Research article Special Issues

Adaptive state-feedback control for low-order stochastic nonlinear systems with an output constraint and SiISS inverse dynamics

  • Published: 16 May 2025
  • MSC : 93C40, 93E15

  • This paper focuses on state-feedback adaptive control for stochastic low-order nonlinear systems with an output constraint and stochastic integral input-to-state stability (SiISS) inverse dynamics. The system with an output constraint was transformed straightforwardly into the equivalent system without a constraint using important coordinate transformations. SiISS was used to characterize unmeasured stochastic inverse dynamics. By introducing Lyapunov functions and using the stochastic systems stability theorem, we constructed a new adaptive state-feedback controller that assures the closed-loop system's trivial solution is stable in probability while fulfilling the requirements of the output constraint and all closed-loop signals are likely to be almost surely bounded. The validity of the control scheme presented in this paper was demonstrated by using simulation outcomes.

    Citation: Mengmeng Jiang, Qiqi Ni. Adaptive state-feedback control for low-order stochastic nonlinear systems with an output constraint and SiISS inverse dynamics[J]. AIMS Mathematics, 2025, 10(5): 11208-11233. doi: 10.3934/math.2025508

    Related Papers:

  • This paper focuses on state-feedback adaptive control for stochastic low-order nonlinear systems with an output constraint and stochastic integral input-to-state stability (SiISS) inverse dynamics. The system with an output constraint was transformed straightforwardly into the equivalent system without a constraint using important coordinate transformations. SiISS was used to characterize unmeasured stochastic inverse dynamics. By introducing Lyapunov functions and using the stochastic systems stability theorem, we constructed a new adaptive state-feedback controller that assures the closed-loop system's trivial solution is stable in probability while fulfilling the requirements of the output constraint and all closed-loop signals are likely to be almost surely bounded. The validity of the control scheme presented in this paper was demonstrated by using simulation outcomes.



