Processing math: 100%
Research article Special Issues

Second-order advanced dynamic equations on time scales: Oscillation analysis via monotonicity properties

  • Received: 28 November 2024 Revised: 26 January 2025 Accepted: 17 February 2025 Published: 28 February 2025
  • MSC : 26E70, 34C10, 34K11, 34K42, 34N05

  • This paper derives new oscillation criteria for a class of second-order non-canonical advanced dynamic equations of the form

    (ζ()ϰΔ())Δ+q()ϰ(())=0.

    The derived results are based on establishing dynamic inequalities, which lead to novel monotonicity properties of the solutions. These properties are then used to derive new oscillatory conditions. This approach has been successfully applied to difference and differential equations due to the sharpness of its criteria. However, no analogous studies have adopted a similar methodology for dynamic equations on time scales. Furthermore, this study includes examples to illustrate the importance and sharpness of the main results.

    Citation: Samy E. Affan, Elmetwally M. Elabbasy, Bassant M. El-Matary, Taher S. Hassan, Ahmed M. Hassan. Second-order advanced dynamic equations on time scales: Oscillation analysis via monotonicity properties[J]. AIMS Mathematics, 2025, 10(2): 4473-4491. doi: 10.3934/math.2025206

    Related Papers:

    [1] Khalil Ur Rehman, Wasfi Shatanawi, Zeeshan Asghar, Haitham M. S. Bahaidarah . Neural networking analysis for MHD mixed convection Casson flow past a multiple surfaces: A numerical solution. AIMS Mathematics, 2023, 8(7): 15805-15823. doi: 10.3934/math.2023807
    [2] Khalil Ur Rehman, Wasfi Shatanawi, Zead Mustafa . Artificial intelligence (AI) based neural networks for a magnetized surface subject to tangent hyperbolic fluid flow with multiple slip boundary conditions. AIMS Mathematics, 2024, 9(2): 4707-4728. doi: 10.3934/math.2024227
    [3] Khalil Ur Rehman, Wasfi Shatanawi, Weam G. Alharbi . On nonlinear coupled differential equations for corrugated backward facing step (CBFS) with circular obstacle: AI-neural networking. AIMS Mathematics, 2025, 10(3): 4579-4597. doi: 10.3934/math.2025212
    [4] Manal Alqhtani, J.F. Gómez-Aguilar, Khaled M. Saad, Zulqurnain Sabir, Eduardo Pérez-Careta . A scale conjugate neural network learning process for the nonlinear malaria disease model. AIMS Mathematics, 2023, 8(9): 21106-21122. doi: 10.3934/math.20231075
    [5] Kottakkaran Sooppy Nisar, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Yasmin Tariq, Ayesha Rafiq, Ahmed Morsy . Design of neural networks for second-order velocity slip of nanofluid flow in the presence of activation energy. AIMS Mathematics, 2023, 8(3): 6255-6277. doi: 10.3934/math.2023316
    [6] Manal Abdullah Alohali, Fuad Al-Mutiri, Kamal M. Othman, Ayman Yafoz, Raed Alsini, Ahmed S. Salama . An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture. AIMS Mathematics, 2024, 9(4): 10185-10207. doi: 10.3934/math.2024498
    [7] Naret Ruttanaprommarin, Zulqurnain Sabir, Rafaél Artidoro Sandoval Núñez, Soheil Salahshour, Juan Luis García Guirao, Wajaree Weera, Thongchai Botmart, Anucha Klamnoi . Artificial neural network procedures for the waterborne spread and control of diseases. AIMS Mathematics, 2023, 8(1): 2435-2452. doi: 10.3934/math.2023126
    [8] Muhammad Ali Khan, Saleem Abdullah, Alaa O. Almagrabi . Analysis of deep learning technique using a complex spherical fuzzy rough decision support model. AIMS Mathematics, 2023, 8(10): 23372-23402. doi: 10.3934/math.20231188
    [9] Lin Zheng, Liang Chen, Yanfang Ma . A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations. AIMS Mathematics, 2022, 7(1): 1241-1256. doi: 10.3934/math.2022073
    [10] Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Muhammad Shoaib, Ajed Akbar, Hakeem Ullah, Saeed Islam . A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip. AIMS Mathematics, 2023, 8(5): 12062-12092. doi: 10.3934/math.2023608
  • This paper derives new oscillation criteria for a class of second-order non-canonical advanced dynamic equations of the form

    (ζ()ϰΔ())Δ+q()ϰ(())=0.

    The derived results are based on establishing dynamic inequalities, which lead to novel monotonicity properties of the solutions. These properties are then used to derive new oscillatory conditions. This approach has been successfully applied to difference and differential equations due to the sharpness of its criteria. However, no analogous studies have adopted a similar methodology for dynamic equations on time scales. Furthermore, this study includes examples to illustrate the importance and sharpness of the main results.



    In mathematics and various sciences, the changes of output and input of nonlinear systems are out of proportion. Most of the systems involved in life are essentially nonlinear, so solving nonlinear problems has attracted various scientists. Scholars have proposed more efficient iterative methods for solving nonlinear systems. One of the most famous iterative methods for solving nonlinear systems is Newton's method [1],

    x(k+1) =x(k)[F(x(k))]1F(x(k)), (1.1)

    for k=0,1,2,..., x0 is the starting point. The Newton's method is second order convergent and effective in solving some nonlinear systems.

    With the advancement of computers and numerical algebra, scholars have developed many iterative methods based on Newton's method that are more efficient than second-order Newton's method for solving nonlinear problems [2,3,4,5,6,7]. In addition, when the Jacobian matrix cannot be calculated for nonlinear systems, some effective derivative free methods can also solve nonlinear systems well (see [8,9,10,11,12]). We propose an eighth order iterative method with high computational efficiency, which is suitable for solving large systems of equations [13]. The specific iteration format is as follows

    {y(k) =x(k)ΓkF(x(k)),w(k)=y(k)[I+(I+54M(k))M(k)]ΓkF(y(k)),x(k+1)=w(k)[I+(I+32M(k))M(k)]ΓkF(w(k)), (1.2)

    where M(k)=Γk(F(x(k))F(y(k))), and Γk=[F(x(k))]1.

    The theoretical results of local convergence and semilocal convergence of the iterative method are also important in the study. Local convergence requires the existence of the assumed solution and the initial value is close enough to the solution. Semilocal convergence does not require the existence of an assumed solution, but the selection of initial values also needs to meet certain conditions (see [14,15,16,17,18]). Therefore, for some systems that cannot be analyzed and solved, the results of semilocal convergence cannot only prove the convergence of iterative sequences, but also prove the existence of solutions of these systems, so as to obtain the existence domain and uniqueness domain of system solutions; for further study (see [19,20,21,22]). Based on this, we perform a semilocal convergence analysis on the method (1.2) .

    This paper consists of five sections. In Section 2 of the paper, the recurrence relation is explained. The semilocal convergence of the iterative method (1.2) is proved in Section 3. In Section 4, the numerical experiments of two nonlinear systems are completed. Finally, the conclusion of this paper is made.

    In this section, let X and Y be Banach spaces and let F:ΩXY be a twice differetiable nonlinear Fréchet operator in an open Ω [23]. Let us assume that the inverse of the Jacobian matrix of the system in the iteration (1.2) is Γ0L(Y,X), which is the set of linear operation from Y to X.

    Moreover, in order to obtain the semilocal convergence result for this iterative method (1.2) , Kantorovich conditions are assumed:

    (M1)Γ0β,

    (M2)Γ0F(x0)η,

    (M3)F(x)F(y)Kxy,

    where K, β, η are non-negative real numbers. For the sake of simplicity, we denote a0=Kβη and define the sequence

    ak+1=akf(ak)2g(ak), (2.1)

    where we use the following auxiliary functions

    h(x)=1256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9), (2.2)
    f(x)=11xh(x), (2.3)

    and

    g(x)=x131072(196608+327680x+589824x2+819200x3+1064960x4+1351680x5+1569792x6+1689600x7+1752576x8+1693696x9+1490432x10+1226752x11+913920x12+596928x13+354724x14+180520x15+73600x16+25500x17+5625x18). (2.4)

    These functions play a key role in the analysis that will be performed next.

    Preliminary results. In order to get the difference of the first two elements in the iterative method (1.2) , we have

    w0x0=y0x0[I+(I+54Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(y0). (2.5)

    The Taylor series expansion of F around x0 evaluated in y0 is

    F(y0)=F(x0)+F(x0)(y0x0)+y0x0(F(x)F(x0))dx, (2.6)

    where the term F(x0)+F(x0)(y0x0) is equal to zero, since it comes from a Newton's step. With the change x=x0+t(y0x0), we get

    F(y0)=10(F(x0+t(y0x0))F(x0))(y0x0)dt. (2.7)

    Then,

    w0x0=y0x0(I+Γ0(F(x0)F(y0))+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0)))Γ0F(y0)=y0x0(Γ0F(y0)+Γ0(F(x0)F(y0))Γ0F(y0)+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0))Γ0F(y0))=y0x0(Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt+Γ0(F(x0)F(y0))Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0))×Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt). (2.8)

    Taking norms and applying Lipschitz condition, we get

    w0x0y0x0+K2Γ0y0x02+K22Γ0y0x0Γ0y0x02+5K38Γ0y0x0Γ0y0x0Γ0y0x02η+12Kβη2+12K2β2η3+58K3β3η4=η(1+12a0+12a20+58a30), (2.9)

    so that,

    w0x0η(1+12(a0+a20+54a30)). (2.10)

    Using a method similar to (2.5), we get w0y0

    w0y0=y0y0[I+(I+54Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(y0). (2.11)

    So,

    w0y0y0y0+K2Γ0y0x02+K22Γ0y0x0Γ0y0x02+5K38Γ0y0x0Γ0y0x0Γ0y0x0212Kβη2+12K2β2η3+58K3β3η4=η(12a0+12a20+58a30). (2.12)

    Next, the next step analysis

    x1x0=w0x0[I+(I+32Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(w0). (2.13)

    Using Taylor's expansion of F(w0) around x0 and applying Lipschitz condition, we obtain

    x1x0w0x0+K2Γ0w0x02+K22Γ0y0x0Γ0w0x02+3K34Γ0y0x0Γ0y0x0Γ0w0x02η(1+12(a0+a20+54a30))+Kβη22(1+12(a0+a20+54a30))2+K2β2η32(1+12(a0+a20+54a30))2+3K3β3η44(1+12(a0+a20+54a30))2=η((1+12(a0+a20+54a30))+a02(1+12(a0+a20+54a30))2+a202(1+12(a0+a20+54a30))2+3a304(1+12(a0+a20+54a30))2)=η(1256(256+256a0+384a20+640a30+576a40+576a50+528a60+298a70+170a80+75a90)). (2.14)

    By applying Banach's lemma, one has

    IΓ0F(x1)=Γ0F(x0)Γ0F(x1)=Γ0F(x0)Γ0F(x1)Kβx1x0Kβη(1256(256+256a0+384a20+640a30+576a40+576a50+528a60+298a70+170a80+75a90))=a0(h(a0))<1, (2.15)

    where

    h(x)=1256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9).

    Then, as far as a0(h(a0))<1 (by taking a0<0.45807), Banach's lemma guarantees that

    (Γ0F(x1))1=Γ1Γ10

    exists and

    Γ111a0(h(a0))Γ0=f(a0)Γ0, (2.16)

    so

    f(x)=111256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9).

    Based on the above analysis, we can obtain the following theorem.

    Theorem 1. For k1, the following conditions are valid:

    (O1k)Γkf(ak1)Γk1,

    (O2k)ykxk=ΓkF(xk)f(ak1)g(ak1)yk1xk1,

    (O3k)KΓkykxkak,

    (O4k)xkxk1h(ak1)yk1xk1.

    Proof. The above theorem is proven through induction. Starting with k=1, (2.16) proved the (O11).

    (O21): The Taylor's expansion of F(x1) around y0, we can get

    F(x1)=F(y0)+F(y0)(x1y0)+x1y0(F(x)F(y0))dx=F(y0)+(F(y0)F(x0))(x1y0)+F(x0)(x1y0)+10(F(y0+t(x1y0))F(y0))(x1y0)dt. (2.17)

    So, we must to have x1y0

    x1y0=w0y0[I+(I+32Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(w0). (2.18)

    And bounding its norm, the following inequality is obtained

    x1y0w0y0+K2Γ0w0x02+K22Γ0y0x0Γ0w0x02+3K34Γ0y0x0Γ0y0x0Γ0w0x02η(12a0+12a20+58a30)+Kβη22(1+12(a0+a20+54a30))2+K2β2η32(1+12(a0+a20+54a30))2+3K3β3η44(1+12(a0+a20+54a30))2η(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80)). (2.19)

    Then, using (2.17)–(2.19), the F(x1) is bounded

    F(x1)12Kη2+Kη2(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))+1βη(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))+12Kη2(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))2. (2.20)

    Therefore, by applying (O11), we get

    y1x1=Γ1F(x1)=f(a0)Γ0F(x1)f(a0)[1131072a0(196608+327680a0+589824a20+819200a30+1064960a40+1351680a50+1569792a60+1689600a70+1752576a80+1693696a90+1490432a100+1226752a110+913920a120+596928a130+354724a140+180520a150+73600a160+25500a170+5625a180)]η. (2.21)

    That is,

    y1x1=f(a0)g(a0)ηf(a0)g(a0)y0x0,

    where,

    g(x)=x131072(196608+327680x+589824x2+819200x3+1064960x4+1351680x5+1569792x6+1689600x7+1752576x8+1693696x9+1490432x10+1226752x11+913920x12+596928x13+354724x14+180520x15+73600x16+25500x17+5625x18).

    (O31): Using (O11) and (O21),

    KΓ1y1x1Kf(a0)Γ0f(a0)g(a0)y0x0=a0f(a0)2g(a0)=a1.

    (O41): For k=1 it has been proven in (2.16).

    The proof of (O1k+1), (O2k+1), (O3k+1) and (O4k+1) is based on the same method of proving that the inductive assumption with (O1k), (O2k), (O3k) and (O4k) as k1 holds true.

    According to the convergence property of xk sequence in Banach space, we need to prove that this sequence is a Cauchy sequence. Based on the auxiliary function, we can obtain the following results.

    Lemma 1. According h(x),f(x) and g(x), we have:

    i. f(x) is inceasing and f(x)>1 for x(0,0.45807),

    ii. h(x) and g(x) are increasing for x(0,0.45807).

    The above lemma can be calculated from the Section 2, and the process is omitted.

    Lemma 2. The f(x) and g(x) defined by (2.3) and (2.4). Then

    i. f(a0)g(a0)<1 for a0<0.252232,

    ii. f(a0)2g(a0)<1 for a0<0.21715,

    iii. the sequence ak is decreasing and ak<0.21715 for k>0.

    Proof. It is straightforword that i, ii are satisfied. As f(a0)2g(a0)<1, then by construction of ak, it is a dereasing sequence. So ak<a00.21715, for all k1.

    Theorem 2. Let X, Y be Banach spaces and F:ΩXY be a nonlinear twice differentiable Fréchet operator in an open set domain Ω. Assume that Γ0=[F(x0)]1 exists in x0Ω and meet the conditions of (M1)(M3). Let be a0=Kβη, and assume that a0<0.21. The sequence {xk} defined in (2.1) and starting in x0 converges to the solution x of F(x)=0, if Be(x0,Rη)=xX:xx0<RηΩ where R=h(a0)1f(a0)g(a0). In the case, the iterates {xk} and {yk} are contained in Be(x0,Rη) and xBe(x0,Rη). In addition, the x is the only solution of equation F(x)=0 in Bn(x0,2KβRη)Ω.

    Proof. By recursively applying (O4k), we can write

    xk+1xkh(ak)ykxkh(ak)f(ak1)g(ak1)yk1xk1h(ak)[k1i=0f(ai)g(ai)]y0x0. (3.1)

    Then,

    xk+mxkxk+mxk+m1+xk+m1xk+m2++xk+1xkh(ak+m1)ηk+m2i=0f(ai)g(ai)+h(ak+m2)ηk+m3i=0f(ai)g(ai)++h(ak)ηk1i=0f(ai)g(ai). (3.2)

    As h(x) is increasing and ak dreasing, it can be stated that

    xk+mxkh(ak)ηm1l=0[k+l1i=0f(ai)g(ai)]h(ak)ηm1l=0(f(a0)g(a0))l+k. (3.3)

    Moreover, according Lemmas 1 and 2, by using the expression for the partial sum of a geometrical series,

    xk+mxkh(ak)1(f(a0)g(a0))m1f(a0)g(a0)(f(a0)g(a0))kη. (3.4)

    So, the Cauchy sequence if and only if f(a0)g(a0)<1 (Lemma 2).

    For k=0,

    xmx0xmxm1+xm1xm2++x1x0h(a0)y0x0m1r=0(f(a0)g(a0))r.=h(a0)1(f(a0)g(a0))m1f(a0)g(a0)η<Rη, (3.5)

    when m, we get the radius od convergence Rη=h(a0)1f(a0)g(a0)η.

    Let's prove that x is the solution of F(x)=0 starting from the boundary of F(xn),

    F(xk)F(x0)+F(xk)F(x0)F(x0)+Kxkx0F(x0)+KRη. (3.6)

    Then, acorrding M2 and (3.1)

    F(xk)F(xk)ykxkF(xk)h(ak)[n1i=0f(ai)g(ai)]η, (3.7)

    as h(x), f(x) and g(x) are increasing and ak is the decreasing sequence,

    F(xk)F(xk)h(ak)(f(a0)g(a0))kη. (3.8)

    Taking into account that F(xk) is bounded and (f(a0)g(a0))k tends to zero when k, we conclude that F(xk)0. As F is continuous in Ω, then F(x)=0.

    Finally, the uniqueness of x in B(x0,2KβRη)Ω.

    0=F(y)F(x)=(F(x)+10F(x+t(yx))(yx)dt)(F(x)=(yx)10F(x+t(yx))dt). (3.9)

    In order to guarantee that yx=0 it is necesssary to prove that operator 10F(x+t(yx))dt is invertible. Applying hypothesis (M3),

    Γ010F(x+t(yx))F(x0)dtKβ10x+t(yx)x0dtKβ10((1t)xx0+tyx0)dt<Kβ2(Rη+2KβRη)=1. (3.10)

    By the Banach lemma, the intergal operator is invertible and hence y=x.

    In this section, we provide some numerical examples to illustrate the theoretical results introduced earlier.

    Example 1. Hammerstein equation is a kind of important nonlinear integral equation [24], which is given as follows:

    x(s)=1+(1/5)10N(s,t)x(t)3dt, (4.1)

    where xC[0,1],s,t[0,1], with the kernel N is

    N(s,t)={(1s)tts,s(1t)st.

    To solve (4.1) we transform it into a syste of nonlinear equations through a discretization process. We approximate the integral appearing in Eq (4.1) by using Gauss-Legendre quadrature,

    10s(t)dt7i=1wjs(tj),

    being tj and wj the nodes and the weights of the Gauss-Legendre polynomial. Denoting the approximation of x(tj) as xi,i=1,...,7, then we estimate (4.1) with the nonlinear system of equations

    xi1157j=1aijx3j=0,i=1,...,7 (4.2)

    where

    aij={wjtj(1ti)ji,wjti(1tj)i<j.

    So, the system can be rewritten as

    F(x)=x115Avx,vx=(x31,x32,...,x37)T,
    F(x)=I35AD(x),D(x)=diag(x21,x22,...,x27),

    where F if a nonlinear operator in the Banach space RL, and F is its Fréchet derivative in L(RL,RL).

    According the method (1.2), we will use it to solve the nonlinear systems.

    Taking x0=(1.8,1.8,...,1.8)T,L=7 and the infinity norm, we get

    Γ0β,β1.2559,Γ0F(x0)η,η2.2062,F(x)F(y)kxy,k0.0671,a0=kβη,0.1860. (4.3)

    The above results satisfy the semilocal convergence condition, so this method can be applied to the system. Thus, we guarantee the existence of the solution in Be(x0,0.5646), and the uniqueness in Bn(x0,22.4874). Table 1 shows the the radius of the existence domain and the radius of the unique domain under different initial values. For x0i>1.87,i=1,2,...,7, convergence conditions are not satisfied and, therefore, the convergence is not guaranteed.

    Table 1.  Different initial values related parameters.
    x0i β η k a0 Re Rn
    0.2 1.0025 2.1204 0.0287 0.0610 0.0754 69.3528
    0.4 1.0102 1.6005 0.0337 0.0545 0.0657 58.6428
    0.6 1.0232 1.0827 0.0390 0.0433 0.0500 50.0651
    0.8 1.0420 0.5637 0.0451 0.0265 0.0288 42.5422
    1.0 1.0671 0.0461 0.0682 0.0034 0.0034 27.4813
    1.2 1.0996 0.4949 0.0505 0.0275 0.0300 36.0019
    1.4 1.1406 1.0420 0.0569 0.0676 0.0859 30.7271
    1.6 1.1919 1.6098 0.0622 0.1193 0.1970 26.6603
    1.7 1.2222 1.9038 0.0647 0.1505 0.3107 24.7005

     | Show Table
    DownLoad: CSV

    Using the iterative method (1.2) to solve (4.2), the exact solution is

    x=(1.003,1.012,1.023,1.028,1.023,1.012,1.003)T.

    Example 2. Let X=Y=R2 be equipped with the max-norm. Choose: x0=(0.9,0.9)T, s[0,12). Let s=0.49, define function F by

    F(x)=(x31s,x32s)T,x=(x1,x2)T. (4.4)

    The fréchet-derivative of operator F is given by

    F(x)=[3x21003x2].

    Taking x0=(0.9,0.9)T and the infinity norm, we get

    Γ0β,β0.4115,Γ0F(x0)η,η0.1391,F(x)F(y)kxy,k3.6113,a0=kβη,0.2067. (4.5)

    The convergence conditions are met and consequently the method can be applied to the system. The existence domain of the solution is Be(x0,0.9101), and the uniqueness domain is Bn(x0,1.2192).

    Taking x0=(0.73,0.73)T and the infinity norm, then

    Γ0β,β0.6255,Γ0F(x0)η,η0.0893,F(x)F(y)kxy,k3.2329,a0=kβη,0.1806. (4.6)

    The existence domain of the solution is Be(x0,0.5095), and the uniqueness domain is Bn(x0,0.943534).

    When the initial value satisfies the Kantorovich condition and the range of a0 obtained, the initial value within that range is taken to solve the system. Iterative method (1.2) for solving nonlinear (4.4) with roots of x=(0.7884,0.7884)T.

    Similar results can be obtained in Tables 2 and 3, that is, under the Kantorovich condition, by selecting different initial values, we can converge to a unique solution. When the initial value is closer to the root, the error estimate is lower. This semilocal convergence that can prove the existence and uniqueness of solutions under certain assumptions is very valuable.

    Table 2.  Numberical results of method (1.2) for nonliner equation.
    x0i iter xkxk1 F(xk)
    0.2 4 7.469e-336 2.149e-2021
    0.4 4 2.538e-352 4.629e-2120
    0.6 4 1.755e-383 8.222e-2307
    0.8 4 5.848e-445 2.318e-2675
    1.0 4 2.629e-701 3.000e-4096
    1.2 4 2.221e-467 5.991e-2809
    1.4 4 1.935e-353 8.489e-2126
    1.6 4 8.010e-286 2.379e-1720
    1.7 4 7.450e-259 1.285e-1558

     | Show Table
    DownLoad: CSV
    Table 3.  Numberical results of method (1.2) for nonliner equation.
    x0i iter xkxk1 F(xk) ρ
    0.72 4 4.048e-331 1.878e-2640 8
    0.74 4 2.665e-419 6.432e-3346 8
    0.76 4 1.046e-548 3.726e-4381 8
    0.78 4 2.052e-830 1.000e-6000 8
    0.8 4 2.246e-767 1.000e-6000 8
    0.82 4 2.005e-554 6.803e-4427 8
    0.84 4 1.127e-454 6.768e-3629 8
    0.86 4 9.380e-391 1.559e-3117 8
    0.88 4 1.414e-344 4.163e-2748 8
    0.9 4 5.796e-309 3.313e-2463 8

     | Show Table
    DownLoad: CSV

    In this paper, the semilocal convergence of the eighth order iterative method (1.2) is studied. By analyzing the behavior of the iterative method under the Kantorovich condition, the Lipschitz condition is applied to the first derivative, and the theory of semilocal convergence of the iterative method is obtained by using the recurrence relation. The existence and uniqueness domain of the solution of the nonlinear system is obtained. In the experimental part, a classical Hammerstein nonlinear integral equation and a matrix function are solved. The experimental results are consistent with expectations, and the high-precision approximation of the system solution also proves the effectiveness of the method numerically.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was supported by the National Natural Science Foundation of China (No. 61976027), the Natural Science Foundation of Liaoning Province (Nos. 2022-MS-371, 2023-MS-296), Educational Commission Foundation of Liaoning Province of China (Nos. LJKMZ20221492, LJKMZ20221498) and the Key Project of Bohai University (No. 0522xn078).

    The authors declare no conflicts of interest.



    [1] S. Abbas, S. Grace, J. Graef, S. Negi, Oscillation of second-order non-canonical non-linear dynamic equations with a sub-linear neutral term, Differ. Equ. Dyn. Syst., 32 (2024), 819–829. http://dx.doi.org/10.1007/s12591-022-00592-0 doi: 10.1007/s12591-022-00592-0
    [2] S. Affan, T. Hassan, E. Elabbasy, E. Saied, A. Hassan, Oscillatory behavior of second-order nonlinear delay dynamic equations with multiple sublinear neutral terms utilizing canonical transformation, Math. Meth. Appl. Sci., 48 (2025), 1589–1600. http://dx.doi.org/10.1002/mma.10397 doi: 10.1002/mma.10397
    [3] R. Agarwal, S. Grace, D. O'Regan, Oscillation theory for second order dynamic equations, CRC Press, 2003. https://doi.org/10.4324/9780203222898
    [4] B. Baculíková, Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett., 91 (2019), 68–75. http://dx.doi.org/10.1016/j.aml.2018.11.021 doi: 10.1016/j.aml.2018.11.021
    [5] B. Baculíková, Oscillatory behavior of the second order noncanonical differential equations, Electron. J. Qual. Theory Differ. Equ., 89 (2019), 1–11. http://dx.doi.org/10.14232/ejqtde.2019.1.89 doi: 10.14232/ejqtde.2019.1.89
    [6] B. Baculíková, J. Dzurina, Oscillatory criteria via linearization of half-linear second order delay differential equations, Opuscula Math., 40 (2020), 523–536. https://doi.org/10.7494/OpMath.2020.40.5.523 doi: 10.7494/OpMath.2020.40.5.523
    [7] M. Bohner, S. Grace, I. Jadlovská, Sharp oscillation criteria for second-order neutral delay differential equations, Math. Meth. Appl. Sci., 43 (2020), 10041–10053. http://dx.doi.org/10.1002/mma.6677 doi: 10.1002/mma.6677
    [8] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [9] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Springer Science & Business Media, 2002. https://doi.org/10.1007/978-0-8176-8230-9
    [10] Z. Cai, L. Huang, Z. Wang, X. Pan, S. Liu, Periodicity and multi-periodicity generated by impulses control in delayed cohen–grossberg-type neural networks with discontinuous activations, Neural Netw., 143 (2021), 230–245. http://dx.doi.org/10.1016/j.neunet.2021.06.013 doi: 10.1016/j.neunet.2021.06.013
    [11] G. Chatzarakis, S. Grace, I. Jadlovská, On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments, Appl. Math. Comput., 397 (2021), 125915. http://dx.doi.org/10.1016/j.amc.2020.125915 doi: 10.1016/j.amc.2020.125915
    [12] G. Chatzarakis, S. Grace, I. Jadlovská, A sharp oscillation criterion for second-order half-linear advanced differential equations, Acta Math. Hungar., 163 (2021), 552–562. http://dx.doi.org/10.1007/s10474-020-01110-w doi: 10.1007/s10474-020-01110-w
    [13] G. Chatzarakis, N. Indrajith, S. Panetsos, E. Thandapani, Improved oscillation criteria of second-order advanced non-canonical difference equations, Aust. J. Math. Anal. Appl., 19 (2022), 5.
    [14] G. Chatzarakis, N. Indrajith, E. Thandapani, K. Vidhyaa, Oscillatory behavior of second-order non-canonical retarded difference equations, Aust. J. Math. Anal. Appl., 18 (2021), 20.
    [15] P. Gopalakrishnan, A. Murugesan, C. Jayakumar, Oscillation conditions of the second order noncanonical difference equations, J. Math. Comput. SCI-JM., 25 (2022), 351–360. http://dx.doi.org/10.22436/jmcs.025.04.05 doi: 10.22436/jmcs.025.04.05
    [16] A. Hassan, S. Affan, New oscillation criteria and some refinements for second-order neutral delay dynamic equations on time scales, J. Math. Comput. SCI-JM., 28 (2023), 192–202. http://dx.doi.org/10.22436/jmcs.028.02.07 doi: 10.22436/jmcs.028.02.07
    [17] A. Hassan, S. Affan, Oscillation criteria for second-order delay dynamic equations with a sub-linear neutral term on time scales, Filomat, 37 (2023), 7445–7454. http://dx.doi.org/10.2298/FIL2322445H doi: 10.2298/FIL2322445H
    [18] A. Hassan, O. Moaaz, S. Askar, A. Alshamrani, S. Affan, Enhanced oscillation criteria for non-canonical second-order advanced dynamic equations on time scales, Symmetry, 16 (2024), 1457. http://dx.doi.org/10.3390/sym16111457 doi: 10.3390/sym16111457
    [19] A. Hassan, I. Odinaev, T. Hassan, Oscillatory behavior of noncanonical quasilinear second-order dynamic equations on time scales, J. Math., 2023 (2023), 5585174. http://dx.doi.org/10.1155/2023/5585174 doi: 10.1155/2023/5585174
    [20] A. Hassan, H. Ramos, O. Moaaz, Second-order dynamic equations with noncanonical operator: Oscillatory behavior, Fractal Fract., 7 (2023), 134. http://dx.doi.org/10.3390/fractalfract7020134 doi: 10.3390/fractalfract7020134
    [21] T. Hassan, M. Bohner, I. Florentina, A. Abdel Menaem, M. Mesmouli, New criteria of oscillation for linear sturm–liouville delay noncanonical dynamic equations, Mathematics, 11 (2023), 4850. http://dx.doi.org/10.3390/math11234850 doi: 10.3390/math11234850
    [22] T. Hassan, C. Cesarano, M. Mesmouli, H. Zaidi, I. Odinaev, Iterative hille-type oscillation criteria of half-linear advanced dynamic equations of second order, Math. Meth. Appl. Sci., 74 (2024), 5651–5663. http://dx.doi.org/10.1002/mma.9883 doi: 10.1002/mma.9883
    [23] T. Hassan, R. El-Nabulsi, N. Iqbal, A. Abdel Menaem, New criteria for oscillation of advanced noncanonical nonlinear dynamic equations, Mathematics, 12 (2024), 824. http://dx.doi.org/10.3390/math12060824 doi: 10.3390/math12060824
    [24] S. Hilger, Analysis on measure chains — a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18–56. https://doi.org/10.1007/BF03323153 doi: 10.1007/BF03323153
    [25] N. Indrajith, J. Graef, E. Thandapani, Kneser-type oscillation criteria for second-order half-linear advanced difference equations, Opuscula Math., 42 (2022), 55–64. http://dx.doi.org/10.7494/OpMath.2022.42.1.55 doi: 10.7494/OpMath.2022.42.1.55
    [26] I. Jadlovská, Oscillation criteria of kneser-type for second-order half-linear advanced differential equations, Appl. Math. Lett., 106 (2020), 106354. http://dx.doi.org/10.1016/j.aml.2020.106354 doi: 10.1016/j.aml.2020.106354
    [27] I. Jadlovská, New criteria for sharp oscillation of second-order neutral delay differential equations, Mathematics, 9 (2021), 2089. http://dx.doi.org/10.3390/math9172089 doi: 10.3390/math9172089
    [28] C. Jayakumar, A. Murugesan, Oscillation result for half-linear delay difference equations of second-order, Malaya J. Mat., 9 (2021), 1153–1159.
    [29] C. Jayakumar, S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, et al., Oscillation result for half-linear delay difference equations of second-order, Math. Biosci. Eng., 19 (2022), 3879–3891. http://dx.doi.org/10.3934/mbe.2022178 doi: 10.3934/mbe.2022178
    [30] M. Liu, H. Shi, Exponential stability of dynamical systems on time scales with application to multi-agent systems, Axioms, 13 (2024), 100. http://dx.doi.org/10.3390/axioms13020100 doi: 10.3390/axioms13020100
    [31] J. Shi, S. Gu, S. Xing, C. Chen, Dynamic event-triggered fault detection for multi time scale systems: Application to grid connected converters, J. Frank. Inst., 361 (2024), 106738. http://dx.doi.org/10.1016/j.jfranklin.2024.106738 doi: 10.1016/j.jfranklin.2024.106738
    [32] S. Shi, Z. Han, A new approach to the oscillation for the difference equations with several variable advanced arguments, J. Appl. Math. Comput., 68 (2022), 2083–2096. http://dx.doi.org/10.1007/s12190-021-01605-x doi: 10.1007/s12190-021-01605-x
    [33] A. Soliman, A. Hassan, S. Affan, Oscillatory behavior of second order delay dynamic equa-tions with a sub-linear neutral term on time scales, J. Math. Comput. SCI-JM., 24 (2022), 97–109. http://dx.doi.org/10.22436/jmcs.024.02.01 doi: 10.22436/jmcs.024.02.01
    [34] Y. Tian, X. Su, C. Shen, X. Ma, Exponentially extended dissipativity-based filtering of switched neural networks, Automatica, 161 (2024), 111465. http://dx.doi.org/10.1016/j.automatica.2023.111465 doi: 10.1016/j.automatica.2023.111465
    [35] H. Zhao, J. Zhang, J. Li, Decay estimates of solution to the two-dimensional fractional quasi-geostrophic equation, Math. Meth. Appl. Sci., 47 (2024), 4043–4057. http://dx.doi.org/10.1002/mma.9802 doi: 10.1002/mma.9802
    [36] K. Zhao, Existence and stability of a nonlinear distributed delayed periodic ag-ecosystem with competition on time scales, Axioms, 12 (2023), 315. https://doi.org/10.3390/axioms12030315 doi: 10.3390/axioms12030315
    [37] K. Zhao, Asymptotic stability of a periodic ga-predation system with infinite distributed lags on time scales, Int. J. Control, 97 (2024), 1542–1552. http://dx.doi.org/10.1080/00207179.2023.2214251 doi: 10.1080/00207179.2023.2214251
  • This article has been cited by:

    1. Farwah Ali Syed, Kwo-Ting Fang, Adiqa Kausar Kiani, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics, 2024, 0927-7099, 10.1007/s10614-024-10587-4
    2. Hira Ilyas, Iftikhar Ahmad, Syed Ibrar Hussain, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Design of evolutionary computational intelligent solver for nonlinear corneal shape model by Mexican Hat and Gaussian wavelet neural networks, 2024, 1745-5030, 1, 10.1080/17455030.2024.2368867
    3. Syed Ali Asghar, Hira Ilyas, Shafaq Naz, Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Muhammad Shaoib, Intelligent predictive computing for functional differential system in quantum calculus, 2024, 15, 1868-5137, 2153, 10.1007/s12652-023-04744-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(444) PDF downloads(28) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog