Research article Special Issues

Bifurcation analysis and stochastic optical solutions to the stochastic nonlinear Kodama equation in nonlinear optics

  • Published: 15 May 2025
  • MSC : 35A20, 35Q51, 60H10, 60H15

  • We consider the stochastic nonlinear Kodama equation (SNLKE) driven by multiplicative white noise. A specific wave transformation is applied to convert this system into a one-dimensional conservative Hamiltonian system. We analyze the bifurcation of this system and present its phase portrait. Additionally, a brief description of the phase portrait is provided, along with an illustration of the phase orbit degeneracy depending on the bifurcation parameter. Bifurcation allows us to deduce that changing the parameter values can have a substantial influence on nonlinear optics and mathematical physics as well as the dynamics of the optical soliton solutions of the Kodama equation. Using the conserved quantity, we derive new traveling wave solutions for the SNLKE. In the absence of noise, we recover certain wave solutions for the deterministic case. Furthermore, we examine the influence of multiplicative white noise on the exact solutions of the SNLKE, with some of the obtained solutions visualized graphically.

    Citation: Sofian T. Obeidat, Doaa Rizk, Wael W. Mohammed, Adel Elmandouh. Bifurcation analysis and stochastic optical solutions to the stochastic nonlinear Kodama equation in nonlinear optics[J]. AIMS Mathematics, 2025, 10(5): 11111-11130. doi: 10.3934/math.2025504

    Related Papers:

  • We consider the stochastic nonlinear Kodama equation (SNLKE) driven by multiplicative white noise. A specific wave transformation is applied to convert this system into a one-dimensional conservative Hamiltonian system. We analyze the bifurcation of this system and present its phase portrait. Additionally, a brief description of the phase portrait is provided, along with an illustration of the phase orbit degeneracy depending on the bifurcation parameter. Bifurcation allows us to deduce that changing the parameter values can have a substantial influence on nonlinear optics and mathematical physics as well as the dynamics of the optical soliton solutions of the Kodama equation. Using the conserved quantity, we derive new traveling wave solutions for the SNLKE. In the absence of noise, we recover certain wave solutions for the deterministic case. Furthermore, we examine the influence of multiplicative white noise on the exact solutions of the SNLKE, with some of the obtained solutions visualized graphically.



    加载中


    [1] L. Arnold, Random dynamical systems, Berlin, Heidelberg: Springer, 1998. https://doi.org/10.1007/978-3-662-12878-7
    [2] W. W. Mohammed, N. Iqbal, T. Botmart, Additive noise effects on the stabilization of fractional-space diffusion equation solutions, Mathematics, 10 (2022), 1–14. https://doi.org/10.3390/math10010130 doi: 10.3390/math10010130
    [3] K. Khan, M. A. Akbar, The $exp(-\phi (\varsigma))$-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 72–83. https://doi.org/10.1504/IJDSDE.2014.067119 doi: 10.1504/IJDSDE.2014.067119
    [4] F. M. Al-Askar, W. W. Mohammed, M. Alshammari, Impact of Brownian motion on the analytical solutions of the space-fractional stochastic approximate long water wave equation, Symmetry, 14 (2022), 1–10. https://doi.org/10.3390/sym14040740 doi: 10.3390/sym14040740
    [5] A. A. Elmandouh, M. E. Elbrolosy, Integrability, variational principle, bifurcation, and new wave solutions for the Ivancevic option pricing model, J. Math., 2022 (2022), 9354856. https://doi.org/10.1155/2022/9354856 doi: 10.1155/2022/9354856
    [6] M. M. El-Dessoky, A. Elmandouh, Qualitative analysis and wave propagation for Konopelchenko-Dubrovsky equation, Alex. Eng. J., 67 (2023), 525–535. https://doi.org/10.1016/j.aej.2022.12.066 doi: 10.1016/j.aej.2022.12.066
    [7] I. Siddique, K. B. Mehdi, F. Jarad, M. E. Elbrolosy, A. A. Elmandouh, Novel precise solutions and bifurcation of traveling wave solutions for the nonlinear fractional (3+1)-dimensional WBBM equation, Int. J. Mod. Phys. B, 37 (2023), 2350011. https://doi.org/10.1142/S021797922350011X doi: 10.1142/S021797922350011X
    [8] A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559–576. https://doi.org/10.1016/j.amc.2003.08.136 doi: 10.1016/j.amc.2003.08.136
    [9] M. L. Wang, X. Z. Li, J. L. Zhang, The $(G^{\prime }/G)$ -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423. https://doi.org/10.1016/j.physleta.2007.07.051 doi: 10.1016/j.physleta.2007.07.051
    [10] W. W. Mohammed, H. Ahmad, A. E. Hamza, E. S. Aly, M. El-Morshedy, E. M. Elabbasy, The exact solutions of the stochastic Ginzburg-Landau equation, Results Phys., 23 (2021), 103988. https://doi.org/10.1016/j.rinp.2021.103988 doi: 10.1016/j.rinp.2021.103988
    [11] H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the Lonngren-wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129–138. https://doi.org/10.2478/AMNS.2019.1.00013 doi: 10.2478/AMNS.2019.1.00013
    [12] Z. Yan, Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey-Stewartson-type equation via a new method, Chaos Solitons Fract., 18 (2003), 299–309. https://doi.org/10.1016/S0960-0779(02)00653-7 doi: 10.1016/S0960-0779(02)00653-7
    [13] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
    [14] S. Malik, M. S. Hashemi, S. Kumar, H. Rezazadeh, W. Mahmoud, M. S. Osman, Application of new Kudryashov method to various nonlinear partial differential equations, Opt. Quantum Electron., 55 (2023), 8. https://doi.org/10.1007/s11082-022-04261-y doi: 10.1007/s11082-022-04261-y
    [15] S. F. Wang, Novel soliton solutions of CNLSEs with Hirota bilinear method, J. Opt., 52 (2023), 1602–1607. https://doi.org/10.1007/s12596-022-01065-x doi: 10.1007/s12596-022-01065-x
    [16] S. M. Mirhosseini-Alizamini, H. Rezazadeh, M. Eslami, M. Mirzazadeh, A. Korkmaz, New extended direct algebraic method for the Tzitzica type evolution equations arising in nonlinear optics, Comput. Methods Differ. Equ., 8 (2020), 28–53. https://doi.org/10.22034/cmde.2019.9472 doi: 10.22034/cmde.2019.9472
    [17] M. Shakeel, Attaullah, N. A. Shah, J. D. Chung, Application of modified exp-function method for strain wave equation for finding analytical solutions, Ain Shams Eng. J., 14 (2023), 101883. https://doi.org/10.1016/j.asej.2022.101883 doi: 10.1016/j.asej.2022.101883
    [18] N. A. Shah, E. R. El-Zahar, A. Akgül, A. Khan, J. Kafle, Analysis of fractional-order regularized long-wave models via a novel transform, J. Funct. Spaces, 2022 (2022), 2754507. https://doi.org/10.1155/2022/2754507 doi: 10.1155/2022/2754507
    [19] Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys., 39 (1985), 597–614. https://doi.org/10.1007/BF01008354 doi: 10.1007/BF01008354
    [20] P. Kumari, R. K. Gupt, S. Kumar, K. S. Nisar, Doubly periodic wave structure of the modified Schrödinger equation with fractional temporal evolution, Results Phys., 33 (2022), 105128. https://doi.org/10.1016/j.rinp.2021.105128 doi: 10.1016/j.rinp.2021.105128
    [21] M. J. Potasek, M. Tabor, Exact solutions for an extended nonlinear Schrödinger equation, Phys. Lett. A, 154 (1991), 449–452. https://doi.org/10.1016/0375-9601(91)90971-a doi: 10.1016/0375-9601(91)90971-a
    [22] K. Hosseini, E. Hincal, S. Salahshour, M. Mirzazadeh, K. Dehingia, B. J. Nath, On the dynamics of soliton waves in a generalized nonlinear Schrödinger equation, Optik, 272 (2023), 170215. https://doi.org/10.1016/j.ijleo.2022.170215 doi: 10.1016/j.ijleo.2022.170215
    [23] K. Hosseini, F. Alizadeh, E. Hinçal, D. Baleanu, A. Akg ül, A. M. Hassan, Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to the nonlinear Kodama equation, Results Phys., 54 (2023), 107129. https://doi.org/10.1016/j.rinp.2023.107129 doi: 10.1016/j.rinp.2023.107129
    [24] W. W. Mohammed, N. Iqbal, R. Sidaoui, E. E. Ali, Dynamical behavior of the fractional nonlinear Kadoma equation in plasma physics and optics, Mod. Phys. Lett. B, 39 (2024), 2450434. https://doi.org/10.1142/S0217984924504347 doi: 10.1142/S0217984924504347
    [25] M. S. Algolam, A. I Ahmed, H. M. Alshammary, F. E Mansour, W. W Mohammed, The impact of standard Wiener process on the optical solutions of the stochastic nonlinear Kodama equation using two different methods, J. Low Freq. Noise Vib. Active Control, 43 (2024), 1939–1952. https://doi.org/10.1177/14613484241275313 doi: 10.1177/14613484241275313
    [26] O. Calin, An informal introduction to stochastic calculus with applications, World Scientific, 2015. https://doi.org/10.1142/9620
    [27] H. Goldstein, Classical mechanics, 3 Eds., Addison-Wesley, 2001.
    [28] P. F. Byrd, M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Berlin, Heidelberg: Springer, 1971. https://doi.org/10.1007/978-3-642-65138-0
    [29] M. Lakshmanan, S. Rajaseekar, Nonlinear dynamics: integrability, chaos and patterns, Berlin, Heidelberg: Springer, 2012.
    [30] E. Ott, Chaos in dynamical systems, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511803260
    [31] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer, 2003. https://doi.org/10.1007/b97481
    [32] M. Debnath, A. R. Chowdhury, Period doubling and hysteresis in a periodically forced, damped anharmonic oscillator, Phys. Rev. A, 44 (1991), 1049. https://doi.org/10.1103/PhysRevA.44.1049 doi: 10.1103/PhysRevA.44.1049
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(997) PDF downloads(55) Cited by(2)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog