Research article

On weighted residual varextropy: characterization, estimation and application

  • Published: 16 May 2025
  • MSC : 62G05, 94A17

  • In recent years, the study of variability in uncertainty measures has gained significant interest in information theory. In this context, the concept of varextropy has been introduced and investigated by several researchers. This paper focuses on the study of weighted varextropy and introduces weighted residual varextropy, presenting a thorough examination of their theoretical properties. Specifically, we investigate the impact of monotonic transformations on these measures and derive various bounds. Additionally, we analyze the application of weighted varextropy within coherent systems and proportional hazard rates models. A non-parametric kernel-based method is introduced to estimate weighted (residual) varextropy, and the estimators' consistency and asymptotic normality are given. Finally, the effectiveness of this estimation method is demonstrated through simulations as well as analysis of a real-world data set, illustrating its potential applications in uncertainty analysis.

    Citation: Li Zhang, Bin Lu. On weighted residual varextropy: characterization, estimation and application[J]. AIMS Mathematics, 2025, 10(5): 11234-11259. doi: 10.3934/math.2025509

    Related Papers:

  • In recent years, the study of variability in uncertainty measures has gained significant interest in information theory. In this context, the concept of varextropy has been introduced and investigated by several researchers. This paper focuses on the study of weighted varextropy and introduces weighted residual varextropy, presenting a thorough examination of their theoretical properties. Specifically, we investigate the impact of monotonic transformations on these measures and derive various bounds. Additionally, we analyze the application of weighted varextropy within coherent systems and proportional hazard rates models. A non-parametric kernel-based method is introduced to estimate weighted (residual) varextropy, and the estimators' consistency and asymptotic normality are given. Finally, the effectiveness of this estimation method is demonstrated through simulations as well as analysis of a real-world data set, illustrating its potential applications in uncertainty analysis.



    加载中


    [1] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [2] F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
    [3] G. X. Qiu, K. Jia, The residual extropy of order statistics, Statist. Probab. Lett., 133 (2018), 15–22. https://doi.org/10.1016/j.spl.2017.09.014 doi: 10.1016/j.spl.2017.09.014
    [4] E. I. A. Sathar, R. D. Nair, On dynamic weighted extropy, J. Comput. Appl. Math., 393 (2021), 113507. https://doi.org/10.1016/j.cam.2021.113507 doi: 10.1016/j.cam.2021.113507
    [5] G. X. Qiu, The extropy of order statistics and record values, Statist. Probab. Lett., 120 (2017), 52–60. https://doi.org/10.1016/j.spl.2016.09.016 doi: 10.1016/j.spl.2016.09.016
    [6] A. S. Krishnan, S. M. Sunoj, N. U. Nair, Some reliability properties of extropy for residual and past lifetime random variables, J. Korean Statist. Soc., 49 (2020), 457–474. https://doi.org/10.1007/s42952-019-00023-x doi: 10.1007/s42952-019-00023-x
    [7] R. D. Nair, E. I. A. Sathar, Some useful results related to various measures of extropy and their interrelationship, Statist. Probab. Lett., 193 (2023), 109729. https://doi.org/10.1016/j.spl.2022.109729 doi: 10.1016/j.spl.2022.109729
    [8] G. X. Qiu, K. Jia, Extropy estimators with applications in testing uniformity, J. Nonparametr. Stat., 30 (2018), 182–196. https://doi.org/10.1080/10485252.2017.1404063 doi: 10.1080/10485252.2017.1404063
    [9] S. Chakraborty, B. Pradhan, On cumulative residual extropy of coherent and mixed systems, Ann. Oper. Res., 340 (2024), 59–81. https://doi.org/10.1007/s10479-023-05727-2 doi: 10.1007/s10479-023-05727-2
    [10] M. Kayid, Further results involving residual and past extropy with their applications, Statist. Probab. Lett., 214 (2024), 110201. https://doi.org/10.1016/j.spl.2024.110201 doi: 10.1016/j.spl.2024.110201
    [11] N. M. Vaselabadi, S. Tahmasebi, M. R. Kazemi, F. Buono, Results on varextropy measure of random variables, Entropy, 23 (2021), 1–14. https://doi.org/10.3390/e23030356 doi: 10.3390/e23030356
    [12] S. K. Chaudhary, N. Gupta, Extropy and varextropy estimators with applications, 2024, arXiv: 2401.13065.
    [13] S. Saha, S. Kayal, Weighted (residual) varentropy and its applications, J. Comput. Appl. Math., 442 (2024), 115710. https://doi.org/10.1016/j.cam.2023.115710 doi: 10.1016/j.cam.2023.115710
    [14] M. Asadi, N. Ebrahimi, Residual entropy and its characterizations in terms of hazard function and mean residual life function, Statist. Probab. Lett., 49 (2000), 263–269. https://doi.org/10.1016/S0167-7152(00)00056-0 doi: 10.1016/S0167-7152(00)00056-0
    [15] T. Cacoullos, V. Papathanasiou, Characterizations of distributions by variance bounds, Statist. Probab. Lett., 7 (1989), 351–356. https://doi.org/10.1016/0167-7152(89)90050-3 doi: 10.1016/0167-7152(89)90050-3
    [16] D. R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B Stat. Methodol., 34 (1972), 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x doi: 10.1111/j.2517-6161.1972.tb00899.x
    [17] R. C. Gupta, R. D. Gupta, Proportional reversed hazard rate model and its applications, J. Statist. Plann. Inference, 137 (2007), 3525–3536. https://doi.org/10.1016/j.jspi.2007.03.029 doi: 10.1016/j.jspi.2007.03.029
    [18] F. Belzunce, C. Martínez-Riquelme, Bounds for the hazard rate and the reversed hazard rate of the convolution of dependent random lifetimes, J. Appl. Probab., 56 (2019), 1033–1043. https://doi.org/10.1017/jpr.2019.59 doi: 10.1017/jpr.2019.59
    [19] E. Parzen, On estimation of a probability density function and mode, Ann. Math. Stat., 33 (1962), 1065–1076.
    [20] E. Masry, Recursive probability density estimation for weakly dependent stationary processes, IEEE Trans. Inform. Theory, 32 (1986), 254–267. https://doi.org/10.1109/TIT.1986.1057163 doi: 10.1109/TIT.1986.1057163
    [21] R. Rajesh, G. Rajesh, S. M. Sunoj, Kernel estimation of extropy function under length-biased sampling, Statist. Probab. Lett., 181 (2022), 109290. https://doi.org/10.1016/j.spl.2021.109290 doi: 10.1016/j.spl.2021.109290
    [22] G. G. Roussas, Asymptotic normality of the kernel estimate under dependence conditions: application to hazard rate, J. Statist. Plann. Inference, 25 (1990), 81–104. https://doi.org/10.1016/0378-3758(90)90008-I doi: 10.1016/0378-3758(90)90008-I
    [23] D. Kasilingam, S. P. S. Prabhakaran, D. K. Rajendran, V. Rajagopal, T. S. Kumar, A. Soundararaj, Exploring the growth of COVID-19 cases using exponential modelling across 42 countries and predicting signs of early containment using machine learning, Transbound. Emerg. Dis., 68 (2021), 1001–1018. https://doi.org/10.1111/tbed.13764 doi: 10.1111/tbed.13764
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(777) PDF downloads(58) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog