
In recent years, the study of variability in uncertainty measures has gained significant interest in information theory. In this context, the concept of varextropy has been introduced and investigated by several researchers. This paper focuses on the study of weighted varextropy and introduces weighted residual varextropy, presenting a thorough examination of their theoretical properties. Specifically, we investigate the impact of monotonic transformations on these measures and derive various bounds. Additionally, we analyze the application of weighted varextropy within coherent systems and proportional hazard rates models. A non-parametric kernel-based method is introduced to estimate weighted (residual) varextropy, and the estimators' consistency and asymptotic normality are given. Finally, the effectiveness of this estimation method is demonstrated through simulations as well as analysis of a real-world data set, illustrating its potential applications in uncertainty analysis.
Citation: Li Zhang, Bin Lu. On weighted residual varextropy: characterization, estimation and application[J]. AIMS Mathematics, 2025, 10(5): 11234-11259. doi: 10.3934/math.2025509
[1] | Cagnur Corekli . The SIPG method of Dirichlet boundary optimal control problems with weakly imposed boundary conditions. AIMS Mathematics, 2022, 7(4): 6711-6742. doi: 10.3934/math.2022375 |
[2] | Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274 |
[3] | V. Raja, E. Sekar, S. Shanmuga Priya, B. Unyong . Fitted mesh method for singularly perturbed fourth order differential equation of convection diffusion type with integral boundary condition. AIMS Mathematics, 2023, 8(7): 16691-16707. doi: 10.3934/math.2023853 |
[4] | Kaifang Liu, Lunji Song . A family of interior-penalized weak Galerkin methods for second-order elliptic equations. AIMS Mathematics, 2021, 6(1): 500-517. doi: 10.3934/math.2021030 |
[5] | Nien-Tsu Hu, Sekar Elango, Chin-Sheng Chen, Murugesan Manigandan . Computational methods for singularly perturbed differential equations with advanced argument of convection-diffusion type. AIMS Mathematics, 2024, 9(8): 22547-22564. doi: 10.3934/math.20241097 |
[6] | Lanyin Sun, Kunkun Pang . Numerical solution of unsteady elastic equations with C-Bézier basis functions. AIMS Mathematics, 2024, 9(1): 702-722. doi: 10.3934/math.2024036 |
[7] | Zhengang Zhao, Yunying Zheng, Xianglin Zeng . Finite element approximation of fractional hyperbolic integro-differential equation. AIMS Mathematics, 2022, 7(8): 15348-15369. doi: 10.3934/math.2022841 |
[8] | Jinghong Liu . W1,∞-seminorm superconvergence of the block finite element method for the five-dimensional Poisson equation. AIMS Mathematics, 2023, 8(12): 31092-31103. doi: 10.3934/math.20231591 |
[9] | Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917 |
[10] | Essam R. El-Zahar, Ghaliah F. Al-Boqami, Haifa S. Al-Juaydi . Piecewise approximate analytical solutions of high-order reaction-diffusion singular perturbation problems with boundary and interior layers. AIMS Mathematics, 2024, 9(6): 15671-15698. doi: 10.3934/math.2024756 |
In recent years, the study of variability in uncertainty measures has gained significant interest in information theory. In this context, the concept of varextropy has been introduced and investigated by several researchers. This paper focuses on the study of weighted varextropy and introduces weighted residual varextropy, presenting a thorough examination of their theoretical properties. Specifically, we investigate the impact of monotonic transformations on these measures and derive various bounds. Additionally, we analyze the application of weighted varextropy within coherent systems and proportional hazard rates models. A non-parametric kernel-based method is introduced to estimate weighted (residual) varextropy, and the estimators' consistency and asymptotic normality are given. Finally, the effectiveness of this estimation method is demonstrated through simulations as well as analysis of a real-world data set, illustrating its potential applications in uncertainty analysis.
We consider the following system of ℓ≥2 coupled singularly perturbed reaction-diffusion boundary value problems. Find u∈(C2(0,1)∩C[0,1])ℓ such that
{Lu=−Eu′′+Au=g in Ω=(0,1),u(0)=u0,u(1)=u1, | (1.1) |
where E=diag(ε21,…,ε2ℓ) with small perturbation parameters 0<εi<<1,i=1,2…,ℓ, the vector-valued function g=(g1,g2,…,gℓ)T and the reaction coefficients matrix A=(akl)ℓk,l=1 are twice continuously differentiable on [0,1] and the constants u0 and u1 are given. The exact solution of (1.1) is the vector u=(u1,u2,…,uℓ)T. We assume that A:[0,1]→R(ℓ,ℓ) and the vector valued function g:[0,1]→Rℓ are independent of the perturbation parameters E and the reaction matrix A is strongly diagonally dominant with
ℓ∑j=1j≠i‖aijaii‖∞<1,fori=1,2,…,ℓ. | (1.2) |
Then the condition (1.2) implies that A is an M-matrix and its inverse is positive definite and bounded in the maximum norm (see e.g., [1]). Under these assumptions, the problem (1.1) has a unique solution u=(u1,…,uℓ)T∈(C2(0,1)∩C[0,1])ℓ. In this paper, without loss of generality we will assume the most general case
0<ε1≤ε2≤⋯≤εℓ≪1, | (1.3) |
which always can be done, if necessary, by renumbering of the equations in the system.
It has been well-known that standard numerical methods including finite difference (FD) methods and finite element methods (FEM) are inefficient and inaccurate when applied to singularly perturbed problems (SPPs) on uniform meshes. The solutions of SPPs have boundary or/and interior layers which are very thin regions in which the solution or its derivative change abruptly. The width of the layers depends on the perturbation parameter and these layers are not resolved unless a large number of mesh points are used which is computationally expensive. As a remedy, fitted mesh methods based on layer-adapted meshes have been proposed and studied during recent years for solving boundary layer problems. The construction of these meshes require a priori knowledge on the bounds for the solution and its derivative. These meshes are finer in the part of boundary layers and coarser in the outside of region of the boundary layers. The well-known layer-adapted meshes are piecewise uniform Shishkin meshes [2] and Bakhvalov-type meshes [3]. We refer the readers to the books [1,2,4] and references therein for more details.
Unlike the non-coupled SPPs, the boundary layer behaviour of the solution to each equation in the system can be dramatically different and complicated. Each solution in the coupled system may have a sublayer corresponding to each of the perturbation parameter in the domain if the perturbation parameter in each equation has a different magnitude. This renders the construction of numerical methods very subtle. Shiskin [5] considered coupled system of two reaction diffusion equations on an infinite strip and he proved that the finite difference method is a robust method and has the rate of convergence O(N−1/4) on piecewise uniform meshes when the perturbation parameters are small and different each other. Later, it is shown that the method has higher order convergence in [6,7,8,9] using piecewise uniform Shishkin mesh. The finite element method has been developed and analyzed for SPPs in the papers [7,10,11]. Recently, the numerical solution of system of reaction diffusion problems have been presented in [12,13,14] and reference therein.
Although there has been increasing interest in the numerical solution of coupled system of two singularly perturbed differential equations, few articles discuss the numerical solution of coupled system of more than two singularly perturbed differential equations. Kellogg et al. [15] considered a system of {ℓ≥2} reaction-diffusion equations in two dimension with the same perturbation parameter for each equation in the system. A system of {ℓ≥2} reaction-diffusion equations each of which has a different perturbation parameter has been studied and analyzed in one dimension in [9]. In general, the reaction coefficient matrix A is assumed to be diagonally dominant with positive diagonal and nonpositive off-diagonal elements in most of the papers. However, this condition is weakened in [9]. Usually, error analyses in FEMs or DG methods have been analyzed in the energy norms derived from corresponding variational formulations. Unfortunately, these norms are too weak to capture the boundary layers of SPPs of reaction-diffusion type, see, e.g., [14,16,17,18]. Up to now, the only work on the balanced error estimates of finite element method for a system of ℓ≥2 coupled singularly perturbed reaction-diffusion two-point boundary value problems is the paper of Lin and Stynes [14]. They have proved that the classical FEM using quadratic C1 splines is order of O(N−1lnN) in the balanced norm provided that each perturbation parameter is equal to the same small number. {A new FEM is presented for SPPs of reaction-diffusion type in the weighted and balanced norm in [19]. The convergence analysis of the classical FEM in a balanced norm on Bakhvalov-type rectangular meshes has been studied in [20].} The analysis is much more involved and complicated when each parameter in the system is different. The error analysis in the balanced norm, to the best of the authors' knowledge, is not studied in the literature when the perturbation parameters are different. In this paper, to fill this gap, we derive the error estimates of a weak Galerkin method for a system of ℓ≥2 coupled SPPs of reaction-diffusion type in the energy and balanced norms when each equation in the system has a different parameter. The classical FEM on the balanced norm using C0-elements is open [21].
Wang and Ye [22] first introduced the weak Galerkin finite element method (WG-FEM) and presented for the second order elliptic equation. The key in the WG finite element scheme is to use the weak functions and weak derivatives on the completely discontinuous piecewise polynomials spaces. Since then, many papers have been devoted to WG finite element methods including the implementation results in [23], parabolic problems in [24], the Maxwell equations [25], the Stokes equations [26], the Helmholtz equations with high wave numbers in [27] and the multi-term time fractional diffusion equations in [28]. In [29], a discrete gradient and divergence operators have been introduced for convection-dominated problems. A uniformly convergent weak Galerkin finite element method on Shishkin mesh for convection-diffusion problem in one dimension has been presented in [30]. Uniform convergence of the WG-FEM on Shishkin mesh for SPPs of convection-dominated type has been studied in 2D in [31] and in 1D in [32] and singularly perturbed reaction-convection-diffusion problems with two parameters has been analyzed in [33]. Uniform convergence of a weak Galerkin method on Bakhvalov-type mesh for singularly perturbed convection-diffusion problem has been analyzed in [34,35] and nonlinear singularly perturbed reaction-diffusion problems in [36]. Supercloseness in an energy norm of a WG-FEM on a Bakhvalov-type mesh for a singularly perturbed two-point boundary value problem has been demonstrated in [37] and superconvergence results in [38]. The WG-FEM for two coupled system of SPPs of reaction-diffusion type has been presented in the energy norm in [39]. We wish to study a robust WG-FEM for the coupled systems of SPPs of reaction-diffusion type. Thus, the main aim of this paper is to construct a uniformly convergent WG-FEM for the problem (1.1).
The paper is organized as follows. In Section 2, we present and study a decomposition of the exact solution and a uniform Shishkin mesh. We introduce the WG-FEM in Section 3. Stability properties of the proposed method have been demonstrated in Section 4. Error analysis in the energy and balanced norm is presented in Sections 5 and 6, respectively. In Section 7, the numerical results are conducted to confirm the theory in the previous sections. Finally. conclusion is given in Section 8.
In this work, by C we mean a generic constant independent of N and the perturbation parameters εi,i=1,…,ℓ which may not be the same at each occurrence. Constants with subscript such as Cc are fixed numbers and also do not depend on εi,i=1,…,ℓ, and the mesh parameter N.
In this section, we first give a decomposition of the analytical solution of the linear system (1.1). Then we will derive the bounds for the solution and its derivatives. Next, a piecewise-uniform Shishkin mesh is constructed. Sobolev spaces with the related norms and some basic notations are introduced at the end of this section.
The solution of the system (1.1) can be decomposed as u=R+L where R is the regular solution part and L is the layer parts. In light of (1.2), there is a constant ρ∈(0,1) such that
ℓ∑j=1j≠i‖aijaii‖∞<ρ,fori=1,2,…,ℓ. | (2.1) |
Define α=α(ρ) by
α2:=(1−ρ)mini=1,…,ℓmin0≤x≤1aii(x). |
For the future reference, we set
Bαμ(x):=e−αx/μ+e−α(1−x)/μ, |
and define ℓ×ℓ matrix Γ=(cij) by
cii=1, and cij=−‖aijaii‖∞ for i≠j. | (2.2) |
We assume that the matrix Γ is inverse monotone, that is, Γ−1 exists and
Γ−1≥0. | (2.3) |
We first provide the stability of the solution of (1.1) from [9].
Lemma 2.1. Assume that u is the solution of (1.1) and the reaction coefficient matrix A has strictly positive diagonal elements aii>0 for i=1,2,…,ℓ. Let the matrix Γ be inverse monotone. Then the solution to each equation in the system has the following bounds
|ui(x)|≤ℓ∑j=1(Γ−1)ijmax{‖gjajj‖,|u0,i|,|u1,i|},i=1,…,ℓ. |
Proof. We refer the reader to [9] for the detailed proof.
The following theorem states that the coercivity of A and inverse monotone property (2.3) of the matrix Γ are related.
Theorem 2.2. [40] Assume that the reaction coefficient matrix A has strictly positive diagonal elements aii>0 for i=1,2,…,ℓ and the matrix Γ is inverse monotone. Then, there is a constant diagonal matrix D with positive elements and a positive constant β such that
vTDAv≥βvTv,∀v∈Rℓ,x∈[0,1]. |
Remark 2.1.
(1) If the matrix A has the property (1.2), then the matrix Γ is a strongly diagonally dominant L0 matrix which implies that the matix Γ is inverse monotone.
(2) If A and g are twice continuously differentiable, then the above stability result guarantees the existence of a unique solution u∈C4[0,1]ℓ.
(3) The reaction matrix is assumed to be strongly diagonally dominant with positive diagonal elements and nonpositive off-diagonal elements in most of existence papers on coupled system of SPPs with the exception [9,41]. This assumption implies that the operator L is inverse monotone and satisfies the maximum principle which is a useful tool in finite difference method. In this paper, the assumptions on A are weakened and we consider problems in a more general setting.
(4) Since the form of system (1.1) and the matrix Γ do not change when a constant positive diagonal matrix is applied on the left, Theorem 2.2 implies that we can assume, without loss of generality, the reaction matrix A is coercive if it has positive diagonal elements. That means that there exists η>0 such that
vTAv≥ηvTv,∀v∈Rℓ. | (2.4) |
We have to consider the solution decomposition consisting of smooth and layer components because of the boundary layers. Thus, we will use the following decomposition of u in the forthcoming analysis.
u=R+LL+LR, |
where R is the smooth part, LL and LR are the boundary layer parts, and satisfy the following boundary value problems, respectively
LR=gonΩand R(0)=A−1(0)g(0),R(1)=A−1(1)g(1), | (2.5) |
LLL=0onΩand LL(0)=u0−R(0),LL(1)=0., | (2.6) |
LLR=0onΩand LR(0)=0,LR(1)=u1−R(1). | (2.7) |
Here, the existence of the inverse matrix A−1 is guaranteed by the condition (1.2).
Theorem 2.3. Assume that A and g are twice continuously differentiable. Then the solution u of the system (1.1) can be decomposed as u=R+LL+LR, where R and L=LL+LR satisfy
|R(k)i(x)|≤C,fork=0,1,…,4,i=1,…,ℓ | (2.8) |
|L(k)i(x)|≤Cℓ∑m=iε−kmBαεm(x),fork=0,1,2,i=1,…,ℓ | (2.9) |
|L(k)i(x)|≤Cε2−kiℓ∑m=1ε−2mBαεm(x),fork=3,4,i=1,…,ℓ | (2.10) |
Proof. A detailed proof can be found in [42].
Let N be an integer divisible by 2(ℓ+1). We define the transition points
λℓ+1=12,λs=min{sλs+1s+1,σεsαlnN},s=ℓ,…,1,andλ0=0, |
where σ is a user-chosen constant with σ=O(1). In general, this parameter is chosen as σ≥k+1 where k is the order of polynomials in the approximation space. Then we divide each of the intervals Ωs:=[λs,λs+1] and sΩ:=[1−λs+1,1−λs], s=0,…,ℓ into N2(ℓ+1) subintervals of equal mesh size
Hs=H2ℓ+1−s=2(ℓ+1)(λs+1−λs)N,s=0,…,ℓ. |
An example of a piecewise-uniform Shishkin mesh with N=32 elements for a system of ℓ=3 reaction-diffusion equations is shown in Figure 1.
We next define the nodes recursively as
x0=0,xn=xn−1+hn for n=1,…,N, wherehn={H0,n=1,…,N2(ℓ+1),H1,n=N2(ℓ+1)+1,…,N(ℓ+1),⋮⋮H2ℓ+1,n=N(2ℓ+1)2(ℓ+1),…,N. |
We denote the mesh and a partition of the domain Ω by In=[xn−1,xn],n=1,…,N and TN={In:n=1,…,N}, respectively. For In∈TN, the outward unit normal nIn on In is defined as nIn(xn)=1 and nIn(xn−1)=−1; for simplicity, we use n instead of nIn.
We use the following basic notations in the sequel. By L2(Ω), we denote the space of square integrable functions on Ω with the norm ‖u‖2L2(Ω)=∫Ωu2(x)dx and sometimes, we will use the abbreviation ‖⋅‖=‖u‖2L2(Ω). The standard Sobolev space is denoted by Hk(Ω) with the norm ‖⋅‖k,Ω and semi-norm |⋅|k,Ω given as
‖u‖2k,Ω=k∑j=0‖u(j)‖2L2(Ω),|u|2k,Ω=‖u(k)‖2L2(Ω). |
We define the norm for a vector-valued function u as
‖u‖2k,Ω=ℓ∑i=1‖ui‖2k,Ω. |
For each interval In, the broken Sobolev space is defined by
HkN(Ω)={u∈L2(Ω):u|In∈Hk(In),∀In∈TN}, |
and the corresponding norm and semi-norm
‖u‖2HkN(Ω)=N∑n=1ℓ∑i=1‖ui‖2k,In,|u|2HkN(Ω)=N∑n=1ℓ∑i=1|ui|2k,In. |
For the future reference we use the following notations
(u,v)=∑In∈TN(u,v)In=∑In∈TN∫Inu(x)v(x)dx,⟨u,v⟩=∑In∈TN⟨u,v⟩∂In=∑In∈TN(u(xn)v(xn)+u(xn−1)v(xn−1)),‖u‖2=N∑n=1‖u‖2In=N∑n=1(u,u)In. |
This section is devoted to introduce novel concepts such as weak functions and weak derivatives from which we define our method for the problem (1.1). For the rest of the paper, we denote by Pk(In) the set of polynomials defined on In with degree at most k. The space of weak functions W(In) on In is defined by
W(In)={u={u0,ub}:u0∈L2(In),vb∈L∞(∂In)}. |
Here, a weak function u={u0,ub} has two components and the first component u0 represents the value of u in (xn−1,xn) and ub is interpreted as the value of u on ∂In={xn−1,xn}. From now on, we assume that k=2 unless otherwise mentioned.
Let SN(In) be a local weak Galerkin (WG) finite element space given by
SN(In)={u={u0,ub}:u0|In∈Pk(In),ub|∂In∈P0(∂In)∀In∈TN}, | (3.1) |
where P0(∂In) stands for constant polynomials on ∂In. We remark that the results can be extended to Pk elements when k>2. However, in this case {some } additional compatibility conditions of the data will be required in order to have (2.8).
Next, we define a global WG finite element space SN that comprises of weak functions u={u0,ub} such that u0|In∈Pk(In) and ub|xn is the constant for n=0,…,N.
Let S0N be the subspace of SN with zero boundary conditions, that is,
S0N={u={u0,ub}:u∈SN,ub(0)=ub(1)=0}. | (3.2) |
The weak derivative dw,Inu∈Pk−1(In) of a function u∈SN(In) is defined to be the solution of the following equation
(dw,Inu,v)In=−(u0,v′)In+⟨ub,nv⟩∂In,∀v∈Pk−1(In), | (3.3) |
where
(w,z)In=∫Inw(x)z(x)dx, |
and
⟨w,zn⟩∂In=w(xn)z(xn)−w(xn−1)z(xn−1). |
The discrete weak derivative dwu of the weak function u={u0,ub} on the finite element space SN is defined by
(dwu)|In=dw,In(u|In),∀u∈SN. |
Our WG-FEM scheme for the system of singularly perturbed reaction-diffusion problems (1.1) is given as follows.
Algorithm 1 The weak Galerkin scheme for the linear system of singularly perturbed diffusionreaction problem. |
The WG-FEM for the problem (1.1) is to find uN=(uN1,…,uNℓ)∈[S0N]ℓ which solves the following: a(uN,vN)=L(vN),∀vN=(vN1,…,vNℓ)∈[S0N]ℓ.(3.4) |
Here, the bilinear and the linear forms are defined by, for any uNi={ui0,uib},
a(uN,vN)=ℓ∑i=1ε2i(dwuNi,dwvNi)+ℓ∑i=1ℓ∑j=1(aijuj0,vi0)+ℓ∑i=1s(uNi,vNi),s(uNi,vNi)=N∑n=1⟨ϱn(ui0−uib),vi0−vib⟩∂In,L(vN)=ℓ∑i=1(gi,vi0), | (3.5) |
where ϱn≥0,n=1,…N is the penalization parameter associated with the node xn defined as follows:
ϱn={1,forIn⊂Ωλ=[λℓ,1−λℓ],NlnN,forIn⊂Ω∖Ωλ. | (3.6) |
Choosing a penalty parameter in stabilized numerical methods is an important issue in uniform convergence estimates. Usually, the penalization parameter will depend on the perturbation parameters. For example, ϱn=ε2ℓh−1n is taken in the WG finite element schemes [22,26,29]. However, a uniform convergence rate can not be attained for a penalization constant depending on the perturbation parameters.
In the following analysis, we will recall the following multiplicative trace inequality and the inverse inequality.
‖v‖2L2(∂In)≤C(h−1n‖v‖2L2(In)+‖v‖L2(In)‖v′‖L2(In)),∀v∈H1(In), | (4.1) |
‖vN‖Lp(∂In)≤Ch−1/pn‖vN‖Lp(In),∀1≤p≤∞,∀vN∈Pk(In). | (4.2) |
We introduce the E-weighted energy norm ‖|⋅‖| in [S0N]ℓ as follows: for v=(vN1,…,vNℓ)T=({v10,v1b},…,{vℓ0,vℓb})T∈[S0N]ℓ,
‖|v‖|2=ℓ∑i=1ε2i‖dwvNi‖2+ηℓ∑i=1‖vi0‖2+ℓ∑i=1s(vNi,vNi), | (4.3) |
where η is the coercivity constant of A.
We also introduce the discrete H1 energy-like norm ‖|⋅‖|ε in SℓN+H1(Ω)ℓ defined as
‖|v‖|2ε=ℓ∑i=1ε2i‖v′i0‖2+ηℓ∑i=1‖vi0‖2+ℓ∑i=1s(vNi,vNi), | (4.4) |
where v′i0 is the ordinary derivative of a functions vi0(x).
We show that the norms ‖|⋅‖| and ‖|⋅‖|ε defined by (4.3) and (4.4), respectively are equivalent in the {weak Galerkin} finite element space [S0N]ℓ in the next lemma.
Lemma 4.1. Let vN∈[S0N]ℓ. Then there are two positive constant Cl and Cs such that
Cl‖|vN‖|≤‖|vN‖|ε≤Cs‖|vN‖|. | (4.5) |
Proof. For any vNi={vi0,vib}∈S0N, by the definition of weak derivative (3.3) and integration by parts we arrive at
(dwvNi,w)In=(v′i0,w)In+⟨vib−vi0,wn⟩∂In,∀w∈Pk−1(In). | (4.6) |
Choosing w=dwvNi in the above Eq (4.6) yields
‖dwvNi‖2In=(v′i0,dwvNi)In+⟨vib−vi0,dwvNin⟩∂In. |
Summing up the above equation over all In∈TN, and using the inverse inequality (4.2), we obtain
‖dwvNi‖2≤C(‖v′i0‖2+N∑n=1h−1n‖vib−vi0‖2∂In)1/2‖dwvNi‖. |
Therefore, we have
‖dwvNi‖2≤C(‖v′i0‖2+N∑n=1h−1n‖vib−vi0‖2∂In). | (4.7) |
From the penalty parameter (3.6), we have
ε2ih−1nϱn≤εih−1nϱn≤C, forn=1,…,N. | (4.8) |
To see this, the minimal possible hn=H0=2(ℓ+1)λ1N implies that ε1h−1nϱn=α2(ℓ+1)σ=:C. Hence using (4.8), we obtain
N∑n=1ε2ih−1n‖vib−vi0‖2∂In=N∑n=1ε2ih−1nϱnϱn‖vib−vi0‖2∂In≤Cs(vNi,vNi), |
which together with (4.7) implies that
ε2i‖dwvNi‖2≤2(ε2i‖v′i0‖2+s(vNi,vNi)). | (4.9) |
On the other hand, taking w=v′i0 in the Eq (4.6) yields
‖v′i0‖2In=(v′i0,dwvNi)In−⟨vib−vi0,v′i0n⟩∂In. |
Summing up the above equation over all In∈TN, using the inverse inequality (4.2), we have
‖v′i0‖2≤C(‖dwvNi‖2+N∑n=1h−1n‖vib−vi0‖2∂In)1/2‖v′i0‖. |
Therefore, we have
‖v′i0‖2≤C(‖dwvNi‖2+N∑n=1h−1n‖vib−vi0‖2∂In). | (4.10) |
With the help of (4.8), we result in
ε2i‖v′i0‖2≤C(ε2i‖dwvNi‖2+s(vNi,vNi)). | (4.11) |
We obtain the desired result (4.5) in view of the inequalities (4.9) and (4.11) and the definition of the norms ‖|⋅‖ and ‖|⋅‖|ε. Thus we complete the proof.
We next show that the coercivity of the bilinear form a(⋅,⋅) on [S0N]ℓ in the energy norm ‖|⋅‖| defined by (4.3).
Lemma 4.2. Let vN∈[S0N]ℓ. Then there holds
a(vN,vN)≥‖|vN‖|2. | (4.12) |
Proof. Using the coercivity (2.4) of the reaction matrix A, we have
a(vN,vN)=ℓ∑i=1ε2i‖dwvNi‖2+ℓ∑i=1ℓ∑j=1(aijvj0,vi0)+ℓ∑i=1s(vNi,vNi)≥ℓ∑i=1ε2i‖dwvNi‖2+ηℓ∑i=1‖vi0‖2+ℓ∑i=1s(vNi,vNi)=‖|vN‖|2. |
The proof is completed.
In light of Lemma 4.2, we deduce that
‖|uN‖|≤‖g‖, |
which in turn implies the problem (3.4) has a unique solution. The existence follows from the uniqueness.
As a result of Lemma 4.1 and Lemma 4.2, we conclude that the bilinear form a(⋅,⋅) is also coercive in the energy like norm ‖|⋅‖|ε defined by (4.4).
Lemma 4.3. Let vN,wN∈[S0N]ℓ. Then there exist positive constants Cc and Ce such that
a(vN,wN)≤Cc‖|vN‖|ε‖|wN‖|ε, | (4.13) |
a(vN,vN)≥Ce‖|vN‖|2ε. | (4.14) |
In this section, we study the error analysis of the proposed numerical scheme applied to the problem (1.1) in the energy norm associated with the bilinear form. We will show that the WG-FEM solution converges uniformly in the energy norm with respect to the perturbation parameters. For the uniform convergence analysis on Shishkin mesh, we will use a special interpolation operator given in [11]. On each interval In, we introduce the set of k+1 nodal functional Nℓ defined as follows: for any v∈C(In)
N0(v)=v(xn−1),Nk(v)=v(xn),Nm(v)=1hmn∫xnxn−1(x−xn−1)m−1v(x)dx,m=1,…,k−1. |
A local interpolation I:H1(In)→Pk(In) is now defined by
Nm(Iv−v)=0,m=0,1,…,k. | (5.1) |
The local interpolation operator I can used for constructing a continuous global interpolation.
Since Iv|In is continuous on In and is in the H1(In) space, we denote Iv|∂In by Iv|In, for simplicity. Form this fact we observe that for any v∈H1(In) we have
dw(Iv)=(Iv)′. | (5.2) |
Lemma 5.1. [11] For any w∈Hk+1(In),In∈TN, the interpolation Iw defined by (5.1) has the following estimates:
|w−Iw|l,In≤Chk+1−ln|w|k+1,In,l=0,1,…,k+1, | (5.3) |
‖w−Iw‖L∞(In)≤Chk+1n|w|k+1,∞,In, | (5.4) |
where hn is the length of element In and C is independent of hn, and {εi,i=1,…,ℓ.}
Lemma 5.2. Let IR and IL be the interpolations of the regular part R and the layer part L of the solution {u∈Hk+1(Ω)} on the piecewise-uniform Shishkin mesh, respectively. Assume also that εℓlnN≤ℓα/(2(ℓ+1)σ) and let Ωλ=[λℓ,1−λℓ]. Then, we have Iu=IR+IL and the following interpolation estimates are satisfied for i=1,…,ℓ
‖(Ri−IRi)(l)‖L2(Ω)≤CNl−(k+1),l=0,1,2, | (5.5) |
‖Li−ILi‖L2(Ω∖Ωλ)≤Cε1/2(N−1lnN)k+1, | (5.6) |
N−1‖(ILi)′‖L2(Ωλ)+‖ILi‖L2(Ωλ)≤C(ε1/2+N−1/2)N−σ, | (5.7) |
‖Li‖L∞(Ωλ)+ε−1/2‖Li‖L2(Ωλ)≤CN−σ, | (5.8) |
‖(Li)(l)‖L2(Ωλ)≤Cε1/2−lN−σ,l=1,2, | (5.9) |
‖Li−ILi‖L2(Ωλ)≤C(ε1/2+N−1/2)N−σ, | (5.10) |
where ε1/2:=ε1/21+…,+ε1/2ℓ. Furthermore, the following estimates hold true
‖(Li−ILi)(l)‖L2(Ωλ)≤Cε1/2−lN−σ,l=1,2, | (5.11) |
‖(Li−ILi)(l)‖L2(Ω∖Ωλ)≤Cε1/2−l(N−1lnN)k+1−ℓ,l=1,2. | (5.12) |
Proof. The linearity of the interpolation implies that Iu=I(R+L)=IR+IL. Applying the estimate (5.3), the bounds for the derivatives of regular components Ri of the solution in Lemma 2.1 and using (2.8), we obtain
‖(Ri−IRi)(l)‖≤CNl−3|Ri|k+1,Ω≤CNl−(k+1),l=0,1,2,i=1,…,ℓ. |
This completes the proof of estimates (5.5).
Using the fact that Bαεi(x)≤Bαεℓ(x) for i=1,…,ℓ and λℓ=σεℓαlnN, we have
‖Li‖L∞(Ωλ)≤Cmax[λℓ,1−λℓ]ℓ∑m=iBαεm(x)≤Cmax[λℓ,1−λℓ](exp(−αx/εℓ)+exp(−α(1−x)/εℓ))≤CN−σ. |
The L2- norm estimate of the layer part of the solution on the sub-interval Ωλ follows from
‖Li‖2L2(Ωλ)≤C∫1−λℓλℓ(ℓ∑m=iBαεm(x))2dx≤Cℓ∑m=i∫1−λℓλℓ(exp(−2αx/εm)+exp(−2α(1−x)/εm))dx≤CεN−2σ. |
Hence, from the above inequalities we have
‖Li‖L∞(Ωλ)+ε−1/2‖Li‖L2(Ωλ)≤CN−σ. |
Thus, we complete the proof of the estimate (5.8).
We also have
‖(Li)(l)‖2L2(Ωλ)≤C∫1−λℓλℓ((ℓ∑m=iBαεm(x))(l))2dx≤Cℓ∑m=iε−2lm∫1−λℓλℓ(exp(−2αx/εm)+exp(−2α(1−x)/εm))dx≤Cε1−2lN−2σ. |
This proves the estimate (5.9).
Due to (5.3) of Lemma 5.1 and the bounds for derivatives (2.9), we obtain at once
‖Li−ILi‖2L2(Ω∖Ωλ)=∑In⊂Ω∖Ωλ‖Li−ILi‖2L2(In)≤∑In⊂Ω∖Ωλh2(k+1)n‖L(k+1)i‖2L2(In)≤Cℓ−1∑s=0H2(k+1)sε−2i(∫λs+1λs(ℓ∑m=1ε−2mBαεm(x))2dx+∫1−λℓ−1−s1−λℓ−s(ℓ∑m=1ε−2mBαεm(x))2dx)≤Cℓ∑m=1ℓ−1∑s=0[2(ℓ+1)(λs+1−λs)N]2(k+1)ε−2(k+1)mεm≤Cε(N−1lnN)2(k+1). |
Thus, the estimate (5.6) is proved.
For the proof of (5.7) we follow [11]. An inverse estimate yields that
N−1‖(ILi)′‖L2(Ωλ)≤C‖ILi‖L2(Ωλ). |
We will derive a bound for ‖ILi‖L2(Ωλ). For the interval In=(xn−1,xn), we have the estimate for the local nodal functional Nm(Li) as
|Nm(Li)|≤Cℓ∑p=i(exp(−αxn−1/εp)+exp(−α(1−xn)/εp)). |
The local representation
ILi|In=k∑m=0Nm(Li)ϕm |
implies that
‖ILi‖2L2(In)≤k∑m=0|Nm(Li)|2‖ϕm‖2L2(In)≤CN−1ℓ∑p=i(exp(−2αxn−1/εp)+exp(−2α(1−xn)/εp)), | (5.13) |
where we use the fact ‖ϕm‖L2(In)≤CN−1. Summing up over all In⊂Ωλ yields that
(ℓ+2)N2(ℓ+1)∑n=ℓN2(ℓ+1)+1‖ILi‖2L2(In)≤CN−1(ℓ+2)N2(ℓ+1)∑n=ℓN2(ℓ+1)+1ℓ∑p=i(exp(−2αxn−1/εp)+exp(−2α(1−xn)/εp)). |
Since the mesh size on Ωλ is Hℓ=Hℓ+1, the term in the parenthesis on the right hand side of the above inequality can be written as
exp(−2αxn−1/εp)+exp(−2α(1−xn)/εp)=exp((−2αxn−1+2αxn−2αxn)/εp)+exp((−2α(1−xn)+2αxn−1−2αxn−1)/εp)≤exp(2Hℓα/εp)(exp(−2αx/εp)+exp(−2α(1−x)/εp))forxn−1<x<xn. |
Integrating the above inequality on In⊂Ωλ and using the fact that Hℓ=O(N−1), we have
N−1(exp(−2αxn−1/εp)+exp(−2α(1−xn)/εp))≤exp(2Hℓα/εp)∫xnxn−1(exp(−2αx/εp)+exp(−2α(1−x)/εp))dx. |
Summing up the above inequality for n=ℓN2(ℓ+1)+1,…,(ℓ+2)N2(ℓ+1)−1 leads to
N−1(ℓ+2)N2(ℓ+1)−1∑n=ℓN2(ℓ+1)+1ℓ∑p=i(exp(−2αxn−1/εp)+exp(−2α(1−xn)/εp))≤CεN−2σ. |
It remains to bound on the last interval (x(ℓ+2)N2(ℓ+1)−1,x(ℓ+2)N2(ℓ+1)). From the inequality (5.13), we have
‖ILi‖2L2(I(ℓ+2)N2(ℓ+1))≤N−1ℓ∑p=i(exp(−2αx(ℓ+2)N2(ℓ+1)−1/εp)+exp(−2α(1−x(ℓ+2)N2(ℓ+1))/εp))≤CN−(1+2σ). |
These two last estimates give the desired estimate. Thus the estimate (5.7) is proved.
From (5.7) and (5.8), we get
‖Li−ILi‖L2(Ωλ)≤‖Li‖L2(Ωλ)+‖ILi‖L2(Ωλ)≤C(ε1/2+N−1/2)N−σ, |
which completes the proof of (5.10).
Using the triangle inequality and (5.7) and (5.9), we have
‖(Li−ILi)′‖L2(Ωλ)≤‖L′i‖L2(Ωλ)+‖(ILi)′‖L2(Ωλ)≤Cε−1/2N−σ. |
Similarly, using the inverse estimate, we get
‖(Li−ILi)″‖L2(Ωλ)≤‖L″i‖L2(Ωλ)+CN‖(ILi)′‖L2(Ωλ)≤Cε−3/2[1+(εN)3/2+(εN)2]N−(k+1)≤Cε−3/2N−σ. |
Hence, we complete the proof of (5.11).
By (5.3) and (2.10), we have for l=1,2,
‖(Li−ILi)(l)‖2L2(Ω∖Ωλ)=∑In⊂Ω∖Ωλ‖(Li−ILi)(l)‖2L2(In)≤∑In⊂Ω∖ΩλCh2(k+1−l)n‖L(k+1)i‖2L2(In)≤Cℓ−1∑s=0H2(k+1−l)sε−2i(∫λs+1λs(ℓ∑m=1ε−2mBαεm(x))2dx+∫1−λℓ−1−s1−λℓ−s(ℓ∑m=1ε−2mBαεm(x))2dx)≤Cℓ∑m=1ℓ−1∑s=0[2(ℓ+1)(λs+1−λs)N]2(k+1−l)ε−2(k+1)mεm≤Cε1−2l(N−1lnN)2(k+1−l), |
which shows (5.12). Thus we complete the proof.
The exact solution of problem (1.1) does not satisfy the WG-FEM scheme (3.4) and hence the WG-FEM lacks of consistency. Consequently, inconsistency leads to loss of the classical Galerkin orthogonality. As a result, we follow different techniques from the ones used in the standard finite element procedure to derive the error estimates.
Now Strang's second lemma provides a quasi-optimal bound for ‖|u−uN‖|ε.
Theorem 5.3. Let u and uN be the solutions of problems (1.1) and (3.4) respectively. Then there exists a positive constant C independent of N and εi such that
‖|u−uN‖|ε≤C(infvN∈[S0N]ℓ‖|u−vN‖|ε+supwN∈[S0N]ℓ|a(u,wN)−L(wN)|‖|wN‖|ε), | (5.14) |
where a(⋅,⋅) is the bilinear form given by (3.5).
First, we will establish some error equations which will be needed in the error analysis below.
Lemma 5.4. Let u=(u1,…,uℓ) be the solution of the problem (1.1). Then for any vN=(vN1,…,vNℓ)=({v10,v1b},…,{vℓ0,vℓb})∈[S0N]ℓ, we have
−ε2i(u′′i,vi0)=ε2i(dw(Iui),dwvNi)−T1(ui,vNi),i=1,…,ℓ, | (5.15) |
ℓ∑i=1ℓ∑j=1(aijuj,vi0)=ℓ∑i=1ℓ∑j=1(aijIuj,vi0)−T2(u,vN), | (5.16) |
where
T1(ui,vNi)=ε2i⟨(ui−Iui)′,(vi0−vib)n⟩, | (5.17) |
T2(u,vN)=ℓ∑i=1ℓ∑j=1(aij(Iuj−uj),vi0). | (5.18) |
Proof. For any vN∈[S0N]ℓ, using the commutative property (5.2) of the interpolation operator we have
(dw(Iui),dwvNi)In=((Iui)′,dwvNi)In,∀In∈TN. | (5.19) |
Using the definition of the weak derivative (3.3) and integration by parts, we have
(dwvNi,(Iui)′)In=−(vi0,(Iui)′′)In+⟨vib,n(Iui)′⟩∂In=(v′i0,(Iui)′)In−⟨vi0−vib,n(Iui)′⟩∂In. | (5.20) |
From the definition of the interpolation and integration by parts, we obtain
((ui−Iui)′,v′i0)In=−(ui−Iui,v′′i0)In+⟨ui−Iui,nv′i0⟩∂In=0, |
which implies that
((Iui)′,v′i0)In=(u′i,v′i0)In. | (5.21) |
We infer from the Eqs (5.19)–(5.21) that
(dw(Iui),dwvNi)In=(u′i,v′i0)In−⟨vi0−vib,n(Iui)′⟩∂In. | (5.22) |
Summing up the Eq (5.22) over all interval In∈TN, we find
(dw(Iui),dwvNi)=(u′i,v′i0)−⟨vi0−vib,n(Iui)′⟩. | (5.23) |
Using integration by parts, one can show that
−(u′′i,vi0)In=(u′i,v′i0)In−⟨u′i,nvi0⟩∂In. |
Summing up the above equation over all interval In∈TN, we get
(u′i,v′i0)=−(u′′i,vi0)+⟨u′i,n(vi0−vib)⟩, | (5.24) |
where we used the fact that ⟨u′i,nvib⟩=0. Finally, by plugging the Eq (5.24) into (5.23), we arrive at the desired result (5.15).
Lastly, the Eq (5.18) clearly holds. We complete the proof.
The following lemma will be useful in the error analysis.
Lemma 5.5. Assume that u=(u1,…,uℓ),withui∈Hk+1(Ω) is the solution of the problem (1.1). Then we have the following estimate
∑In⊂Ω‖θ′i‖2L2(∂In)≤{Cε−2i(N−1lnN)2k−1,In⊂Ω∖Ωλ,Cε−2iN−2(k+1),In⊂Ωλ, |
where θi=ui−Iui for i=1,…,ℓ.
Proof. From the trace inequality (4.1), we can write
‖θ′i‖2L2(∂In)≤C(h−1n‖θ′i‖2L2(In)+‖θ′i‖L2(In)‖θ′′i‖L2(In)). |
It remains to estimate ‖θ′i‖L2(In) and ‖θ′′i‖L2(In), individually. From the estimate (5.5), one has
‖(Ri−IRi)′‖L2(Ω)≤CN−k,i=1,2,…,ℓ,‖(Ri−IRi)′′‖L2(Ω)≤CN1−k,i=1,2,…,ℓ. | (5.25) |
With the help of the estimate (5.11) and (5.12) one can show that
‖(Li−ILi)′‖L2(Ωλ)≤Cε−1/2iN−σ,i=1,2,…,ℓ,‖(Li−ILi)′′‖L2(Ωλ)≤Cε−3/2iN−σ,i=1,2,…,ℓ,‖(Li−ILi)′‖L2(Ω∖Ωλ)≤Cε−1/2i(N−1lnN)k,i=1,2,…,ℓ,‖(Li−ILi)′′‖L2(Ω∖Ωλ)≤Cε−3/2i(N−1lnN)k−1,i=1,2,…,ℓ. | (5.26) |
With the help of the above estimates, the fact that σ≥k+1, and the triangle inequality, one can conclude that
∑In⊂Ω‖θ′i‖L2(In)≤{Cε−1/2iN−k(ε1/2i+lnkN),In⊂Ω∖Ωλ,Cε−1/2iN−k(ε1/2i+N−1),In⊂Ωλ, | (5.27) |
and
∑In⊂Ω‖θ′′i‖L2(In)≤{Cε−3/2iN1−k(ε3/2i+lnk−1N),In⊂Ω∖Ωλ,Cε−3/2iN1−k(ε3/2i+N−2),In⊂Ωλ. |
The desired result follows from combining the above estimates and the mesh size hn. Thus, we complete the proof.
Lemma 5.6. Assume that ui∈Hk+1(Ω) and the penalization parameter ϱn is given by (3.6). If σ≥k+1, then we have
T(u,vN)≤C(ε1/2(N−1lnN)k+N−(k+1))‖|vN‖|ε, | (5.28) |
where T(u,vN)=∑ℓi=1T1(ui,vNi)+T2(u,vN) and C is independent of N and εi,i=1,…,ℓ.
Proof. It follows from Cauchy-Schwarz inequality, Lemma 5.5 and the penalization parameter (3.6) that
|T1(ui,vNi)|≤N∑n=1ε2i|⟨(ui−Iui)′,vi0−vib⟩∂In|≤N∑n=1ε2i‖(ui−Iui)′‖L2(∂In)‖vi0−vib‖L2(∂In)≤{N∑n=1ε3iϱn‖(ui−Iui)′‖2L2(∂In)}1/2{N∑n=1ϱn‖vi0−vib‖2L2(∂In)}1/2≤{∑In∈Ω∖Ωλε3iϱn‖(ui−Iui)′‖2L2(∂In)+∑In∈Ωλε3iϱn‖(ui−Iui)′‖2L2(∂In)}1/2s1/2(vNi,vNi)≤Cε1/2(N−1lnN)ks1/2(vNi,vNi). |
As a result
|T1(u,vN)|≤ℓ∑i=1T1(ui,vNi)≤Cε1/2(N−1lnN)k‖|vN‖|ε. | (5.29) |
We next bound the term T2(u,vN). We need to estimate ‖ui−Iui‖,i=1,…,ℓ. Using the estimates (5.5)–(5.8) of Lemma 5.2 and Cauchy-Schwarz inequality, taking σ≥k+1, we get
‖ui−Iui‖L2(Ω)≤‖Ri−IRi‖L2(Ω)+‖Li−ILi‖L2(Ω∖Ωλ)+‖Li‖L2(Ωλ)+‖ILi‖L2(Ωλ)≤CN−(k+1)[1+ε1/2ℓ(lnN)k+1+ε1/2ℓN−(σ−3)+N−(σ−5/2)]≤CN−(k+1)(1+ε1/2ℓ(lnN)k+1)≤CN−(k+1). | (5.30) |
The above estimate (5.30) and Cauchy-Schwarz inequality yield the following bound
ℓ∑i=1ℓ∑j=1(aij(Iuj−uj),vi0)≤Cℓ∑i=1ℓ∑j=1‖uj−Iuj‖‖vi0‖≤CN−(k+1)‖vi0‖. |
From the above estimate, we have
|T2(u,vN)|≤CN−(k+1)‖|vN‖|ε. | (5.31) |
From the estimates (5.29) and (5.31), we have the desired result. Thus we complete the proof.
Theorem 5.7. Let u=(u1,…,uℓ)=R+Lwithui∈Hk+1(Ω) be the solution of the problem (1.1) and assume that the conditions of Lemma 5.2 hold with σ≥k+1. Then, the following estimates hold true:
‖|R−IR‖|ε≤CN−(k+1)and‖|L−IL‖|ε≤C(ε1/2ℓ(N−1lnN)k+N−(k+1)), | (5.32) |
where C is independent of N and εi,i=1,…,ℓ.
Proof. Since θRi:=Ri−IRi and θLi:=Li−ILi are continuous on Ω, we get s(θRi,θRi)=s(θLi,θLi)=0 for i=1,…,ℓ. Then we have
‖|Ri−IRi‖|2ε=ℓ∑i=1ε2i‖(θRi)′‖2+ηℓ∑i=1‖θRi‖2, | (5.33) |
‖|Li−ILi‖|2ε=ℓ∑i=1ε2i‖(θLi)′‖2+ηℓ∑i=1‖θLi‖2. | (5.34) |
In the light of the interpolation errors (5.5) and (2.8), we obtain for i=1,…,ℓ
ε2i‖(θRi)′‖2≤ε2i(N−k|Ri|3,Ω)2≤Cε2iN−2k,‖θRi‖2≤CN−2(k+1), |
which together with (5.33) yields
‖|R−IR‖|ε≤CN−(k+1). |
Using the inequalities (5.11), (5.12) and (5.30), we have
ℓ∑i=1ε2i‖(θLi)′‖2≤ℓ∑i=1ε2i(‖(θLi)′‖2L2(Ω∖Ωλ)+‖(θLi)′‖2L2(Ωλ))≤Cε((N−1lnN)2k+N−2σ),‖θLi‖2≤N−2(k+1), |
which together with (5.34) gives the desired result
‖|L−IL‖|ε≤C(ε1/2(N−1lnN)k+N−(k+1)), |
where we have used σ≥k+1. The proof is completed.
We next estimate the consistency error supwN∈[S0N]ℓ|a(u,wN)−L(wN)|‖|wN‖|ε.
Lemma 5.8. Assume that u=(u1,…,uℓ),ui∈Hk+1(Ω),i=1,…,ℓ is the solution of (1.1). If σ≥k+1, then the following estimate holds true:
supwN∈[S0N]ℓ|a(u,wN)−L(wN)|‖|wN‖|ε≤C(ε1/2(N−1lnN)k+N−(k+1)), |
where C is independent of N, and εi,i=1,…,ℓ.
Proof. Using the definition of bilinear form (3.4), the fact that s(ui,wNi)=s(ui−Iui,wNi)=0 for i=1,…,ℓ and Lemma 5.4, we have
Eu(wN):=a(u,wN)−L(wN)=a(Iu,wN)+a(u−Iu,wN)−L(wN)=ℓ∑i=1(−ε2u′′i+ℓ∑j=1aijuj−gi,wi0)+T(u,wN)+a(u−Iu,wN)=T(u,wN)+a(u−Iu,wN), |
where T(u,wN)=T1(u,wN)+T2(u,wN) and T1(u,wN)=∑ℓi=1T1(ui,wNi) with T1(ui,wNi) and T2(u,wN) are given in (5.17) and (5.18), respectively. By Lemma 5.6, if σ≥k+1, the first term on the right side of the above equation can be estimated as
T(u,wN)≤C(ε1/2(N−1lnN)k+N−(k+1))‖|wN‖|ε. | (5.35) |
For the second term, we use the continuity property (4.14) of bilinear form a(⋅,⋅) and again the fact that s(ui−Iui,wNi)=0,i=1,…,ℓ and we obtain
a(u−Iu,wN)≤Cc‖|u−Iu‖|ε‖|wN‖|ε=Ccℓ∑i=1(ε2i‖(ui−Iui)′‖2+η‖ui−Iui‖2)1/2‖|wN‖|ε≤Cℓ∑i=1(ε2i‖(Ri−IRi)′‖2+ε2i‖(Li−ILi)′‖2L2(Ω∖Ωλ)+ε2i‖(Li−ILi)′‖2L2(Ωλ)+η‖ui−Iui‖2)1/2‖|wN‖|ε. |
Appealing the estimates (5.5), (5.11), (5.12), (5.30) and using (2.8), if σ≥k+1 we obtain
a(u−Iu,wN)≤C(ε2N−2k+ε2ε−1(N−1lnN)2k+ε2ε−1N−2(k+1)+N−2(k+1))1/2‖|wN‖|ε≤C(ε1/2(N−1lnN)k+N−(k+1))‖|wN‖|ε. | (5.36) |
From (5.35) and (5.36), we arrive at
supwN∈[S0N]ℓ|Eu(wN)|‖|wN‖|ε≤C(ε1/2(N−1lnN)k+N−(k+1)), |
which is the desired result. We complete the proof.
Theorem 5.9. Assume that u=(u1,…,uℓ),ui∈Hk+1(Ω),i=1,…,ℓ is the exact solution and uN∈[S0N]ℓ is the WG-FEM solution given by (3.4) on the uniform Shishkin mesh for the problem (1.1), respectively. If σ≥k+1, then we have the following estimate
‖|u−uN‖|ε≤C(ε1/2(N−1lnN)k+N−(k+1)), |
where C is independent of N and εi,i=1,…,ℓ.
Proof. Using Theorem 5.7, if σ≥k+1 we have
‖|R−IR‖|ε≤CN−(k+1)‖|L−IL‖|ε≤C(ε1/2(N−1lnN)k+N−(k+1)). |
Hence, we obtain
‖|u−Iu‖|ε≤‖|R−IR‖|ε+‖|L−IL‖|ε≤C(ε1/2(N−1lnN)k+N−(k+1)). |
Note that IR and IL are both in [S0N]ℓ, the set of piecewise discontinuous polynomials {of degree at most k}, and that IR+IL∈[S0N]ℓ. Take vN=(IR1+IL1,…,IRℓ+ILℓ)∈SℓN. Invoking Theorem 5.3 and Lemma 5.8, the desired result follows.
As stated in the introduction, error estimates in the corresponding energy norm of FEMs not adequate. The reason arises from the fact that the energy norm of the boundary layer functions exp(−xεℓ) and exp(−(1−x)εℓ) are of order O(ε1/2ℓ). Therefore, the error estimates in the energy norm is not much strong than the L2-norm if εℓ≪1. A stronger norm obtained by scaling of the coefficient of the H1-seminorm captures correctly the boundary layers. This norm is called the balanced norm defined as follows. For v=(vN1,…,vNℓ)T=({v10,v1b},…,{vℓ0,vℓb})T∈[S0N]ℓ,
‖v‖2b=ℓ∑i=1εi‖dwvNi‖2+ηℓ∑i=1‖vNi‖2+sb(vN,vN), | (6.1) |
where sb(uN,vN) is given by
sb(uN,vN)=ℓ∑i=1⟨ϱbn(ui0−uib),vi0−vib⟩. | (6.2) |
Here, the penalization parameter ϱbn is now defined as
ϱbn={ε,on Ωλ,εNlnN,on Ω∖Ωλ, | (6.3) |
where ε=∑ℓi=1εi.
We note that the error bound N−(k+1) independent of ε1/2 in Theorem 5.9 comes from the estimate of the L2-norm of u−Iu in the energy norm error estimates. These terms can be handled by replacing the special interpolation operator I defined by (5.1) with a projection operator Qh:H1(In)→SN defined as follows.
Let Ph:L2(In)→Pk(In) be the local weighted L2-projection restricted to interval In defined by
(ℓ∑i=1aii(Phui−ui),v)In=0,∀v∈Pk(In),n=1,2,…,N. | (6.4) |
This weighted L2-projection is well-defined because we assume that the diagonal elements are positive and the reaction coefficient matrix is strongly diagonally dominant matrix. With the aid of the Bramble-Hilbert lemma, one can show that for i=1,…,ℓ
‖ui−Phui‖L2(In)+hn‖(ui−Phui)′‖L2(In)≤Chs+1n|ui|s+1,In,0≤s≤k. | (6.5) |
We introduce the projection operator Qh:H1(In)→SN such that
Qhui|In={Q0ui,Qbui}={Phui,{ui(xn−1),ui(xn)}},n=1,2,…,N. | (6.6) |
Clearly, Q_h u_i\in S_N^0 if u_i\in H_0^1(I_n) for i = 1, \dots, \ell . By (6.5), we have
\begin{align} \left\|Q_{0} u_i-u_i\right\|_{L^2(I_{n})} \leq C h_{n}^{s+1}|u_i|_{s+1, I_{n}}, \quad 0 \leq s \leq k, \quad i = 1, \dots, \ell. \end{align} | (6.7) |
The following trace and inverse inequalities will be used in the forthcoming analysis [43]. For any function \phi \in H(I_n), we have
\begin{align} \Vert \phi \Vert_{L^2(\partial I_n)}^2&\le C ( h_n^{-1}\Vert \phi \Vert_{L^2(I_n)}^2+h_n\Vert \phi^\prime \Vert_{L^2(I_n)}^2), \end{align} | (6.8) |
\begin{align} \Vert v_N'\Vert _{L^2(\partial I_n)}&\le Ch_n^{-1}\Vert v_N\Vert _{L^2(I_n)}, \quad \forall v_N\in \mathbb {P}_k(I_n). \end{align} | (6.9) |
We would like to derive similar estimates as Lemma 5.2 for the projection operator Q_0 which is essentially the generalized L^2 -projection. The following lemma will serve this purpose.
Lemma 6.1. Assume that the conclusions of Lemma 5.2 hold. Then we have the following error estimates for the operator Q_0 on the uniform Shishkin mesh.
\begin{align} \Vert u_i-Q_0 u_i\Vert_{L^\infty(\varOmega)} &\leq C \Vert u_i- \mathcal{I} u_i\Vert _{L^\infty(\varOmega)}, \end{align} | (6.10) |
\begin{align} \sum\limits_{I_n\subset \varOmega_\lambda} \Vert u_i-Q_0u_i\Vert _{L^2(I_n)}^2 &\leq C N^{-2k-3} \end{align} | (6.11) |
\begin{align} \sum\limits_{I_n\subset\varOmega\setminus \varOmega_\lambda} \Vert u_i-Q_0u_i\Vert _{L^2(I_n)}^2 &\leq C\varepsilon( N^{-1}\ln N)^{2(k+1)}, \end{align} | (6.12) |
\begin{align} \sum\limits_{I_n\subset \varOmega_\lambda} \Vert (u_i-Q_0u_i)^\prime\Vert _{L^2(I_n)}^2 &\leq C \varepsilon^{-1/2} N^{-2k}, \end{align} | (6.13) |
\begin{align} \sum\limits_{I_n\subset\varOmega\setminus \varOmega_\lambda} \Vert (u_i-Q_0u_i)^\prime\Vert _{L^2(I_n)}^2 &\leq C \varepsilon^{-1} N^{-2k}\ln^{2k+1}N. \end{align} | (6.14) |
Proof. It is known that the L^2 -projection Q_0 is L^\infty -stable [44]. Therefore, by the triangle inequality we have
\begin{align*} \Vert u_i-Q_0 u_i\Vert_{L^\infty(\varOmega)}&\leq \Vert u_i- \mathcal{I} u_i\Vert_{L^\infty(\varOmega)}+\Vert Q_0 (u_i- \mathcal{I} u_i)\Vert_{L^\infty(\varOmega)}\\ &\leq C \Vert u_i- \mathcal{I} u_i\Vert_{L^\infty(\varOmega)}, \end{align*} |
which proves (6.10). Using this inequality, we get
\begin{align*} \sum\limits_{I_n\subset \varOmega_\lambda} \Vert u_i-Q_0u_i\Vert _{L^2(I_n)}^2&\leq \sum\limits_{I_n\subset \varOmega_\lambda} h_n\Vert u_i-Q_0u_i\Vert _{L^\infty(I_n)}^2\\ &\leq C \sum\limits_{I_n\subset \varOmega_\lambda}h_n \Vert u_i- \mathcal{I} u_i\Vert _{L^\infty(I_n)}^2\\&\leq C N^{-2k-3}, \end{align*} |
where we used Lemma 5.2 and the fact that h_n = \mathcal{O}(N^{-1}) in \varOmega_\lambda . It follows from (6.7) that
\begin{align*} \sum\limits_{I_n\subset\varOmega\setminus \varOmega_\lambda} \left\|Q_{0} u_i-u_i\right\|_{L^2(I_{n})} & \leq C \sum\limits_{I_n\subset\varOmega\setminus \varOmega_\lambda} h_{n}^{k+1}|u_i|_{k+1, I_{n}}\\ &\le C \sum\limits_{I_n\subset\varOmega\setminus \varOmega_\lambda} h_{n}^{k+1}(\Vert R_i^{(k+1)}\Vert _{L^2( I_{n})}+\Vert L_i^{(k+1)}\Vert _{L^2( I_{n})}). \end{align*} |
The first term on the right side of the above inequality can be bounded as
\begin{align} \begin{split} \sum\limits_{I_n\in \varOmega\setminus\varOmega_\lambda} h_n^{2(k+1)} \Vert R_i^{(k+1)}\Vert _{L^2( I_{n})}^2&\le \sum\limits_{I_n\in \varOmega\setminus\varOmega_\lambda} h_{n}^{2(k+1)}\int _{x_{n-1}}^{x_{n}}|R^{(k+1)}(x)|^2dx \\ & \le {} C \sum\limits_{I_n\in \varOmega\setminus\varOmega_\lambda} h_{n}^{2k+3} \le C \varepsilon (N^{-1}\ln N)^{2k+3}. \end{split} \end{align} | (6.15) |
Next, we estimate the layer parts on \varOmega\setminus\varOmega_\lambda .
\begin{align} \begin{split} \sum\limits_{I_n\in \varOmega\setminus\varOmega_\lambda} h_{n}^{2(k+1)}\Vert L_{i }^{(k+1)}\Vert ^2_{L^2(I_n)} \leq& C \sum\limits_{s = 0}^{\ell-1} H_s^{2(k+1)}\varepsilon_i^{-2(k-1)}\Big( \int_{\lambda_s}^{\lambda_{s+1}}\Big(\sum\limits_{m = 1}^\ell \varepsilon_m^{-2} \mathcal{B}_{\varepsilon_m}^\alpha (x) \Big)^2\, d x \\ &\quad + \int_{1-\lambda_{\ell-s}}^{1-\lambda_{\ell-1-s}}\Big(\sum\limits_{m = 1}^\ell \varepsilon_m^{-2} \mathcal{B}_{\varepsilon_m}^\alpha (x) \Big)^2\, d x\Big) \\ \leq&C\sum\limits_{m = 1}^\ell\sum\limits_{s = 0}^{\ell-1} \Big[\cfrac{2(\ell+1) (\lambda_{s+1}-\lambda_s)}{N}\Big]^{2(k+1)} \varepsilon_m^{-2(k+1)} \varepsilon_m \\ \leq& C \varepsilon (N^{-1}\ln N)^{2(k+1)}. \end{split} \end{align} | (6.16) |
From (6.15) and (6.16), we get
\sum\limits_{I_n\subset\varOmega\setminus \varOmega_\lambda} \left\|Q_{0} u_i-u_i\right\|_{L^2(I_{n})}^2 \leq C \varepsilon (N^{-1}\ln N)^{2(k+1)}, |
which completes the proof of (6.12).
With the help of an inverse inequality on \varOmega_\lambda , we obtain
\begin{align*} \Vert ( \mathcal{I} u_i-Q_0u_i)^\prime\Vert _{L^2(I_n)}&\le C N \Vert \mathcal{I} u_i-Q_0u_i\Vert _{L^2(I_n)}\\ & = C N \Big( \Vert \mathcal{I} u_i-u_i\Vert _{L^2(I_n)}+\Vert u_i-Q_0u_i\Vert _{L^2(I_n)}\Big) \\ &\le C N^{-k}, \end{align*} |
because \Vert \mathcal{I} u_i-u_i\Vert _{L^2(I_n)} and \Vert Q_0 u_i-u_i\Vert _{L^2(I_n)} are both of order \mathcal{O}(N^{-(k+1)}) on \varOmega_\lambda . By Lemma 5.2 and the above estimate, we arrive at
\begin{align} \sum\limits_{I_n\subset \varOmega_\lambda}\Vert ( \mathcal{I} u_i-Q_0u_i)^\prime\Vert _{L^2(I_n)}^2\leq C N^{-2k}. \end{align} | (6.17) |
On the other hand, from Lemma 5.2, we have
\begin{align} { \varepsilon \Vert ( \mathcal{I} u_i-u_i)^\prime\Vert _{L^2(\varOmega_\lambda)}^2\leq \varepsilon \Vert (R_i - \mathcal{I} R_i)^\prime\Vert _{L^2(\varOmega_\lambda)}^2+ \varepsilon \Vert (L_i - \mathcal{I} L_i)^\prime\Vert _{L^2(\varOmega_\lambda)}^2\leq C \varepsilon^{1/2} N^{-2k}.} \end{align} | (6.18) |
Combining (6.17) and (6.18) gives the desired result (6.13). Finally, using an inverse estimate we obtain at once
\begin{align*} \sum\limits_{I_n\subset \varOmega \setminus\varOmega_\lambda}\Vert ( \mathcal{I} u_i-Q_0u_i)^\prime\Vert _{L^2(I_n)}^2 &\leq C \vert \varOmega \setminus\varOmega_\lambda\vert \sum\limits_{I_n\subset \varOmega \setminus\varOmega_\lambda}\Vert ( \mathcal{I} u_i-Q_0u_i)^\prime\Vert _{L^\infty(I_n)}^2\\ &\le C \sum\limits_{I_n\subset \varOmega \setminus\varOmega_\lambda} \cfrac{\vert \varOmega \setminus\varOmega_\lambda\vert }{h_n^2} \Vert \mathcal{I} u_i-Q_0u_i \Vert _{L^\infty(I_n)}^2\\ &\le C \cfrac{\varepsilon \ln N}{\varepsilon^2 (N^{-1}\ln N)^2}(N^{-1}\ln N)^{2(k+1)}\\ &\le C \varepsilon^{-1}N^{-2k}(\ln N)^{2(k+1)}, \end{align*} |
which proves (6.14). Thus, we complete the proof.
We derive the following error equations involving the projection Q_h which are similar to ones in Lemma 5.4. To this end, we still need another special projection operator defined as follows. We refer interested readers to [45] for details.
Lemma 6.2. [45] For u_i\in H^1(\varOmega) , there is a projection operator \pi_h u_i\in H^1(0, 1) , restricted on element I_n , \pi_h u_i \in \mathbb{P}_{k+1}(I_n) satisfies
\begin{align} &((\pi_{h}u_i)', q) = (u_i', q)_{I_{n}}, \quad \forall q \in P_{k}(I_{n}), \quad i = 1, 2, \ldots , \ell, \end{align} | (6.19) |
\begin{align} &\pi_h u_i(x_n) = u_i(x_n), \quad n = 1, \dots, N, \quad i = 1, \dots, \ell, \\&\Vert u_i-\pi_{h}u_i\Vert _{L^2(I_{n})}+h_{n}\Vert u_i'-(\pi_{h}u_i )'\Vert _{L^2(I_{n})}\le Ch^{s+1}_{n}\Vert u_i\Vert _{s+1}, \, \, \, 0 \le s \le k. \nonumber \end{align} | (6.20) |
Lemma 6.3. Let \boldsymbol{u} = (u_1, \dots, u_\ell) be the solution of the problem (1.1). Then for any \boldsymbol{v}_N = (v_1^N, \dots, v_\ell^N) = (\{v_{10}, v_{1b}\}, \dots, \{v_{\ell 0}, v_{\ell b}\})\in [S_N^0]^\ell , we have
\begin{align} -\varepsilon^2_i \Big( u_i^{\prime \prime}, v_{i0}\Big)& = \varepsilon^2_i\Big(d_w(Q_h u_i), d_w v_i^N \Big)-T_1^b( u_i, v_i^N), \quad i = 1, \dots, \ell, \end{align} | (6.21) |
\begin{align} \sum\limits_{i = 1}^\ell \sum\limits_{j = 1}^\ell \big( a_{ij}& u_j, v_{i0}\big) = \sum\limits_{i = 1}^\ell \sum\limits_{j = 1}^\ell \big( a_{ij}Q_0 u_j, v_{i0}\big) -T_2^b( \boldsymbol{u}, \boldsymbol{v}_N), \end{align} | (6.22) |
where
\begin{align} T_1^b( \boldsymbol{u}, \boldsymbol{v}_N)& = \sum\limits_{i = 1}^\ell \varepsilon^2_i \big\langle (u_i -\pi_h u_i)^\prime, (v_{i0}-v_{ib}) \boldsymbol{n} \big\rangle, \end{align} | (6.23) |
\begin{align} T_2^b( \boldsymbol{u}, \boldsymbol{v}_N)& = \sum\limits_{i = 1}^\ell \sum\limits_{j = 1}^\ell \big( a_{ij}(Q_0 u_j- u_j), v_{i0}\big). \end{align} | (6.24) |
Proof. Using the definition of the operator Q_h , the weak derivative (3.3), integration by parts and (6.19), we have
\begin{align*} \big(d_w(Q_h u_i), q\big)_{I_n} = & {} -\big(Q_0 u_i, q^\prime\big)_{I_n}+(Q_{h}u)_{n}q_{n}-(Q_{h}u)_{n-1}q_{n-1}\nonumber \\ = & {} -\big( u_i, q^\prime\big)_{I_n}+u_{n}q_{n}-u_{n-1}q_{n-1}\nonumber \\ = & {} \big( u_i^\prime, q\big)_{I_n}\\ = & {} \big( (\pi_h u_i)^\prime, q\big)_{I_n}, \quad \forall q \in \mathbb{P}_{2}(I_{n}), \quad \forall I_n \in \mathcal{T}_N, \end{align*} |
where v_{n} = v(x_{n}) and v_{n-1} = v(x_{n-1}) for a function v . This implies that
\begin{equation} \big(d_w(Q_h u_i), d_w v_i^N\big)_{I_n} = \big( (\pi_h u_i)^\prime, d_w v_i^N\big)_{I_n}, \quad \forall I_n \in \mathcal{T}_N. \end{equation} | (6.25) |
Following the same procedures as in the energy norm estimates, we prove (6.21). Clearly, we have the Eq (6.24). We complete the proof.
Lemma 6.4. Assume that \textbf{u} = (u_1, \dots, u_\ell), \;\mathit{\text{with}}\; u_i \in H^{k+1}(\varOmega) is the solution of the problem (1.1) and the penalization parameter \varrho_n^b is given by (6.3). Then we have
\begin{align} \vert T^b( \boldsymbol{u}, \boldsymbol{v}_N)\vert &\leq C \varepsilon^{1/2} (N^{-1}\ln N)^{k} \Vert|v_N\Vert|_\varepsilon, \end{align} | (6.26) |
\begin{align} \vert s^b(Q_h u_i, v_N)\vert &\le C \varepsilon^{1/2} N^{-k}(\ln N)^{k+1/2} \Vert|v_N\Vert|_\varepsilon, \end{align} | (6.27) |
where C is independent of N and \varepsilon_i, \; i = 1, \dots, \ell , T^b(\boldsymbol{u}, \boldsymbol{v}_N) = T_1^b(\boldsymbol{u}, \boldsymbol{v}_N)+T_2^b(\boldsymbol{u}, \boldsymbol{v}_N) , and s^b(Q_h u_i, v_N) is given by (6.2).
Proof. Note that T_2^b(\textbf{u}, \textbf{v}_N) = 0 due to the definition of the projection Q_h . By the inverse estimate (6.9), Lemma 5.5 and Lemma 6.2, we obtain at once
\begin{align*} \sum\limits_{I_n \subset \varOmega} \Vert \xi _i^\prime\Vert_{L^2(\partial I_n)}^2&\le \sum\limits_{I_n \subset \varOmega} \Vert \theta_i^\prime\Vert_{L^2(\partial I_n)}^2+ \sum\limits_{I_n \subset \varOmega} \Vert ( \mathcal{I} u_i-\pi_h u_i)^\prime\Vert_{L^2(\partial I_n)}^2\\ & \le \sum\limits_{I_n \subset \varOmega} \Vert \theta_i^\prime\Vert_{L^2(\partial I_n)}^2+C \sum\limits_{I_n \subset \varOmega} h_n^{-2} \Vert \mathcal{I} u_i-\pi_h u_i\Vert_{L^2( I_n)}^2 \\ &\leq \begin{cases} C\varepsilon_i^{-2}(N^{-1}\ln N)^{2k-1}, & I_n \subset \varOmega\setminus \varOmega_\lambda, \\ C\varepsilon_i^{-2}N^{-2(k+1)}, & I_n \subset \varOmega_\lambda, \end{cases} \end{align*} |
where \xi_i = u_i-\pi_h u_i and \theta_i = u_i- \mathcal{I} u_i for i = 1, \dots, \ell.
İmitating the arguments in the energy norm estimates and using the above fact, one can prove that
T^b( \textbf{u}, \textbf{v}_N) = T_1^b( \textbf{u}, \textbf{v}_N)\leq C \varepsilon^{1/2}(N^{-1}\ln N)^k\Vert|v_N\Vert|_\varepsilon . |
It follows from Cauchy–Schwarz inequality, the trace inequality (6.8) and Lemma 6.1 that
\begin{align*} \vert s^b(Q_h u_i, v_N)\vert &\le \sum\limits_{n = 1}^{N}\varrho_n^b \vert \langle Q_0 u_i-Q_b u_i, v_0-v_b\rangle_{\partial I_n} \vert \\ & = \sum\limits_{n = 1}^{N}\varrho_n^b \vert \langle Q_0 u_i- u_i, v_0-v_b\rangle_{\partial I_n} \vert \\ &\le C\Big( \sum\limits_{n = 1}^{N}\varepsilon \varrho_n^b \Vert u_i-Q_0 u_i\Vert_{L^2(\partial I_n)}^2\Big)^{1/2} \Big( \sum\limits_{n = 0}^{N-1} \varepsilon^{-1}\varrho_n^b \Vert v_0-v_b\Vert_{L^2(\partial I_n)}^2\Big)^{1/2}\\ &\le C \Big( \sum\limits_{n = 1}^{N} \varepsilon\varrho_n^b (h_n^{-1} \Vert u_i-Q_0 u_i\Vert_{L^2( I_n)}^2+h_n\Vert (u_i-Q_0 u_i)^\prime\Vert_{L^2( I_n)}^2) \Big)^{1/2}\Vert| v_N \Vert|_{\varepsilon}\\& \le C\Big[ \Big( \sum\limits_{I_n\subset \varOmega_\lambda}\varepsilon \varrho_n^b (h_n^{-1} \Vert u_i-Q_0 u_i\Vert_{L^2( I_n)}^2+h_n\Vert (u_i-Q_0 u_i)^\prime\Vert_{L^2( I_n)}^2) \Big)^{1/2}\Vert| v_N \Vert|_{\varepsilon}\\& \quad + \Big( \sum\limits_{I_n\subset\varOmega\setminus \varOmega_\lambda}\varepsilon \varrho_n^b (h_n^{-1} \Vert u_i-Q_0 u_i\Vert_{L^2( I_n)}^2+h_n\Vert (u_i-Q_0 u_i)^\prime\Vert_{L^2( I_n)}^2) \Big)^{1/2}\Big]\Vert| v_N \Vert|_{\varepsilon}\\ &\le C \Big[ \Big(\varepsilon^2 (N N^{-(2k+3)} +N^{-1}\varepsilon^{-1/2} N^{-2k} )\Big)^{1/2}\\ & \quad + \Big( \frac{\varepsilon^2 N}{\ln N} (\frac{N}{\varepsilon \ln N} \varepsilon (N^{-1}\ln N)^{2(k+1)}+\frac{\varepsilon \ln N}{N}\varepsilon ^{-1} (N^{-2k}\ln^{2k+1} N) \Big)^{1/2}\Big]\Vert| v_N\Vert|_{\varepsilon}\\ &\le C \varepsilon ^{1/2} N^{-k}(\ln N)^{k+1/2}\Vert| v_N\Vert|_{\varepsilon}. \end{align*} |
Here, we used the fact that \varepsilon^{-1}\varrho_n^b = \varrho_n . Therefore, we complete the proof.
The main result of this section is the following theorem.
Theorem 6.5. Assume that \boldsymbol{u} = (u_1, \dots, u_\ell), u_i \in H^{k+1}(\Omega), i = 1, \dots, \ell is the exact solution and \boldsymbol{u}_N = \{u_1^N, \dots, u_\ell^N\}\in [S_N^0]^\ell is the WG-FEM solution given by (3.4) on the uniform Shishkin mesh for the problem (1.1), respectively. If \sigma \geq k+1 , then we have the following improved balanced error estimate
\Vert \boldsymbol{u}- \boldsymbol{u}_N\Vert_b \leq C N^{-k}(\ln N)^{k+1/2}, |
where C is independent of N and \varepsilon_i, \; i = 1, \dots, \ell .
Proof. From Lemma 6.1 and Lemma 6.4, we obtain at once
\begin{align} \begin{split} \Vert \textbf{u}-Q_h \textbf{u} \Vert _{b}^2& \le C \Big[ \sum\limits_{i = 1}^\ell \varepsilon_i \Vert (u_i-Q_0 u_i)^\prime \Vert^2+ \sum\limits_{i = 1}^\ell \Vert u_i-Q_0 u_i\Vert^2\\ &\quad + \sum\limits_{i = 1}^\ell s(u_i-Q_h u_i, u_i-Q_h u_i)\Big]\\ & = { \Big[ \sum\limits_{i = 1}^\ell \varepsilon_i \Vert (u_i-Q_0 u_i)^\prime \Vert^2+ \sum\limits_{i = 1}^\ell \Vert u_i-Q_0 u_i\Vert^2}\\ &\quad {+ \sum\limits_{i = 1}^\ell s^b(Q_h u_i, Q_h u_i)\Big]}\\ &\le C \Big[ \varepsilon \varepsilon ^{-1/2} N^{-2k} + \varepsilon \varepsilon ^{-1} N^{-2k} \ln ^{2k+1} N + \varepsilon (N^{-1} \ln N)^{2(k+1)} \\ & \quad + N^{-(2k+3)} +\varepsilon N^{-2k} (\ln N) ^{2k+1} \Big] \\ &\le C N^{-2k} (\ln N) ^{2k+1}, \end{split} \end{align} | (6.28) |
where we have used that s^b(u_i, u_i) = 0 . Imitating the analyses in the energy norm estimates and using again Lemma 6.4, we have
\begin{align*} \Vert| \textbf{u}_N-Q_h \textbf{u}\Vert| _{\varepsilon}^2\le & a( \textbf{u}_N-Q_h \textbf{u}, \textbf{u}_N-Q_h \textbf{u})\\ \le & \sum\limits_{i = 1}^\ell \Big( T^b_1(u_i^N-Q_h u_i, u_i^N-Q_h u_i)+ s^b(u_i^N-Q_h u_i, u_i^N-Q_h u_i)\Big)\\ \le & \varepsilon^{1/2} N^{-k}(\ln N)^{k+1/2} \Vert| \textbf{u}_N-Q_h \textbf{u}\Vert|_{\varepsilon}. \end{align*} |
Therefore, we obtain
\Vert \textbf{u}_N-Q_h \textbf{u}\Vert _{b}^2\le C \varepsilon^{-1} \Vert| \textbf{u}_N-Q_h \textbf{u}\Vert| _{\varepsilon}^2\le C N^{-2k}(\ln N)^{2k+1} . |
Next, using the triangle inequality and combining the above estimate with (6.28) yield
\begin{align*} \Vert \textbf{u}- \textbf{u}_N\Vert _{b}\le C N^{-k}(\ln N)^{k+1/2}. \end{align*} |
The proof is now completed.
We present various numerical experiments to show the performance of the WG-FEM in this section. All the integration was calculated by using 5 -point Gauss-Legendre quadrature integral formula.
Example 7.1. Consider the following coupled system of reaction-diffusion problem with constant coefficients
\begin{align} \left\{ \begin{array}{ll} - \mathcal{E} \boldsymbol{u} ^{\prime \prime }+\boldsymbol{A} \boldsymbol{u} = \boldsymbol{g}\quad in \quad \Omega = (0, 1), \\ \boldsymbol{u}(0) = \mathit{\pmb{0}}, \quad \boldsymbol{u}(1) = \mathit{\pmb{0}}, \end{array}\right. \end{align} | (7.1) |
where \mathcal{E} = diag(\varepsilon_1^2, \varepsilon_2^2) with 0 < \varepsilon_1\leq \varepsilon_2 < < 1 , \quad \boldsymbol{g} = (g_1, g_2)^T, \quad \boldsymbol{A} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} and g_1, g_2 are chosen such that
\begin{align*} u^1(x)& = \cfrac{e^{-x/\varepsilon_1}+e^{-(1-x)/\varepsilon_1}}{1+e^{-1/\varepsilon_1}}+ \cfrac{e^{-x/\varepsilon_2}+e^{-(1-x)/\varepsilon_2}}{1+e^{-1/\varepsilon_2}}-2, \\ u^2(x)& = \cfrac{e^{-x/\varepsilon_2}+e^{-(1-x)/\varepsilon_2}}{1+e^{-1/\varepsilon_2}}-1, \end{align*} |
is the exact solution \boldsymbol{u}(x) = (u^1(x), u^2(x)) of the system of reaction-diffusion problem (7.1). Note that R_i(x), i = 1, 2 is constant and (2.8) holds. We know that the solution has exponential layers of width \mathcal{O}(\varepsilon_2 |\ln \varepsilon_2|) at x = 0 and x = 1 , while only u^1(x) has an additional sublayer of width \mathcal{O}(\varepsilon_1 |\ln \varepsilon_1|) . We take \rho > 1/2 , \alpha = 0.99 and \sigma = 3 for this problem.
We applied the WG-FEM (3.4) for solving the problem (7.1). The numerical errors \textbf{e}: = \textbf{u}- \textbf{u}_N are computed in the energy norm by
\textbf{e}_{\varepsilon_1, \varepsilon_2 }^N = |||\textbf{e}|||^2_{\varepsilon} = \sum\limits_{i = 1}^2 \varepsilon_i^2 \Vert d_w e_i^N \Vert^2+\eta \sum\limits_{i = 1}^2 \Vert e_{i0}\Vert^2+\sum\limits_{i = 1}^2 s( e_i^N, e_i^N), |
for a fixed \varepsilon_1, \varepsilon_2 and N . We report the numerical experiments for the uniform error calculated by
\begin{align*} \textbf{e}^N = \max\limits_{\varepsilon_1, \varepsilon_2 = 1, 10^{-1}, \dots, 10^{-10} }\textbf{e}_{\varepsilon_1, \varepsilon_2 }^N \end{align*} |
in Table 1. The order of convergence r_{\varepsilon} is computed using mesh levels (N_1, ||| \textbf{e}^{N_1}|||_{\varepsilon}) and (N_2, ||| \textbf{e}^{N_2}|||_{\varepsilon}) :
\begin{align} r_{\varepsilon} = \cfrac{\ln (||| \textbf{e}^{N_1}|||_{\varepsilon}/||| \textbf{e}^{N_2}|||_{\varepsilon})}{\ln (N_1^{-1}\ln N_1)-\ln(N_2^{{-1}}\ln N_2)}. \end{align} | (7.2) |
N | k=1 | k=2 | ||
\textbf{e}^N | r_\varepsilon | \textbf{e}^N | r_\varepsilon | |
6 | 1.1284e-01 | - | 4.2924e-02 | - |
12 | 5.6774e-02 | 1.46 | 2.1549e-02 | 1.46 |
24 | 2.8440e-02 | 1.35 | 9.0168e-03 | 1.70 |
48 | 1.4228e-02 | 1.28 | 3.2876e-03 | 1.87 |
96 | 7.1152e-03 | 1.23 | 1.1018e-03 | 1.95 |
192 | 3.5577e-03 | 1.20 | 3.5170e-04 | 1.98 |
384 | 1.7888e-03 | 1.17 | 1.0885e-04 | 1.99 |
768 | 9.4867e-04 | 1.10 | 3.4639e-05 | 1.99 |
Table 1 shows that the energy norm error estimates exhibit k -order convergence which agrees perfectly with the theoretical error estimates.
In order to pay attention to the dependency of the energy norm on the parameters, we compute the energy norm estimates for a fixed \varepsilon_1 and different values of \varepsilon_2 . For instance, we first fixed \varepsilon_1 = 10^{-10} and take different values of \varepsilon_2 = 10^{-4}, \dots, 10^{-9} . The results are presented in Table 2, Table 4, Figures 2a and 2b. These results verify that the method is robust on the uniform Shishkin mesh and the order of convergence is of \mathcal{O}(\varepsilon^{1/2} (N^{-1}\ln N)^k) , where \varepsilon^{1/2} = \varepsilon_1^{1/2}+\varepsilon_2^{1/2} using the linear k = 1 and quadratic k = 2 element functions, which is in excellent agreement with the main result of Theorem 5.9. Moreover, we infer from Table 2 that \cfrac{|||u-u_N|||_{\varepsilon_{{j}}}}{|||u-u_N|||_{\varepsilon_{{j+2}}}}\approx \sqrt{\frac{{{10^{-j}}}}{{{10^{-(j+2)}}}}} for \varepsilon_{{j}} = \{{10^{-10}}, {{10^{-j}}}\}, \quad {j = 4, \dots, 9, } where |||u-u_N|||^2_{\varepsilon_{{j}}} = (10^{-10})^2 \Vert d_w e_1^N \Vert^2+(10^{-j})^2 \Vert d_w e_2^N \Vert^2+ \eta \sum_{i = 1}^2 \Vert e_{i0}\Vert^2+\sum_{i = 1}^2 s(e_i^N, e_i^N) .
\varepsilon_2/k=1 | N | |||||||
6 | 12 | 24 | 48 | 96 | 192 | 384 | 768 | |
10^{-4} | 5.2495e-03 | 3.1587e-03 | 1.8429e-03 | 1.0531e-03 | 5.9237e-04 | 3.2910e-04 | 1.8100e-04 | 9.8729e-05 |
r_{10^{-4}} | - | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-5} | 1.6076e-03 | 9.6196e-04 | 5.5992e-04 | 3.1967e-04 | 1.7976e-04 | 9.9856e-05 | 5.4919e-05 | 2.9956e-05 |
r_{10^{-5}} | - | 0.99 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-6} | 5.0801e-04 | 3.0395e-04 | 1.7690e-04 | 1.0098e-04 | 5.6778e-05 | 3.1536e-05 | 1.7342e-05 | 9.4732e-06 |
r_{10^{-6}} | - | 0.99 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-7} | 1.5949e-04 | 9.5331e-05 | 5.5419e-05 | 3.1598e-05 | 1.7744e-05 | 9.8436e-06 | 5.4068e-06 | 2.9644e-06 |
r_{10^{-7}} | - | 0.99 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 0.99 |
10^{-8} | 4.6992e-05 | 2.7802e-05 | 1.5980e-05 | 9.0030e-06 | 4.9943e-06 | 2.7368e-06 | 1.4915e-06 | 9.0148e-07 |
r_{10^{-8}} | - | 1.01 | 1.03 | 1.03 | 1.03 | 1.02 | 1.02 | 0.90 |
10^{-9} | 1.5921e-05 | 9.5379e-06 | 5.5415e-06 | 3.1571e-06 | 1.7716e-06 | 9.8469e-07 | 5.4071e-07 | 2.9678e-07 |
r_{10^{-9}} | - | 0.99 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 0.99 |
\varepsilon_2/k=2 10^{-4} |
2.0323e-03 | 8.3959e-04 | 3.0403e-04 | 1.0161e-04 | 3.2400e-05 | 1.0025e-05 | 3.0394e-06 | 9.8278e-07 |
r_{10^{-4}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-5} | 6.4261e-04 | 2.6547e-04 | 9.6128e-05 | 3.2126e-05 | 1.0244e-05 | 3.1701e-06 | 9.7357e-07 | 3.0816e-07 |
r_{10^{-5}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-6} | 2.0300e-04 | 8.3843e-05 | 3.0354e-05 | 1.0142e-05 | 3.2335e-06 | 1.0005e-06 | 3.2525e-07 | 1.0300e-07 |
r_{10^{-6}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-7} | 6.3520e-05 | 2.6183e-05 | 9.4607e-06 | 3.1550e-06 | 1.0041e-06 | 3.1010e-07 | 9.6874e-07 | 3.0022e-07 |
r_{10^{-7}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-8} | 1.8097e-05 | 7.3152e-06 | 2.5923e-06 | 8.4824e-07 | 2.6607e-07 | 9.0074e-08 | 2.9335e-08 | 9.2754e-09 |
r_{10^{-8}} | - | 1.77 | 1.92 | 2.00 | 2.02 | 2.00 | 2.00 | 2.00 |
10^{-9} | 2.7387e-06 | 1.0380e-06 | 3.5300e-07 | 1.1388e-07 | 3.8601e-08 | 1.2545e-08 | 4.0893e-09 | 1.2875e-09 |
r_{10^{-9}} | - | 1.74 | 1.90 | 2.00 | 2.02 | 2.00 | 2.00 | 2.00 |
N | k=1 | k=2 | ||
\textbf{e}^{N, b} | r_\varepsilon | \textbf{e}^{N, b} | r_\varepsilon | |
6 | 6.4414e-01 | - | 2.6892e-01 | - |
12 | 4.1317e-01 | 0.87 | 1.1638e-01 | 1.64 |
24 | 2.4710e-01 | 0.95 | 4.2967e-02 | 1.85 |
48 | 1.4238e-01 | 0.99 | 1.4454e-02 | 1.95 |
96 | 8.0297e-02 | 1.00 | 4.6177e-03 | 1.98 |
192 | 4.4646e-02 | 1.00 | 1.4293e-03 | 2.00 |
384 | 2.4561e-02 | 1.00 | 4.4355e-04 | 1.96 |
768 | 1.3400e-02 | 1.00 | 1.4159e-04 | 1.98 |
\varepsilon_2/k=1 | N | |||||||
6 | 12 | 24 | 48 | 96 | 192 | 384 | 768 | |
10^{-4} | 6.4390e-01 | 4.1311e-01 | 2.4709e-01 | 1.4237e-01 | 8.0296e-02 | 4.4645e-02 | 2.4561e-02 | 1.3398e-02 |
r_{10^{-4}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-5} | 6.4387e-01 | 4.1309e-01 | 2.4707e-01 | 1.4236e-01 | 8.0291e-02 | 4.4643e-02 | 2.4559e-02 | 1.3397e-02 |
r_{10^{-5}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-6} | 6.4366e-01 | 4.1292e-011 | 2.4696e-01 | 1.4229e-01 | 8.0244e-02 | 4.4613e-02 | 2.4542e-02 | 1.3387e-02 |
r_{10^{-6}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-7} | 6.4316e-01 | 4.1272e-01 | 2.4665e-01 | 1.4251e-01 | 8.0228e-02 | 4.4608e-02 | 2.4536e-02 | 1.3376e-02 |
r_{10^{-7}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-8} | 6.4319e-01 | 4.1270e-01 | 2.4566e-01 | 1.4251e-01 | 8.0225e-02 | 4.4607e-02 | 2.4528e-02 | 1.3373e-02 |
r_{10^{-8}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-9} | 6.4317e-01 | 4.1267e-01 | 2.4565e-01 | 1.4247e-01 | 8.0217e-02 | 4.4603e-02 | 2.4524e-02 | 1.3370e-02 |
r_{10^{-9}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
\varepsilon_2/k=2 10^{-4} |
2.6883e-01 | 1.1637e-01 | 4.2964e-02 | 1.4453e-02 | 4.6176e-03 | 1.4294e-03 | 4.3370e-04 | 1.3180e-04 |
r_{10^{-4}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-5} | 2.6881e-01 | 1.1636e-01 | 4.2961e-02 | 1.4452e-02 | 4.6172e-03 | 1.4293e-03 | 4.3366e-04 | 1.3175e-04 |
r_{10^{-4}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-6} | 2.6880e-01 | 1.1634e-01 | 4.2960e-02 | 1.4449e-02 | 4.6170e-03 | 1.4292e-03 | 4.3365e-04 | 1.3173e-04 |
r_{10^{-6}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-7} | 2.6878e-01 | 1.1632e-01 | 4.2961e-02 | 1.4449e-02 | 4.6168e-03 | 1.4290e-03 | 4.3362e-04 | 1.3171e-04 |
r_{10^{-7}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-8} | 2.6879e-01 | 1.1631e-01 | 4.2960e-02 | 1.4450e-02 | 4.6167e-03 | 1.4287e-03 | 4.3360e-04 | 1.3170e-04 |
- | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 | |
10^{-9} | 2.6877e-01 | 1.1630e-01 | 4.2958e-02 | 1.4448e-02 | 4.6166e-03 | 1.4288e-03 | 4.3359e-04 | 1.3170e-04 |
r_{10^{-9}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
This implies that the errors might be affected by a term involving \sqrt{\varepsilon_2} . We observe almost linear convergence up to a logarithmic factor using the linear elements and almost quadratic convergence using the quadratic elements if N gets larger. Hence, for larger N\geq 64 , the rate of convergence is of order \mathcal{O}(\varepsilon_2^{1/2}(N^{-1}\ln N)^k) which agrees with the theory indicated by Theorem 5.9. Table 2 shows that the errors and the order of convergence are dominated by the term N^{-(k+1)} when N and \varepsilon are smaller. We also observe that if \varepsilon_2 decreases for a fixed \varepsilon_1 , the energy norm error estimates get smaller. These observations suggest that the main result of Theorem 5.9 is sharp.
On the other hand, we compute the numerical errors \textbf{e}: = \textbf{u}- \textbf{u}_N with respect to the balanced norm by
\textbf{e}_{\varepsilon_1, \varepsilon_2 }^{N, b} = \Vert \textbf{e}\Vert _{b} = \sum\limits_{i = 1}^2 \varepsilon_i \Vert d_w e_i^N \Vert^2+\eta \sum\limits_{i = 1}^2 \Vert e_{i0}\Vert^2+\sum\limits_{i = 1}^2 s( e_i^N, e_i^N), |
for a fixed \varepsilon_1, \varepsilon_2 and N . We list the uniform balanced error bounds \textbf{e}^{N, b} calculated as before in Table 3. We also report the numerical results in the balanced norm in Table 4 and we notice that the error estimates in the balanced norm remain almost unchanged as \varepsilon_2 decreases for a fixed \varepsilon_1 unlike the estimates in the energy norm. This confirms the theory stated in Theorem 6.5. We have plotted the balanced norm error estimates for a fixed \varepsilon and varying \varepsilon_2 on log-log scale in Figures 2c and 2d for a viewable illustrations. Evidently, the errors stay almost constant while the parameters vary and behave like
\Vert \textbf{u}- \textbf{u}_N\Vert_b \leq C (N^{-1}\ln N)^{{k}}. |
This confirms the result of Theorem 6.5 up to a root of \ln N .
Example 7.2. We next consider the problem (1.1) with variable coefficients
\boldsymbol{A} = \begin{pmatrix} 3 & \quad 1-x &\quad x-1 \\ 2 &\quad 4+x&\quad -1 \\ 2&0 &3 \end{pmatrix} \;{ and }\; \boldsymbol{g} = \begin{pmatrix} 1 \\ x\\ 1+x^2\end{pmatrix}. |
We take \rho = 3/4 , \alpha = 0.80 and \sigma = 3 . The exact solution is unknown. Hence a finer mesh constructed as below is used for estimating the numerical errors.
We compute the errors \textbf{e} = \textbf{u}_N- \textbf{u}_{2N} where \textbf{u}_{2N} is our numerical solution computed on a mesh consisting of the initial uniform Shishkin mesh and the midpoints x_{n+1/2} = \frac{x_n+x_{n+1}}{2}, n = 0, \dots, N-1 . Therefore we calculate
\textbf{e}_{\varepsilon_1, \varepsilon_2, \varepsilon_3 }^N = |||\textbf{e}|||_{\varepsilon} = \sum\limits_{i = 1}^3 \varepsilon_i^2 \Vert d_w e_i^N \Vert^2+\eta \sum\limits_{i = 1}^2 \Vert e_{i0}\Vert^2+\sum\limits_{i = 1}^2 s( e_i^N, e_i^N), |
for a fixed \varepsilon_1, \varepsilon_2, \varepsilon_3 and N . The numerical results are listed in Tables 5 and 6 for the uniform errors in the energy and balanced norms, respectively
\begin{align*} \textbf{e}^N& = \max\limits_{\varepsilon_1, \varepsilon_2, \varepsilon_3 = 1, 10^{-1}, \dots, 10^{-10} }\textbf{e}_{\varepsilon_1, \varepsilon_2, \varepsilon_3 }^N, \\ \textbf{e}^{N, b}& = \max\limits_{\varepsilon_1, \varepsilon_2, \varepsilon_3 = 1, 10^{-1}, \dots, 10^{-10} }\textbf{e}_{\varepsilon_1, \varepsilon_2, \varepsilon_3 }^{N, b}, \end{align*} |
N | k=1 | k=2 | ||
\textbf{e}^N | r_\varepsilon | \textbf{e}^N | r_\varepsilon | |
16 | 4.1486e-01 | - | 2.6801e-01 | - |
3 2 | 2.9723e-01 | 0.71 | 1.6172e-01 | 1.07 |
64 | 1.9341e-01 | 0.84 | 7.8526e-02 | 1.41 |
128 | 1.1715e-01 | 0.93 | 3.1321e-02 | 1.71 |
256 | 6.7975e-02 | 0.97 | 1.0951e-02 | 1.88 |
512 | 3.8480e-02 | 0.99 | 3.5564e-03 | 1.95 |
1024 | 2.1446e-02 | 0.99 | 1.1086e-03 | 1.98 |
N | k=1 | k=2 | ||
\textbf{e}^{N, b} | r_\varepsilon | \textbf{e}^{N, b} | r_\varepsilon | |
16 | 3.1691e00 | - | 2.5247e00 | - |
3 2 | 2.8939e00 | 0.19 | 1.8568e00 | 0.65 |
64 | 2.1681e00 | 0.57 | 1.0458e00 | 1.12 |
128 | 1.4063e00 | 0.80 | 4.6494e-01 | 1.50 |
256 | 8.3916e-01 | 0.92 | 1.7412e-01 | 1.76 |
512 | 4.7971e-01 | 0.97 | 5.8437e-02 | 1.90 |
1024 | 2.6815e-01 | 0.99 | 1.8476e-02 | 2.00 |
where \textbf{e}_{\varepsilon_1, \varepsilon_2, \varepsilon_3 }^{N, b} is defined as before and the order for convergence is calculated by (7.2). The results clearly suggest that the k -order uniform convergence in the energy norm, which is in good agreement with the main result of Theorem 5.9. The errors in the balanced norm behave like \mathcal{O}(N^{-1}\ln N)^k which agrees with the results of Theorem 6.5 up to a square root of \ln N . As before, we observe from Table 7 and Figures 3a and 3b that the energy norm estimates depend on \varepsilon^{1/2} = \varepsilon_1^{1/2}+\varepsilon_2^{1/2}+\varepsilon_3^{1/2} and errors change decreasingly as \varepsilon\to 0 while the balanced norm estimates do not depend on the parameters and the errors remain almost unchanged as seen from Table 8 and Figures 3c and 3d.
\varepsilon_2/k=1 | N | ||||||
16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
10^{-3} | 1.3469e-01 | 1.0211e-01 | 6.9269e-02 | 4.2854e-02 | 2.5059e-02 | 1.4210e-02 | 7.9163e-03 |
r_{10^{-3}} | - | 0.59 | 0.76 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-4} | 4.2826e-02 | 3.2265e-02 | 2.1878e-02 | 1.3535e-02 | 7.9145e-03 | 4.4877e-03 | 2.4997e-03 |
r_{10^{-4}} | - | 0.60 | 0.76 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-5} | 1.4555e-02 | 1.0287e-02 | 6.9246e-03 | 4.2798e-03 | 2.5021e-03 | 1.4187e-03 | 7.9017e-04 |
r_{10^{-5}} | - | 0.74 | 0.77 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-6} | 7.0511e-03 | 3.5121e-03 | 2.2119e-03 | 1.3538e-03 | 7.9006e-04 | 4.4773e-04 | 2.4931e-04 |
r_{10^{-6}} | - | 1.48 | 0.91 | 0.91 | 0.96 | 0.99 | 1.00 |
10^{-7} | 5.7885e-03 | 1.7282e-03 | 7.6617e-04 | 4.2944e-04 | 2.4621e-04 | 1.3883e-04 | 7.7093e-05 |
r_{10^{-7}} | - | 2.57 | 1.59 | 1.07 | 0.99 | 1.00 | 1.00 |
10^{-8} | 5.6470e-03 | 1.4335e-03 | 3.9795e-04 | 1.4327e-04 | 6.8296e-05 | 3.6229e-05 | 1.9525e-05 |
r_{10^{-8}} | - | 2.91 | 2.50 | 1.90 | 1.32 | 1.10 | 1.02 |
\varepsilon_2/k=2 10^{-3} |
9.1950e-02 | 6.0047e-02 | 3.1457e-02 | 1.3221e-02 | 4.7423e-03 | 1.5542e-03 | 4.8544e-04 |
r_{10^{-3}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-4} | 2.9024e-02 | 1.8958e-02 | 9.9341e-03 | 4.1758e-03 | 1.4979e-03 | 4.9086e-04 | 1.5329e-04 |
r_{10^{-4}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-5} | 9.1767e-03 | 5.9932e-03 | 3.1404e-03 | 1.3200e-03 | 4.7348e-04 | 1.5515e-04 | 4.8452e-05 |
r_{10^{-5}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-6} | 2.9026e-03 | 1.8921e-03 | 9.9100e-04 | 4.1640e-04 | 1.4930e-04 | 4.8908e-05 | 1.5269e-05 |
r_{10^{-6}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-7} | 9.2029e-04 | 5.8861e-04 | 3.0694e-04 | 1.2848e-04 | 4.5896e-05 | 1.4982e-05 | 4.6637e-06 |
r_{10^{-7}} | - | 0.95 | 1.27 | 1.62 | 1.84 | 1.95 | 1.99 |
10^{-8} | 3.0336e-04 | 1.5840e-04 | 7.8929e-05 | 3.1821e-05 | 1.0972e-05 | 3.4626e-06 | 1.0673e-06 |
r_{10^{-8}} | - | 1.38 | 1.37 | 1.69 | 1.90 | 2.00 | 2.00 |
\varepsilon_2/k=1 | N | ||||||
16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
10^{-3} | 3.1062e00 | 2.8495e00 | 2.1418e00 | 1.3911e00 | 8.3003e-01 | 4.7414e-01 | 2.6477e-01 |
r_{10^{-3}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-4} | 3.0996e00 | 2.8450e00 | 2.1391e00 | 1.3895e00 | 8.2909e-01 | 4.7356e-01 | 2.6442e-01 |
r_{10^{-4}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-5} | 3.0987e00 | 2.8445e00 | 2.1390e00 | 1.3892e00 | 8.2907e-01 | 4.7348e-01 | 2.6440e-01 |
r_{10^{-5}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-6} | 3.0980e00 | 2.8442e00 | 2.1387e00 | 1.3891e00 | 8.2903e-01 | 4.7342e-01 | 2.6436e-01 |
r_{10^{-6}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-7} | 3.0978e00 | 2.8440e00 | 2.1384e00 | 1.3890e00 | 8.2901e-01 | 4.7340e-01 | 2.6433e-01 |
r_{10^{-7}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-8} | 3.0975e00 | 2.8438e00 | 2.1382e00 | 1.3888e00 | 8.2888e-01 | 4.7338e-01 | 2.6430e-01 |
r_{10^{-8}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
\varepsilon_2/k=2 10^{-3} |
2.4792e00 | 1.8292e00 | 1.0335e00 | 4.6054e-01 | 1.7262e-01 | 5.7921e-02 | 1.8266e-02 |
r_{10^{-3}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-4} | 2.4790e00 | 1.8291e00 | 1.0333e00 | 4.6052e-01 | 1.7261e-01 | 5.7920e-02 | 1.8263e-02 |
r_{10^{-4}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-5} | 2.4785e00 | 1.8288e00 | 1.0330e00 | 4.6050e-01 | 1.7258e-01 | 5.7917e-02 | 1.8260e-02 |
r_{10^{-5}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-6} | 2.4776e00 | 1.8282e00 | 1.0325e00 | 4.6047e-01 | 1.7255e-01 | 5.7913e-02 | 1.8256e-02 |
r_{10^{-6}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-7} | 2.4765e00 | 1.8277e00 | 1.0322e00 | 4.6043e-01 | 1.7252e-01 | 5.7910e-02 | 1.8252e-02 |
r_{10^{-7}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-8} | 2.4754e00 | 1.8270e00 | 1.0315e00 | 4.6036e-01 | 1.7247e-01 | 5.7906e-02 | 1.8245e-02 |
r_{10^{-8}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
In this paper, we studied the WG-FEM for system of SPPs of reaction-diffusion type in which the equations have diffusion parameters of the different magnitudes on a piecewise uniform Shishkin mesh. With the help of a special interpolation operator, we derived optimal and uniform error bounds in the energy and the balanced norms up to a logarithmic factor. The proposed WG-FEM uses the procedure of elimination of the interior unknowns from the discrete linear system and thus the method is comparable with the classical FEM. We will investigate sharper error bounds in balanced norm and extend these results to to high dimensional problem on a tensor product meshes in the future work.
The authors would like to express their deep gratitude to the editors and anonymous referees for their valuable comments and suggestions that improve the presentation.
The authors declare that they have no conflict of interest.
[1] |
C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
![]() |
[2] |
F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
![]() |
[3] |
G. X. Qiu, K. Jia, The residual extropy of order statistics, Statist. Probab. Lett., 133 (2018), 15–22. https://doi.org/10.1016/j.spl.2017.09.014 doi: 10.1016/j.spl.2017.09.014
![]() |
[4] |
E. I. A. Sathar, R. D. Nair, On dynamic weighted extropy, J. Comput. Appl. Math., 393 (2021), 113507. https://doi.org/10.1016/j.cam.2021.113507 doi: 10.1016/j.cam.2021.113507
![]() |
[5] |
G. X. Qiu, The extropy of order statistics and record values, Statist. Probab. Lett., 120 (2017), 52–60. https://doi.org/10.1016/j.spl.2016.09.016 doi: 10.1016/j.spl.2016.09.016
![]() |
[6] |
A. S. Krishnan, S. M. Sunoj, N. U. Nair, Some reliability properties of extropy for residual and past lifetime random variables, J. Korean Statist. Soc., 49 (2020), 457–474. https://doi.org/10.1007/s42952-019-00023-x doi: 10.1007/s42952-019-00023-x
![]() |
[7] |
R. D. Nair, E. I. A. Sathar, Some useful results related to various measures of extropy and their interrelationship, Statist. Probab. Lett., 193 (2023), 109729. https://doi.org/10.1016/j.spl.2022.109729 doi: 10.1016/j.spl.2022.109729
![]() |
[8] |
G. X. Qiu, K. Jia, Extropy estimators with applications in testing uniformity, J. Nonparametr. Stat., 30 (2018), 182–196. https://doi.org/10.1080/10485252.2017.1404063 doi: 10.1080/10485252.2017.1404063
![]() |
[9] |
S. Chakraborty, B. Pradhan, On cumulative residual extropy of coherent and mixed systems, Ann. Oper. Res., 340 (2024), 59–81. https://doi.org/10.1007/s10479-023-05727-2 doi: 10.1007/s10479-023-05727-2
![]() |
[10] |
M. Kayid, Further results involving residual and past extropy with their applications, Statist. Probab. Lett., 214 (2024), 110201. https://doi.org/10.1016/j.spl.2024.110201 doi: 10.1016/j.spl.2024.110201
![]() |
[11] |
N. M. Vaselabadi, S. Tahmasebi, M. R. Kazemi, F. Buono, Results on varextropy measure of random variables, Entropy, 23 (2021), 1–14. https://doi.org/10.3390/e23030356 doi: 10.3390/e23030356
![]() |
[12] | S. K. Chaudhary, N. Gupta, Extropy and varextropy estimators with applications, 2024, arXiv: 2401.13065. |
[13] |
S. Saha, S. Kayal, Weighted (residual) varentropy and its applications, J. Comput. Appl. Math., 442 (2024), 115710. https://doi.org/10.1016/j.cam.2023.115710 doi: 10.1016/j.cam.2023.115710
![]() |
[14] |
M. Asadi, N. Ebrahimi, Residual entropy and its characterizations in terms of hazard function and mean residual life function, Statist. Probab. Lett., 49 (2000), 263–269. https://doi.org/10.1016/S0167-7152(00)00056-0 doi: 10.1016/S0167-7152(00)00056-0
![]() |
[15] |
T. Cacoullos, V. Papathanasiou, Characterizations of distributions by variance bounds, Statist. Probab. Lett., 7 (1989), 351–356. https://doi.org/10.1016/0167-7152(89)90050-3 doi: 10.1016/0167-7152(89)90050-3
![]() |
[16] |
D. R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B Stat. Methodol., 34 (1972), 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x doi: 10.1111/j.2517-6161.1972.tb00899.x
![]() |
[17] |
R. C. Gupta, R. D. Gupta, Proportional reversed hazard rate model and its applications, J. Statist. Plann. Inference, 137 (2007), 3525–3536. https://doi.org/10.1016/j.jspi.2007.03.029 doi: 10.1016/j.jspi.2007.03.029
![]() |
[18] |
F. Belzunce, C. Martínez-Riquelme, Bounds for the hazard rate and the reversed hazard rate of the convolution of dependent random lifetimes, J. Appl. Probab., 56 (2019), 1033–1043. https://doi.org/10.1017/jpr.2019.59 doi: 10.1017/jpr.2019.59
![]() |
[19] | E. Parzen, On estimation of a probability density function and mode, Ann. Math. Stat., 33 (1962), 1065–1076. |
[20] |
E. Masry, Recursive probability density estimation for weakly dependent stationary processes, IEEE Trans. Inform. Theory, 32 (1986), 254–267. https://doi.org/10.1109/TIT.1986.1057163 doi: 10.1109/TIT.1986.1057163
![]() |
[21] |
R. Rajesh, G. Rajesh, S. M. Sunoj, Kernel estimation of extropy function under length-biased sampling, Statist. Probab. Lett., 181 (2022), 109290. https://doi.org/10.1016/j.spl.2021.109290 doi: 10.1016/j.spl.2021.109290
![]() |
[22] |
G. G. Roussas, Asymptotic normality of the kernel estimate under dependence conditions: application to hazard rate, J. Statist. Plann. Inference, 25 (1990), 81–104. https://doi.org/10.1016/0378-3758(90)90008-I doi: 10.1016/0378-3758(90)90008-I
![]() |
[23] |
D. Kasilingam, S. P. S. Prabhakaran, D. K. Rajendran, V. Rajagopal, T. S. Kumar, A. Soundararaj, Exploring the growth of COVID-19 cases using exponential modelling across 42 countries and predicting signs of early containment using machine learning, Transbound. Emerg. Dis., 68 (2021), 1001–1018. https://doi.org/10.1111/tbed.13764 doi: 10.1111/tbed.13764
![]() |
1. | Şuayip Toprakseven, Xia Tao, Jiaxiong Hao, Error analysis of a weak Galerkin finite element method for singularly perturbed differential-difference equations, 2024, 30, 1023-6198, 435, 10.1080/10236198.2023.2291154 | |
2. | Suayip Toprakseven, Seza Dinibutun, A weak Galerkin finite element method for parabolic singularly perturbed convection-diffusion equations on layer-adapted meshes, 2024, 32, 2688-1594, 5033, 10.3934/era.2024232 | |
3. | Şuayip Toprakseven, Seza Dinibutun, A high-order stabilizer-free weak Galerkin finite element method on nonuniform time meshes for subdiffusion problems, 2023, 8, 2473-6988, 31022, 10.3934/math.20231588 |
N | k=1 | k=2 | ||
\textbf{e}^N | r_\varepsilon | \textbf{e}^N | r_\varepsilon | |
6 | 1.1284e-01 | - | 4.2924e-02 | - |
12 | 5.6774e-02 | 1.46 | 2.1549e-02 | 1.46 |
24 | 2.8440e-02 | 1.35 | 9.0168e-03 | 1.70 |
48 | 1.4228e-02 | 1.28 | 3.2876e-03 | 1.87 |
96 | 7.1152e-03 | 1.23 | 1.1018e-03 | 1.95 |
192 | 3.5577e-03 | 1.20 | 3.5170e-04 | 1.98 |
384 | 1.7888e-03 | 1.17 | 1.0885e-04 | 1.99 |
768 | 9.4867e-04 | 1.10 | 3.4639e-05 | 1.99 |
\varepsilon_2/k=1 | N | |||||||
6 | 12 | 24 | 48 | 96 | 192 | 384 | 768 | |
10^{-4} | 5.2495e-03 | 3.1587e-03 | 1.8429e-03 | 1.0531e-03 | 5.9237e-04 | 3.2910e-04 | 1.8100e-04 | 9.8729e-05 |
r_{10^{-4}} | - | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-5} | 1.6076e-03 | 9.6196e-04 | 5.5992e-04 | 3.1967e-04 | 1.7976e-04 | 9.9856e-05 | 5.4919e-05 | 2.9956e-05 |
r_{10^{-5}} | - | 0.99 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-6} | 5.0801e-04 | 3.0395e-04 | 1.7690e-04 | 1.0098e-04 | 5.6778e-05 | 3.1536e-05 | 1.7342e-05 | 9.4732e-06 |
r_{10^{-6}} | - | 0.99 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-7} | 1.5949e-04 | 9.5331e-05 | 5.5419e-05 | 3.1598e-05 | 1.7744e-05 | 9.8436e-06 | 5.4068e-06 | 2.9644e-06 |
r_{10^{-7}} | - | 0.99 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 0.99 |
10^{-8} | 4.6992e-05 | 2.7802e-05 | 1.5980e-05 | 9.0030e-06 | 4.9943e-06 | 2.7368e-06 | 1.4915e-06 | 9.0148e-07 |
r_{10^{-8}} | - | 1.01 | 1.03 | 1.03 | 1.03 | 1.02 | 1.02 | 0.90 |
10^{-9} | 1.5921e-05 | 9.5379e-06 | 5.5415e-06 | 3.1571e-06 | 1.7716e-06 | 9.8469e-07 | 5.4071e-07 | 2.9678e-07 |
r_{10^{-9}} | - | 0.99 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 0.99 |
\varepsilon_2/k=2 10^{-4} |
2.0323e-03 | 8.3959e-04 | 3.0403e-04 | 1.0161e-04 | 3.2400e-05 | 1.0025e-05 | 3.0394e-06 | 9.8278e-07 |
r_{10^{-4}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-5} | 6.4261e-04 | 2.6547e-04 | 9.6128e-05 | 3.2126e-05 | 1.0244e-05 | 3.1701e-06 | 9.7357e-07 | 3.0816e-07 |
r_{10^{-5}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-6} | 2.0300e-04 | 8.3843e-05 | 3.0354e-05 | 1.0142e-05 | 3.2335e-06 | 1.0005e-06 | 3.2525e-07 | 1.0300e-07 |
r_{10^{-6}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-7} | 6.3520e-05 | 2.6183e-05 | 9.4607e-06 | 3.1550e-06 | 1.0041e-06 | 3.1010e-07 | 9.6874e-07 | 3.0022e-07 |
r_{10^{-7}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-8} | 1.8097e-05 | 7.3152e-06 | 2.5923e-06 | 8.4824e-07 | 2.6607e-07 | 9.0074e-08 | 2.9335e-08 | 9.2754e-09 |
r_{10^{-8}} | - | 1.77 | 1.92 | 2.00 | 2.02 | 2.00 | 2.00 | 2.00 |
10^{-9} | 2.7387e-06 | 1.0380e-06 | 3.5300e-07 | 1.1388e-07 | 3.8601e-08 | 1.2545e-08 | 4.0893e-09 | 1.2875e-09 |
r_{10^{-9}} | - | 1.74 | 1.90 | 2.00 | 2.02 | 2.00 | 2.00 | 2.00 |
N | k=1 | k=2 | ||
\textbf{e}^{N, b} | r_\varepsilon | \textbf{e}^{N, b} | r_\varepsilon | |
6 | 6.4414e-01 | - | 2.6892e-01 | - |
12 | 4.1317e-01 | 0.87 | 1.1638e-01 | 1.64 |
24 | 2.4710e-01 | 0.95 | 4.2967e-02 | 1.85 |
48 | 1.4238e-01 | 0.99 | 1.4454e-02 | 1.95 |
96 | 8.0297e-02 | 1.00 | 4.6177e-03 | 1.98 |
192 | 4.4646e-02 | 1.00 | 1.4293e-03 | 2.00 |
384 | 2.4561e-02 | 1.00 | 4.4355e-04 | 1.96 |
768 | 1.3400e-02 | 1.00 | 1.4159e-04 | 1.98 |
\varepsilon_2/k=1 | N | |||||||
6 | 12 | 24 | 48 | 96 | 192 | 384 | 768 | |
10^{-4} | 6.4390e-01 | 4.1311e-01 | 2.4709e-01 | 1.4237e-01 | 8.0296e-02 | 4.4645e-02 | 2.4561e-02 | 1.3398e-02 |
r_{10^{-4}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-5} | 6.4387e-01 | 4.1309e-01 | 2.4707e-01 | 1.4236e-01 | 8.0291e-02 | 4.4643e-02 | 2.4559e-02 | 1.3397e-02 |
r_{10^{-5}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-6} | 6.4366e-01 | 4.1292e-011 | 2.4696e-01 | 1.4229e-01 | 8.0244e-02 | 4.4613e-02 | 2.4542e-02 | 1.3387e-02 |
r_{10^{-6}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-7} | 6.4316e-01 | 4.1272e-01 | 2.4665e-01 | 1.4251e-01 | 8.0228e-02 | 4.4608e-02 | 2.4536e-02 | 1.3376e-02 |
r_{10^{-7}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-8} | 6.4319e-01 | 4.1270e-01 | 2.4566e-01 | 1.4251e-01 | 8.0225e-02 | 4.4607e-02 | 2.4528e-02 | 1.3373e-02 |
r_{10^{-8}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-9} | 6.4317e-01 | 4.1267e-01 | 2.4565e-01 | 1.4247e-01 | 8.0217e-02 | 4.4603e-02 | 2.4524e-02 | 1.3370e-02 |
r_{10^{-9}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
\varepsilon_2/k=2 10^{-4} |
2.6883e-01 | 1.1637e-01 | 4.2964e-02 | 1.4453e-02 | 4.6176e-03 | 1.4294e-03 | 4.3370e-04 | 1.3180e-04 |
r_{10^{-4}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-5} | 2.6881e-01 | 1.1636e-01 | 4.2961e-02 | 1.4452e-02 | 4.6172e-03 | 1.4293e-03 | 4.3366e-04 | 1.3175e-04 |
r_{10^{-4}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-6} | 2.6880e-01 | 1.1634e-01 | 4.2960e-02 | 1.4449e-02 | 4.6170e-03 | 1.4292e-03 | 4.3365e-04 | 1.3173e-04 |
r_{10^{-6}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-7} | 2.6878e-01 | 1.1632e-01 | 4.2961e-02 | 1.4449e-02 | 4.6168e-03 | 1.4290e-03 | 4.3362e-04 | 1.3171e-04 |
r_{10^{-7}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-8} | 2.6879e-01 | 1.1631e-01 | 4.2960e-02 | 1.4450e-02 | 4.6167e-03 | 1.4287e-03 | 4.3360e-04 | 1.3170e-04 |
- | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 | |
10^{-9} | 2.6877e-01 | 1.1630e-01 | 4.2958e-02 | 1.4448e-02 | 4.6166e-03 | 1.4288e-03 | 4.3359e-04 | 1.3170e-04 |
r_{10^{-9}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
N | k=1 | k=2 | ||
\textbf{e}^N | r_\varepsilon | \textbf{e}^N | r_\varepsilon | |
16 | 4.1486e-01 | - | 2.6801e-01 | - |
3 2 | 2.9723e-01 | 0.71 | 1.6172e-01 | 1.07 |
64 | 1.9341e-01 | 0.84 | 7.8526e-02 | 1.41 |
128 | 1.1715e-01 | 0.93 | 3.1321e-02 | 1.71 |
256 | 6.7975e-02 | 0.97 | 1.0951e-02 | 1.88 |
512 | 3.8480e-02 | 0.99 | 3.5564e-03 | 1.95 |
1024 | 2.1446e-02 | 0.99 | 1.1086e-03 | 1.98 |
N | k=1 | k=2 | ||
\textbf{e}^{N, b} | r_\varepsilon | \textbf{e}^{N, b} | r_\varepsilon | |
16 | 3.1691e00 | - | 2.5247e00 | - |
3 2 | 2.8939e00 | 0.19 | 1.8568e00 | 0.65 |
64 | 2.1681e00 | 0.57 | 1.0458e00 | 1.12 |
128 | 1.4063e00 | 0.80 | 4.6494e-01 | 1.50 |
256 | 8.3916e-01 | 0.92 | 1.7412e-01 | 1.76 |
512 | 4.7971e-01 | 0.97 | 5.8437e-02 | 1.90 |
1024 | 2.6815e-01 | 0.99 | 1.8476e-02 | 2.00 |
\varepsilon_2/k=1 | N | ||||||
16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
10^{-3} | 1.3469e-01 | 1.0211e-01 | 6.9269e-02 | 4.2854e-02 | 2.5059e-02 | 1.4210e-02 | 7.9163e-03 |
r_{10^{-3}} | - | 0.59 | 0.76 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-4} | 4.2826e-02 | 3.2265e-02 | 2.1878e-02 | 1.3535e-02 | 7.9145e-03 | 4.4877e-03 | 2.4997e-03 |
r_{10^{-4}} | - | 0.60 | 0.76 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-5} | 1.4555e-02 | 1.0287e-02 | 6.9246e-03 | 4.2798e-03 | 2.5021e-03 | 1.4187e-03 | 7.9017e-04 |
r_{10^{-5}} | - | 0.74 | 0.77 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-6} | 7.0511e-03 | 3.5121e-03 | 2.2119e-03 | 1.3538e-03 | 7.9006e-04 | 4.4773e-04 | 2.4931e-04 |
r_{10^{-6}} | - | 1.48 | 0.91 | 0.91 | 0.96 | 0.99 | 1.00 |
10^{-7} | 5.7885e-03 | 1.7282e-03 | 7.6617e-04 | 4.2944e-04 | 2.4621e-04 | 1.3883e-04 | 7.7093e-05 |
r_{10^{-7}} | - | 2.57 | 1.59 | 1.07 | 0.99 | 1.00 | 1.00 |
10^{-8} | 5.6470e-03 | 1.4335e-03 | 3.9795e-04 | 1.4327e-04 | 6.8296e-05 | 3.6229e-05 | 1.9525e-05 |
r_{10^{-8}} | - | 2.91 | 2.50 | 1.90 | 1.32 | 1.10 | 1.02 |
\varepsilon_2/k=2 10^{-3} |
9.1950e-02 | 6.0047e-02 | 3.1457e-02 | 1.3221e-02 | 4.7423e-03 | 1.5542e-03 | 4.8544e-04 |
r_{10^{-3}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-4} | 2.9024e-02 | 1.8958e-02 | 9.9341e-03 | 4.1758e-03 | 1.4979e-03 | 4.9086e-04 | 1.5329e-04 |
r_{10^{-4}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-5} | 9.1767e-03 | 5.9932e-03 | 3.1404e-03 | 1.3200e-03 | 4.7348e-04 | 1.5515e-04 | 4.8452e-05 |
r_{10^{-5}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-6} | 2.9026e-03 | 1.8921e-03 | 9.9100e-04 | 4.1640e-04 | 1.4930e-04 | 4.8908e-05 | 1.5269e-05 |
r_{10^{-6}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-7} | 9.2029e-04 | 5.8861e-04 | 3.0694e-04 | 1.2848e-04 | 4.5896e-05 | 1.4982e-05 | 4.6637e-06 |
r_{10^{-7}} | - | 0.95 | 1.27 | 1.62 | 1.84 | 1.95 | 1.99 |
10^{-8} | 3.0336e-04 | 1.5840e-04 | 7.8929e-05 | 3.1821e-05 | 1.0972e-05 | 3.4626e-06 | 1.0673e-06 |
r_{10^{-8}} | - | 1.38 | 1.37 | 1.69 | 1.90 | 2.00 | 2.00 |
\varepsilon_2/k=1 | N | ||||||
16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
10^{-3} | 3.1062e00 | 2.8495e00 | 2.1418e00 | 1.3911e00 | 8.3003e-01 | 4.7414e-01 | 2.6477e-01 |
r_{10^{-3}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-4} | 3.0996e00 | 2.8450e00 | 2.1391e00 | 1.3895e00 | 8.2909e-01 | 4.7356e-01 | 2.6442e-01 |
r_{10^{-4}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-5} | 3.0987e00 | 2.8445e00 | 2.1390e00 | 1.3892e00 | 8.2907e-01 | 4.7348e-01 | 2.6440e-01 |
r_{10^{-5}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-6} | 3.0980e00 | 2.8442e00 | 2.1387e00 | 1.3891e00 | 8.2903e-01 | 4.7342e-01 | 2.6436e-01 |
r_{10^{-6}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-7} | 3.0978e00 | 2.8440e00 | 2.1384e00 | 1.3890e00 | 8.2901e-01 | 4.7340e-01 | 2.6433e-01 |
r_{10^{-7}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-8} | 3.0975e00 | 2.8438e00 | 2.1382e00 | 1.3888e00 | 8.2888e-01 | 4.7338e-01 | 2.6430e-01 |
r_{10^{-8}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
\varepsilon_2/k=2 10^{-3} |
2.4792e00 | 1.8292e00 | 1.0335e00 | 4.6054e-01 | 1.7262e-01 | 5.7921e-02 | 1.8266e-02 |
r_{10^{-3}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-4} | 2.4790e00 | 1.8291e00 | 1.0333e00 | 4.6052e-01 | 1.7261e-01 | 5.7920e-02 | 1.8263e-02 |
r_{10^{-4}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-5} | 2.4785e00 | 1.8288e00 | 1.0330e00 | 4.6050e-01 | 1.7258e-01 | 5.7917e-02 | 1.8260e-02 |
r_{10^{-5}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-6} | 2.4776e00 | 1.8282e00 | 1.0325e00 | 4.6047e-01 | 1.7255e-01 | 5.7913e-02 | 1.8256e-02 |
r_{10^{-6}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-7} | 2.4765e00 | 1.8277e00 | 1.0322e00 | 4.6043e-01 | 1.7252e-01 | 5.7910e-02 | 1.8252e-02 |
r_{10^{-7}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-8} | 2.4754e00 | 1.8270e00 | 1.0315e00 | 4.6036e-01 | 1.7247e-01 | 5.7906e-02 | 1.8245e-02 |
r_{10^{-8}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
N | k=1 | k=2 | ||
\textbf{e}^N | r_\varepsilon | \textbf{e}^N | r_\varepsilon | |
6 | 1.1284e-01 | - | 4.2924e-02 | - |
12 | 5.6774e-02 | 1.46 | 2.1549e-02 | 1.46 |
24 | 2.8440e-02 | 1.35 | 9.0168e-03 | 1.70 |
48 | 1.4228e-02 | 1.28 | 3.2876e-03 | 1.87 |
96 | 7.1152e-03 | 1.23 | 1.1018e-03 | 1.95 |
192 | 3.5577e-03 | 1.20 | 3.5170e-04 | 1.98 |
384 | 1.7888e-03 | 1.17 | 1.0885e-04 | 1.99 |
768 | 9.4867e-04 | 1.10 | 3.4639e-05 | 1.99 |
\varepsilon_2/k=1 | N | |||||||
6 | 12 | 24 | 48 | 96 | 192 | 384 | 768 | |
10^{-4} | 5.2495e-03 | 3.1587e-03 | 1.8429e-03 | 1.0531e-03 | 5.9237e-04 | 3.2910e-04 | 1.8100e-04 | 9.8729e-05 |
r_{10^{-4}} | - | 0.97 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-5} | 1.6076e-03 | 9.6196e-04 | 5.5992e-04 | 3.1967e-04 | 1.7976e-04 | 9.9856e-05 | 5.4919e-05 | 2.9956e-05 |
r_{10^{-5}} | - | 0.99 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-6} | 5.0801e-04 | 3.0395e-04 | 1.7690e-04 | 1.0098e-04 | 5.6778e-05 | 3.1536e-05 | 1.7342e-05 | 9.4732e-06 |
r_{10^{-6}} | - | 0.99 | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-7} | 1.5949e-04 | 9.5331e-05 | 5.5419e-05 | 3.1598e-05 | 1.7744e-05 | 9.8436e-06 | 5.4068e-06 | 2.9644e-06 |
r_{10^{-7}} | - | 0.99 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 0.99 |
10^{-8} | 4.6992e-05 | 2.7802e-05 | 1.5980e-05 | 9.0030e-06 | 4.9943e-06 | 2.7368e-06 | 1.4915e-06 | 9.0148e-07 |
r_{10^{-8}} | - | 1.01 | 1.03 | 1.03 | 1.03 | 1.02 | 1.02 | 0.90 |
10^{-9} | 1.5921e-05 | 9.5379e-06 | 5.5415e-06 | 3.1571e-06 | 1.7716e-06 | 9.8469e-07 | 5.4071e-07 | 2.9678e-07 |
r_{10^{-9}} | - | 0.99 | 1.01 | 1.01 | 1.00 | 1.00 | 1.00 | 0.99 |
\varepsilon_2/k=2 10^{-4} |
2.0323e-03 | 8.3959e-04 | 3.0403e-04 | 1.0161e-04 | 3.2400e-05 | 1.0025e-05 | 3.0394e-06 | 9.8278e-07 |
r_{10^{-4}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-5} | 6.4261e-04 | 2.6547e-04 | 9.6128e-05 | 3.2126e-05 | 1.0244e-05 | 3.1701e-06 | 9.7357e-07 | 3.0816e-07 |
r_{10^{-5}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-6} | 2.0300e-04 | 8.3843e-05 | 3.0354e-05 | 1.0142e-05 | 3.2335e-06 | 1.0005e-06 | 3.2525e-07 | 1.0300e-07 |
r_{10^{-6}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-7} | 6.3520e-05 | 2.6183e-05 | 9.4607e-06 | 3.1550e-06 | 1.0041e-06 | 3.1010e-07 | 9.6874e-07 | 3.0022e-07 |
r_{10^{-7}} | - | 1.73 | 1.88 | 1.96 | 1.99 | 2.00 | 2.00 | 1.99 |
10^{-8} | 1.8097e-05 | 7.3152e-06 | 2.5923e-06 | 8.4824e-07 | 2.6607e-07 | 9.0074e-08 | 2.9335e-08 | 9.2754e-09 |
r_{10^{-8}} | - | 1.77 | 1.92 | 2.00 | 2.02 | 2.00 | 2.00 | 2.00 |
10^{-9} | 2.7387e-06 | 1.0380e-06 | 3.5300e-07 | 1.1388e-07 | 3.8601e-08 | 1.2545e-08 | 4.0893e-09 | 1.2875e-09 |
r_{10^{-9}} | - | 1.74 | 1.90 | 2.00 | 2.02 | 2.00 | 2.00 | 2.00 |
N | k=1 | k=2 | ||
\textbf{e}^{N, b} | r_\varepsilon | \textbf{e}^{N, b} | r_\varepsilon | |
6 | 6.4414e-01 | - | 2.6892e-01 | - |
12 | 4.1317e-01 | 0.87 | 1.1638e-01 | 1.64 |
24 | 2.4710e-01 | 0.95 | 4.2967e-02 | 1.85 |
48 | 1.4238e-01 | 0.99 | 1.4454e-02 | 1.95 |
96 | 8.0297e-02 | 1.00 | 4.6177e-03 | 1.98 |
192 | 4.4646e-02 | 1.00 | 1.4293e-03 | 2.00 |
384 | 2.4561e-02 | 1.00 | 4.4355e-04 | 1.96 |
768 | 1.3400e-02 | 1.00 | 1.4159e-04 | 1.98 |
\varepsilon_2/k=1 | N | |||||||
6 | 12 | 24 | 48 | 96 | 192 | 384 | 768 | |
10^{-4} | 6.4390e-01 | 4.1311e-01 | 2.4709e-01 | 1.4237e-01 | 8.0296e-02 | 4.4645e-02 | 2.4561e-02 | 1.3398e-02 |
r_{10^{-4}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-5} | 6.4387e-01 | 4.1309e-01 | 2.4707e-01 | 1.4236e-01 | 8.0291e-02 | 4.4643e-02 | 2.4559e-02 | 1.3397e-02 |
r_{10^{-5}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-6} | 6.4366e-01 | 4.1292e-011 | 2.4696e-01 | 1.4229e-01 | 8.0244e-02 | 4.4613e-02 | 2.4542e-02 | 1.3387e-02 |
r_{10^{-6}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-7} | 6.4316e-01 | 4.1272e-01 | 2.4665e-01 | 1.4251e-01 | 8.0228e-02 | 4.4608e-02 | 2.4536e-02 | 1.3376e-02 |
r_{10^{-7}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-8} | 6.4319e-01 | 4.1270e-01 | 2.4566e-01 | 1.4251e-01 | 8.0225e-02 | 4.4607e-02 | 2.4528e-02 | 1.3373e-02 |
r_{10^{-8}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
10^{-9} | 6.4317e-01 | 4.1267e-01 | 2.4565e-01 | 1.4247e-01 | 8.0217e-02 | 4.4603e-02 | 2.4524e-02 | 1.3370e-02 |
r_{10^{-9}} | - | 0.87 | 0.95 | 0.99 | 1.00 | 1.00 | 1.00 | 1.00 |
\varepsilon_2/k=2 10^{-4} |
2.6883e-01 | 1.1637e-01 | 4.2964e-02 | 1.4453e-02 | 4.6176e-03 | 1.4294e-03 | 4.3370e-04 | 1.3180e-04 |
r_{10^{-4}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-5} | 2.6881e-01 | 1.1636e-01 | 4.2961e-02 | 1.4452e-02 | 4.6172e-03 | 1.4293e-03 | 4.3366e-04 | 1.3175e-04 |
r_{10^{-4}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-6} | 2.6880e-01 | 1.1634e-01 | 4.2960e-02 | 1.4449e-02 | 4.6170e-03 | 1.4292e-03 | 4.3365e-04 | 1.3173e-04 |
r_{10^{-6}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-7} | 2.6878e-01 | 1.1632e-01 | 4.2961e-02 | 1.4449e-02 | 4.6168e-03 | 1.4290e-03 | 4.3362e-04 | 1.3171e-04 |
r_{10^{-7}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
10^{-8} | 2.6879e-01 | 1.1631e-01 | 4.2960e-02 | 1.4450e-02 | 4.6167e-03 | 1.4287e-03 | 4.3360e-04 | 1.3170e-04 |
- | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 | |
10^{-9} | 2.6877e-01 | 1.1630e-01 | 4.2958e-02 | 1.4448e-02 | 4.6166e-03 | 1.4288e-03 | 4.3359e-04 | 1.3170e-04 |
r_{10^{-9}} | - | 1.64 | 1.85 | 1.95 | 1.98 | 1.99 | 1.99 | 1.97 |
N | k=1 | k=2 | ||
\textbf{e}^N | r_\varepsilon | \textbf{e}^N | r_\varepsilon | |
16 | 4.1486e-01 | - | 2.6801e-01 | - |
3 2 | 2.9723e-01 | 0.71 | 1.6172e-01 | 1.07 |
64 | 1.9341e-01 | 0.84 | 7.8526e-02 | 1.41 |
128 | 1.1715e-01 | 0.93 | 3.1321e-02 | 1.71 |
256 | 6.7975e-02 | 0.97 | 1.0951e-02 | 1.88 |
512 | 3.8480e-02 | 0.99 | 3.5564e-03 | 1.95 |
1024 | 2.1446e-02 | 0.99 | 1.1086e-03 | 1.98 |
N | k=1 | k=2 | ||
\textbf{e}^{N, b} | r_\varepsilon | \textbf{e}^{N, b} | r_\varepsilon | |
16 | 3.1691e00 | - | 2.5247e00 | - |
3 2 | 2.8939e00 | 0.19 | 1.8568e00 | 0.65 |
64 | 2.1681e00 | 0.57 | 1.0458e00 | 1.12 |
128 | 1.4063e00 | 0.80 | 4.6494e-01 | 1.50 |
256 | 8.3916e-01 | 0.92 | 1.7412e-01 | 1.76 |
512 | 4.7971e-01 | 0.97 | 5.8437e-02 | 1.90 |
1024 | 2.6815e-01 | 0.99 | 1.8476e-02 | 2.00 |
\varepsilon_2/k=1 | N | ||||||
16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
10^{-3} | 1.3469e-01 | 1.0211e-01 | 6.9269e-02 | 4.2854e-02 | 2.5059e-02 | 1.4210e-02 | 7.9163e-03 |
r_{10^{-3}} | - | 0.59 | 0.76 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-4} | 4.2826e-02 | 3.2265e-02 | 2.1878e-02 | 1.3535e-02 | 7.9145e-03 | 4.4877e-03 | 2.4997e-03 |
r_{10^{-4}} | - | 0.60 | 0.76 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-5} | 1.4555e-02 | 1.0287e-02 | 6.9246e-03 | 4.2798e-03 | 2.5021e-03 | 1.4187e-03 | 7.9017e-04 |
r_{10^{-5}} | - | 0.74 | 0.77 | 0.89 | 0.96 | 0.99 | 1.00 |
10^{-6} | 7.0511e-03 | 3.5121e-03 | 2.2119e-03 | 1.3538e-03 | 7.9006e-04 | 4.4773e-04 | 2.4931e-04 |
r_{10^{-6}} | - | 1.48 | 0.91 | 0.91 | 0.96 | 0.99 | 1.00 |
10^{-7} | 5.7885e-03 | 1.7282e-03 | 7.6617e-04 | 4.2944e-04 | 2.4621e-04 | 1.3883e-04 | 7.7093e-05 |
r_{10^{-7}} | - | 2.57 | 1.59 | 1.07 | 0.99 | 1.00 | 1.00 |
10^{-8} | 5.6470e-03 | 1.4335e-03 | 3.9795e-04 | 1.4327e-04 | 6.8296e-05 | 3.6229e-05 | 1.9525e-05 |
r_{10^{-8}} | - | 2.91 | 2.50 | 1.90 | 1.32 | 1.10 | 1.02 |
\varepsilon_2/k=2 10^{-3} |
9.1950e-02 | 6.0047e-02 | 3.1457e-02 | 1.3221e-02 | 4.7423e-03 | 1.5542e-03 | 4.8544e-04 |
r_{10^{-3}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-4} | 2.9024e-02 | 1.8958e-02 | 9.9341e-03 | 4.1758e-03 | 1.4979e-03 | 4.9086e-04 | 1.5329e-04 |
r_{10^{-4}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-5} | 9.1767e-03 | 5.9932e-03 | 3.1404e-03 | 1.3200e-03 | 4.7348e-04 | 1.5515e-04 | 4.8452e-05 |
r_{10^{-5}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-6} | 2.9026e-03 | 1.8921e-03 | 9.9100e-04 | 4.1640e-04 | 1.4930e-04 | 4.8908e-05 | 1.5269e-05 |
r_{10^{-6}} | - | 0.91 | 1.27 | 1.61 | 1.83 | 1.94 | 1.98 |
10^{-7} | 9.2029e-04 | 5.8861e-04 | 3.0694e-04 | 1.2848e-04 | 4.5896e-05 | 1.4982e-05 | 4.6637e-06 |
r_{10^{-7}} | - | 0.95 | 1.27 | 1.62 | 1.84 | 1.95 | 1.99 |
10^{-8} | 3.0336e-04 | 1.5840e-04 | 7.8929e-05 | 3.1821e-05 | 1.0972e-05 | 3.4626e-06 | 1.0673e-06 |
r_{10^{-8}} | - | 1.38 | 1.37 | 1.69 | 1.90 | 2.00 | 2.00 |
\varepsilon_2/k=1 | N | ||||||
16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
10^{-3} | 3.1062e00 | 2.8495e00 | 2.1418e00 | 1.3911e00 | 8.3003e-01 | 4.7414e-01 | 2.6477e-01 |
r_{10^{-3}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-4} | 3.0996e00 | 2.8450e00 | 2.1391e00 | 1.3895e00 | 8.2909e-01 | 4.7356e-01 | 2.6442e-01 |
r_{10^{-4}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-5} | 3.0987e00 | 2.8445e00 | 2.1390e00 | 1.3892e00 | 8.2907e-01 | 4.7348e-01 | 2.6440e-01 |
r_{10^{-5}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-6} | 3.0980e00 | 2.8442e00 | 2.1387e00 | 1.3891e00 | 8.2903e-01 | 4.7342e-01 | 2.6436e-01 |
r_{10^{-6}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-7} | 3.0978e00 | 2.8440e00 | 2.1384e00 | 1.3890e00 | 8.2901e-01 | 4.7340e-01 | 2.6433e-01 |
r_{10^{-7}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
10^{-8} | 3.0975e00 | 2.8438e00 | 2.1382e00 | 1.3888e00 | 8.2888e-01 | 4.7338e-01 | 2.6430e-01 |
r_{10^{-8}} | - | 0.18 | 0.56 | 0.80 | 0.92 | 0.97 | 0.99 |
\varepsilon_2/k=2 10^{-3} |
2.4792e00 | 1.8292e00 | 1.0335e00 | 4.6054e-01 | 1.7262e-01 | 5.7921e-02 | 1.8266e-02 |
r_{10^{-3}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-4} | 2.4790e00 | 1.8291e00 | 1.0333e00 | 4.6052e-01 | 1.7261e-01 | 5.7920e-02 | 1.8263e-02 |
r_{10^{-4}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-5} | 2.4785e00 | 1.8288e00 | 1.0330e00 | 4.6050e-01 | 1.7258e-01 | 5.7917e-02 | 1.8260e-02 |
r_{10^{-5}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-6} | 2.4776e00 | 1.8282e00 | 1.0325e00 | 4.6047e-01 | 1.7255e-01 | 5.7913e-02 | 1.8256e-02 |
r_{10^{-6}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-7} | 2.4765e00 | 1.8277e00 | 1.0322e00 | 4.6043e-01 | 1.7252e-01 | 5.7910e-02 | 1.8252e-02 |
r_{10^{-7}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |
10^{-8} | 2.4754e00 | 1.8270e00 | 1.0315e00 | 4.6036e-01 | 1.7247e-01 | 5.7906e-02 | 1.8245e-02 |
r_{10^{-8}} | - | 0.65 | 1.12 | 1.50 | 1.75 | 1.90 | 1.96 |