    加载中


    [1] K. Yu, X. H. Chang, Quantized output feedback resilient control of uncertain systems under hybrid cyber attacks, Int. J. Adapt. Control, 36 (2022), 2954–2970. https://doi.org/10.1002/acs.3496 doi: 10.1002/acs.3496
    [2] X. M. Liu, X. H. Chang, Adaptive event-triggered tracking control for nonlinear networked systems with dynamic quantization and deception attacks, Int. J. Robust Nonlin., 34 (2024), 8311–8333. https://doi.org/10.1002/rnc.7389 doi: 10.1002/rnc.7389
    [3] R. Z. Hasminskii, Stochastic stability of differential equations, 1980.
    [4] H. F. Min, S. Y. Xu, Z. Q. Zhang, Adaptive finite-time stabilization of stochastic nonlinear systems subject to full-state constraints and input saturation, IEEE T. Automat. Contr., 66 (2021), 1306–1313. https://doi.org/10.1109/TAC.2020.2990173 doi: 10.1109/TAC.2020.2990173
    [5] Y. G. Yao, J. Q. Tan, J. Wu, X. Zhang, A unified fuzzy control approach for stochastic high-order nonlinear systems with or without state constraints, IEEE T. Fuzzy Syst., 30 (2022), 4530–4540. https://doi.org/10.1109/TFUZZ.2022.3155297 doi: 10.1109/TFUZZ.2022.3155297
    [6] G. Q. Yang, D. B. Tong, Q. Y. Chen, W. N. Zhou, Fixed-time synchronization and energy consumption for kuramoto-oscillator networks with multilayer distributed control, IEEE T. Circuits II, 70 (2023), 1555–1559. https://doi.org/10.1109/TCSII.2022.3221477 doi: 10.1109/TCSII.2022.3221477
    [7] D. B. Tong, B. Ma, Q. Y. Chen, Y. B. Wei, P. Shi, Finite-time synchronization and energy consumption prediction for multilayer fractional-order networks, IEEE T. Circuits II, 70 (2023), 2176–2180. http://doi.org/10.1109/TCSII.2022.3233420 doi: 10.1109/TCSII.2022.3233420
    [8] Q. X. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by lévy processes, IEEE T. Automat. Contr., 70 (2025), 1176–1183. http://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
    [9] K. Ogata, Modern control engineering, New Jersey: Prentice-Hall, 2010.
    [10] S. H. Strogatz, Nonlinear dynamics and chaos, New York: Perseus Books Group, 1994.
    [11] E. Umez-Eronimi, System dynamics and control, California: Wadsworth Publishing Company, 1998.
    [12] J. P. Jia, H. Dai, F. D. Zhang, J. W. Huang, Global stabilization of low-order stochastic nonlinear systems with multiple time-varying delays by a continuous feedback control, Appl. Math. Comput., 429 (2022), 127234. https://doi.org/10.1016/j.amc.2022.127234 doi: 10.1016/j.amc.2022.127234
    [13] Y. Shao, J. H. Park, S. Y. Xu, Global stabilization of stochastic feedforward low-order nonlinear systems with time delays and unknown control directions, Int. J. Robust Nonlin., 32 (2022), 1687–1702. https://doi.org/10.1002/rnc.5904 doi: 10.1002/rnc.5904
    [14] W. He, H. Huang, S. S. Ge, Adaptive neural network control of a robotic manipulator with time-varying output constraints, IEEE T. Cybernetics, 47 (2017), 3136–3147. http://doi.org/10.1109/TCYB.2017.2711961 doi: 10.1109/TCYB.2017.2711961
    [15] X. Yu, L. Liu, Distributed formation control of nonholonomic vehicles subject to velocity constraints, IEEE T. Ind. Electron., 63 (2016), 1289–1298. http://doi.org/10.1109/TIE.2015.2504042 doi: 10.1109/TIE.2015.2504042
    [16] K. P. Tee, S. S. Ge, Tay, E. H. Ge, Barrier Lyapunov Functions for the control of output-constrained nonlinear systems, Automatica, 45 (2009), 918–927. https://doi.org/10.1016/j.automatica.2008.11.017 doi: 10.1016/j.automatica.2008.11.017
    [17] L. D. Fang, L. Ma, S. H. Ding, D. Zhao, Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint, Appl. Math. Comput., 358 (2019), 63–79. https://doi.org/10.1016/j.amc.2019.03.067 doi: 10.1016/j.amc.2019.03.067
    [18] Y. G. Yao, Y. Kang, Y. B. Zhao, P. F. Li, J. Q. Tan, Prescribed-time output feedback control for cyber-physical systems under output constraints and malicious attacks, IEEE T. Cybernetics, 54 (2024), 6518–6530. http://doi.org/10.1109/TCYB.2024.3418384 doi: 10.1109/TCYB.2024.3418384
    [19] R. H. Cui, X. J. Xie, Finite-time stabilization of output-constrained stochastic high-order nonlinear systems with high-order and low-order nonlinearities, Automatica, 136 (2022), 110085. https://doi.org/10.1016/j.automatica.2021.110085 doi: 10.1016/j.automatica.2021.110085
    [20] X. Lin, J. H. Park, Output feedback stabilization of output-constrained stochastic switched planar systems, Nonlinear Dyn., 113 (2025), 4291–4300. https://doi.org/10.1007/s11071-024-10281-y doi: 10.1007/s11071-024-10281-y
    [21] R. M. Xie, S. Y. Xu, Fixed-time stabilization of output-constrained stochastic high-order nonlinear systems, Sci. China Inf. Sci., 67 (2024), 140201. https://doi.org/10.1007/s11432-023-3981-9 doi: 10.1007/s11432-023-3981-9
    [22] E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE T. Automat. Contr., 34 (1989), 435–443. http://doi.org/10.1109/9.28018 doi: 10.1109/9.28018
    [23] E. D. Sontag, Comments on integral variants of ISS, Syst. Control Lett., 34 (1998), 93–100. https://doi.org/10.1016/S0167-6911(98)00003-6 doi: 10.1016/S0167-6911(98)00003-6
    [24] J. Tsinias, Stochastic input-to-state stability and applications to global feedback stabilization, Int. J. Control, 71 (1998), 907–930. https://doi.org/10.1080/002071798221632 doi: 10.1080/002071798221632
    [25] C. Tang, T. Basar, Stochastic stability of singularly perturbed nonlinear systems, In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001,399–404. http://doi.org/10.1109/CDC.2001.980133
    [26] S. J. Liu, J. F. Zhang, Z. P. Jiang, Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 43 (2007), 238–251. https://doi.org/10.1016/j.automatica.2006.08.028 doi: 10.1016/j.automatica.2006.08.028
    [27] Y. Shao, J. H. Park, S. Y. Xu, Global stabilization for stochastic continuous cascade nonlinear systems subject to SISS inverse dynamics and time-delay: a dynamic gain approach, IEEE T. Automat. Contr., 67 (2022), 5318–5331. http://doi.org/10.1109/TAC.2022.3177420 doi: 10.1109/TAC.2022.3177420
    [28] H. Wang, Q. X. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics, IEEE T. Automat. Contr., 65 (2020), 4448–4455. http://doi.org/10.1109/TAC.2020.3005149 doi: 10.1109/TAC.2020.3005149
    [29] M. M. Jiang, X. J. Xie, K. Zhang, Finite-time stabilization of stochastic high-order nonlinear systems with FT-SISS inverse dynamics, IEEE T. Automat. Contr., 64 (2019), 313–320. http://doi.org/10.1109/TAC.2018.2827993 doi: 10.1109/TAC.2018.2827993
    [30] Y. Shao, S. Y. Xu, D. M. Yuan, Y. M. Chu, Z. Q. Zhang, Homogeneous domination approach to global stabilization of stochastic continuous nonlinear time-delay systems with SISS-Like conditions, IEEE T. Syst. Man Cy. S., 53 (2023), 3908–3918. https://doi.org/10.1109/TSMC.2023.3234177 doi: 10.1109/TSMC.2023.3234177
    [31] R. H. Cui, X. J. Xie, Finite-time stabilization of stochastic low-order nonlinear systems with time-varying orders and FT-SISS inverse dynamics, Automatica, 125 (2021), 109418. https://doi.org/10.1016/j.automatica.2020.109418 doi: 10.1016/j.automatica.2020.109418
    [32] X. Yu, X. J. Xie, Output feedback regulation of stochastic nonlinear systems with stochastic iISS inverse dynamics, IEEE T. Automat. Contr., 55 (2010), 304–320. http://doi.org/10.1109/TAC.2009.2034924 doi: 10.1109/TAC.2009.2034924
    [33] L. Liu, Adaptive control of stochastic high-order nonlinearly parameterized systems with SiISS inverse dynamics, J. Franklin I., 362 (2025), 107393. https://doi.org/10.1016/j.jfranklin.2024.107393 doi: 10.1016/j.jfranklin.2024.107393
    [34] R. M. Xie, S. Y. Xu, Adaptive state feedback control of output-constrained stochastic nonlinear systems with stochastic integral input-to-state stability inverse dynamics, Int. J. Robust Nonlin., 34 (2024), 1096–1119. https://doi.org/10.1002/rnc.7020 doi: 10.1002/rnc.7020
    [35] W. Lin, C. Qian, Adaptive control of nonlinearly parameterized systems: the smooth feedback case, IEEE T. Automat. Contr., 47 (2002), 1249–1266. http://doi.org/10.1109/TAC.2002.800773 doi: 10.1109/TAC.2002.800773
    [36] J. Yin, S. Khoo, Continuous finite-time state feedback stabilizers for some nonlinear stochastic systems, Int. J. Robust Nonlin., 25 (2015), 1581–1600. https://doi.org/10.1002/rnc.3161 doi: 10.1002/rnc.3161
    [37] J. Li, C. Qian, Global finite-time stabilization by dynamic output feedback for a class of continuous nonlinear systems, IEEE T. Automat. Contr., 51 (2006), 879–884. http://doi.org/10.1109/TAC.2006.874991 doi: 10.1109/TAC.2006.874991
    [38] S. J. Liu, Z. P. Jiang, J. F. Zhang, Global output-feedback stabilization for a class of stochastic non-minimum-phase nonlinear systems, Automatica, 44 (2008), 1944–1957. https://doi.org/10.1016/j.automatica.2007.11.011 doi: 10.1016/j.automatica.2007.11.011
    [39] X. J. Xie, J. Tian, Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization, Automatica, 45 (2009), 126–133. https://doi.org/10.1016/j.automatica.2008.10.006 doi: 10.1016/j.automatica.2008.10.006
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(687) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog