Research article

Explicit evaluations of subfamilies of the hypergeometric function $ _3F_2(1) $ along with specific fractional integrals

  • Received: 02 February 2025 Revised: 01 March 2025 Accepted: 07 March 2025 Published: 14 March 2025
  • MSC : 26A33, 33C05, 33C20

  • The present study explores the application of hypergeometric functions in evaluating fractional integrals, providing a comprehensive framework to bridge fractional calculus and special functions. As a generalization of classical integrals, fractional integrals have gained prominence due to their wide applicability in modeling anomalous diffusion, viscoelastic systems, and other non-local phenomena. Hypergeometric functions, renowned for their rich analytical properties and ability to represent solutions to differential equations, offer an elegant and versatile tool for solving fractional integrals. In this paper, we evaluate a new class of fractional integrals, presenting results that contribute significantly to the study of generalized hypergeometric functions, particularly $ _3F_2(1) $. The results reveal previously unexplored connections within these functions, providing new insights and extending their applicability. Furthermore, evaluating these fractional integrals holds promise for advancing the theoretical understanding and practical applications of fractional differential equations.

    Citation: Abdelhamid Zaidi, Saleh Almuthaybiri. Explicit evaluations of subfamilies of the hypergeometric function $ _3F_2(1) $ along with specific fractional integrals[J]. AIMS Mathematics, 2025, 10(3): 5731-5761. doi: 10.3934/math.2025264

    Related Papers:

  • The present study explores the application of hypergeometric functions in evaluating fractional integrals, providing a comprehensive framework to bridge fractional calculus and special functions. As a generalization of classical integrals, fractional integrals have gained prominence due to their wide applicability in modeling anomalous diffusion, viscoelastic systems, and other non-local phenomena. Hypergeometric functions, renowned for their rich analytical properties and ability to represent solutions to differential equations, offer an elegant and versatile tool for solving fractional integrals. In this paper, we evaluate a new class of fractional integrals, presenting results that contribute significantly to the study of generalized hypergeometric functions, particularly $ _3F_2(1) $. The results reveal previously unexplored connections within these functions, providing new insights and extending their applicability. Furthermore, evaluating these fractional integrals holds promise for advancing the theoretical understanding and practical applications of fractional differential equations.



    加载中


    [1] E. Özergin, Some properties of hypergeometric functions, Eastern Mediterranean University, 2011. Available from: http://hdl.handle.net/11129/217
    [2] F. Ouimet, Central and noncentral moments of the multivariate hypergeometric distribution, arXiv, 2024. https://doi.org/10.48550/arXiv.2404.09118
    [3] W. Briggs, R. Zaretzki, A new look at inference for the hypergeometric distribution, 2009.
    [4] P. Sheridan, M. Onsjö, The hypergeometric test performs comparably to TF-IDF on standard text analysis tasks, Multimed. Tools Appl., 83 (2024), 28875–28890. https://doi.org/10.1007/s11042-023-16615-z doi: 10.1007/s11042-023-16615-z
    [5] H. Alzer, K. Richards, Combinatorial identities and hypergeometric functions, Rocky Mountain J. Math., 52 (2022), 1921–1928. https://doi.org/10.1216/rmj.2022.52.1921 doi: 10.1216/rmj.2022.52.1921
    [6] H. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, Morgantown, 1972.
    [7] E. Diekema, Combinatorial identities and hypergeometric series, arXiv, 2022. https://doi.org/10.48550/arXiv.2204.05647
    [8] J. Borwein, A. Straub, C. Vignat, Densities of short uniform random walks in higher dimensions, J. Math. Anal. Appl., 437 (2016), 668–707. https://doi.org/10.1016/j.jmaa.2016.01.017 doi: 10.1016/j.jmaa.2016.01.017
    [9] J. Borwein, D. Nuyens, A. Straub, J. Wan, Random walks in the plane, Discrete Math. Theor. Comput. Sci., 2010,191–202.
    [10] J. McCrorie, Moments in Pearson's four-step uniform random walk problem and other applications of very well-poised generalized hypergeometric series, Sankhya B, 83 (2021), 244–281. https://doi.org/10.1007/s13571-020-00230-1 doi: 10.1007/s13571-020-00230-1
    [11] S. Janson, D. Knuth, T. Łuczak, B. Pittel, The birth of the giant component, Random Struct. Algor., 4 (1993), 233–358. https://doi.org/10.1002/rsa.3240040303 doi: 10.1002/rsa.3240040303
    [12] E. P. Wigner, On the matrices which reduce the Kronecker products of representations of S. R. groups, In: The collected works of eugene paul wigner, Berlin, Heidelberg: Springer, 1993,608–654. https://doi.org/10.1007/978-3-662-02781-3_42
    [13] K. S. Rao, Symmetries of 3n-j coefficients and generalized hypergeometric functions, In: Symmetries in science X, Boston: Springer, 1998,383–399. https://doi.org/10.1007/978-1-4899-1537-5_24
    [14] M. Harmer, Note on the Schwarz triangle functions, Bull. Aust. Math. Soc., 72 (2005), 38–389. https://doi.org/10.1017/S0004972700035218 doi: 10.1017/S0004972700035218
    [15] A. Ali, M. Islam, A. Noreen, Z. Nisa, Solution of fractional k-hypergeometric differential equation, Int. J. Math. Anal., 14 (2020), 125–132. https://doi.org/10.12988/ijma.2020.91287 doi: 10.12988/ijma.2020.91287
    [16] M. Abul-Ez, M. Zayed, A. Youssef, Further study on the conformable fractional Gauss hypergeometric function, AIMS Mathematics, 6 (2021), 10130–10163. https://doi.org/10.3934/math.2021588 doi: 10.3934/math.2021588
    [17] M. Chen, W. Chu, Yabu's formulae for hypergeometric $ _3F_2 $-series through Whipple's quadratic transformations, AIMS Mathematics, 9 (2024), 21799–21815. https://doi.org/10.3934/math.20241060 doi: 10.3934/math.20241060
    [18] M. Atia, M. Alkilayh, Extension of Chu–Vandermonde identity and quadratic transformation conditions, Axioms, 13 (2024), 825. https://doi.org/10.3390/axioms13120825 doi: 10.3390/axioms13120825
    [19] M. Atia, On the inverse of the linearization coefficients of Bessel polynomials, Symmetry, 16 (2024), 737. https://doi.org/10.3390/sym16060737 doi: 10.3390/sym16060737
    [20] M. Atia, A. Rathie, On a generalization of the Kummer's quadratic transformation and a resolution of an isolated case, Axioms, 12 (2023), 821. https://doi.org/10.3390/axioms12090821 doi: 10.3390/axioms12090821
    [21] M. Atia, A. Al-Mohaimeed, On a resolution of another isolated case of a Kummer's quadratic transformation for $_{2}F_{1}$, Axioms, 12 (2023), 221. https://doi.org/10.3390/axioms12020221 doi: 10.3390/axioms12020221
    [22] A. Shehata, S. Moustafa, Some new results for Horn's hypergeometric functions $\Gamma_{1}$ and $\Gamma_{2}$, J. Math. Comput. Sci., 23 (2020), 26–35. https://doi.org/10.22436/jmcs.023.01.03 doi: 10.22436/jmcs.023.01.03
    [23] W. Mohammed, C. Cesarano, F. Al-Askar, Solutions to the (4+1)-dimensional time-fractional Fokas equation with M-truncated derivative, Mathematics, 11 (2023), 194. https://doi.org/10.3390/math11010194 doi: 10.3390/math11010194
    [24] F. He, A. Bakhet, M. Hidan, H. Abd-Elmageed, On the construction of (p, k)-hypergeometric function and applications, Fractals, 30 (2022), 2240261. https://doi.org/10.1142/S0218348X22402617 doi: 10.1142/S0218348X22402617
    [25] H. Exton, A new two-term relation for the $_3F_2$ hypergeometric function of unit argument, J. Comput. Appl. Math., 106 (1999), 395–397. https://doi.org/10.1016/S0377-0427(99)00077-1 doi: 10.1016/S0377-0427(99)00077-1
    [26] M. Milgram, On hypergeometrics $_3F_2$(1)-A review, arXiv, 2010. https://doi.org/10.48550/arXiv.1011.4546
    [27] Y. Kim, J. Choi, A. Rathie, Two results for the terminating $_3F_2$(2) with applications, Bull. Korean Math. Soc., 49 (2012), 621–633. https://doi.org/10.4134/BKMS.2012.49.3.621 doi: 10.4134/BKMS.2012.49.3.621
    [28] K. Chen, Explicit formulas for some infinite $_3F_2$(1)-series, Axioms, 10 (2021), 125. https://doi.org/10.3390/axioms10020125 doi: 10.3390/axioms10020125
    [29] M. Chen, W. Chu, Bisection series approach for exotic $_3F_2$(1)-series, Mathematics, 12 (2024), 1915. https://doi.org/10.3390/math12121915 doi: 10.3390/math12121915
    [30] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006).
    [31] E. D. Rainville, Special functions, New York: Macmillan, 1960.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1192) PDF downloads(83) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog