28308–28321. https://doi.org/10.3934/math.20231448 doi: 10.3934/math.20231448
|
| [4] |
S. Mecheri, T. Prasad, On $n$-quasi-$m$-isometric operators, Asian-Eur. J. Math., 9 (2016), 1650073. https://doi.org/10.1142/S179355711650073X doi: 10.1142/S179355711650073X
|
| [5] |
R. P. Agarwal, E. Karapƒ±nar, F. Khojasteh, Ćirić and Meir-Keeler fixed point results in super metric spaces, Appl. Set-Valued Anal. Optim., 4 (2022), 271–275. https://doi.org/10.23952/asvao.4.2022.3.02 doi: 10.23952/asvao.4.2022.3.02
|
| [6] |
Y. Hao, J. Gou, H. Guan, The uniqueness of fixed points for two new classes of contractive mappings of integral type in b-metric spaces, J. Nonlinear Funct. Anal., 2024 (2024), 30. https://doi.org/10.23952/jnfa.2024.30 doi: 10.23952/jnfa.2024.30
|
| [7] |
H. M. Srivastava, Some families of generalized elliptic-type integrals and the associated multiple hypergeometric functions, J. Nonlinear Var. Anal., 8 (2024), 771–786. https://doi.org/10.23952/jnva.8.2024.5.05 doi: 10.23952/jnva.8.2024.5.05
|
| [8] |
T. Bermúdez, A. Martinón, V. Muller, $(m, q)$-isometries on metric spaces, J. Oper. Theory, 72 (2014), 313–328. https://doi.org/10.7900/jot.2013jan29.1996 doi: 10.7900/jot.2013jan29.1996
|
| [9] |
O. A. Mahmoud Sid Ahmed, M. Chō, J. E. Lee, $(m, q)$-isometric and $(m, \infty)$-isometric tuples of commutative mappings on a metric space, Filomat, 34 (2020), 2425–2437. https://doi.org/10.2298/FIL2007425M doi: 10.2298/FIL2007425M
|
| [10] | A. M. A. Al-Ahmadi, Quaternion-generalized metric spaces $m$-quaternion-valued and $\mathcal{G}$-isometric mappings, Int. J. Pure Appl. Math., 116 (2017), 875–897. |
| [11] |
O. A. Mahmoud Sid Ahmed, M. Chō, J. E. Lee, On $(m, C)$-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 51. https://doi.org/10.1007/s00025-018-0810-0 doi: 10.1007/s00025-018-0810-0
|
| [12] |
P. H. W. Hoffmann, M. Mackey, $(m, p)$-isometric and $(m, \infty)$-isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8 (2015), 1550022. https://doi.org/10.1142/S1793557115500229 doi: 10.1142/S1793557115500229
|
| [13] | O. A. Mahmoud Sid Ahmed, On $(m, p)$-(hyper)expansive and $(m, p)$-(hyper)contractive mappings on a metric space, J. Inequal. Spec. Funct., 7 (2016), 73–87. |
| [14] | O. B. Sid Ahmed, H. J. Sidi, O. A. Mahmoud Sid Ahmed, $\psi(m, q)$-isometric mappings on metric spaces, Aust. J. Math. Anal. Appl., 17 (2020), 20. |