It is proved that every pair of sufficiently large even integers can be represented in the form of a pair of equations, each containing two squares of primes, two cubes of primes, two biquadrates of primes, and 30 powers of 2. Moreover, we also proved that every sufficiently large even integer can be expressed as the sum of two squares of primes, two cubes of primes, two biquadrates of primes, and 14 powers of 2. These two theorems constitute improvements upon the previous results.
Citation: Li Zhu. On pairs of equations with unequal powers of primes and powers of 2[J]. AIMS Mathematics, 2025, 10(2): 4153-4172. doi: 10.3934/math.2025193
[1] | Min Zhang, Fei Xue, Jinjiang Li . On the Waring–Goldbach problem for two squares and four cubes. AIMS Mathematics, 2022, 7(7): 12415-12436. doi: 10.3934/math.2022689 |
[2] | Gen Li, Liqun Hu, Xianjiu Huang . On pairs of equations in eight prime cubes and powers of 2. AIMS Mathematics, 2023, 8(2): 3940-3948. doi: 10.3934/math.2023197 |
[3] | Jinjiang Li, Yiyang Pan, Ran Song, Min Zhang . Exceptional set in Waring–Goldbach problem for sums of one square and five cubes. AIMS Mathematics, 2022, 7(2): 2940-2955. doi: 10.3934/math.2022162 |
[4] | Hong Kang . The power sum of balancing polynomials and their divisible properties. AIMS Mathematics, 2024, 9(2): 2684-2694. doi: 10.3934/math.2024133 |
[5] | Xinyan Li, Wenxu Ge . A Diophantine approximation problem with unlike powers of primes. AIMS Mathematics, 2025, 10(1): 736-753. doi: 10.3934/math.2025034 |
[6] | M. Haris Mateen, Muhammad Khalid Mahmmod, Dilshad Alghazzawi, Jia-Bao Liu . Structures of power digraphs over the congruence equation $ x^p\equiv y\; (\text{mod}\; m) $ and enumerations. AIMS Mathematics, 2021, 6(5): 4581-4596. doi: 10.3934/math.2021270 |
[7] | Qiang Li, Jina Zhao . Extremal solutions for fractional evolution equations of order $ 1 < \gamma < 2 $. AIMS Mathematics, 2023, 8(11): 25487-25510. doi: 10.3934/math.20231301 |
[8] | Tingting Wen . On the number of integers which form perfect powers in the way of $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k $. AIMS Mathematics, 2024, 9(4): 8732-8748. doi: 10.3934/math.2024423 |
[9] | Kexin Ouyang, Yu Wei, Huiqin Lu . Positive ground state solutions for a class of fractional coupled Choquard systems. AIMS Mathematics, 2023, 8(7): 15789-15804. doi: 10.3934/math.2023806 |
[10] | Yang Zhang, Shuxia Liu, Liwei Zeng . A symplectic fission scheme for the association scheme of rectangular matrices and its automorphisms. AIMS Mathematics, 2024, 9(11): 32819-32830. doi: 10.3934/math.20241570 |
It is proved that every pair of sufficiently large even integers can be represented in the form of a pair of equations, each containing two squares of primes, two cubes of primes, two biquadrates of primes, and 30 powers of 2. Moreover, we also proved that every sufficiently large even integer can be expressed as the sum of two squares of primes, two cubes of primes, two biquadrates of primes, and 14 powers of 2. These two theorems constitute improvements upon the previous results.
The Goldbach conjecture is one of the most famous problems, and numerous variations have been derived from it. In the 1950s, Linnik [9,10] showed that every sufficiently large even integer can be represented as a sum of two primes and K powers of 2, where K is an absolute constant. In 1975, Gallagher [2] established an asymptotic formula for the number of such representations. In 1998, the explicit value of K was first obtained by Liu, Liu, and Wang [11]. They showed that K=54000 is acceptable. Afterwards, many mathematicians improved the value of K (see [4,7,8,12,15,16,19]). The best result so far is due to Pintz and Ruzsa [16], who proved that K=8 is acceptable.
In 2017, motivated by the works of Linnik [9,10], Liu [13] studied a Goldbach–Linnik problem with unequal powers of primes. To be specific, he considered the problem on the representation of the large even integer N in the form
N=p21+p22+p33+p34+p45+p46+2v1+⋯+2vk, | (1.1) |
where pi are prime numbers and vj are positive integers. He proved that (1.1) is solvable for k=41. Subsequently, the acceptable value of k was successively refined by Lü [14], Zhao [23], and Zhang [20]. Very recently, based on the work of [21,22], Zhu [24] further improved the result to k=17.
On the other hand, in 2023, Huang [5] studied Eq (1.1) in an extended way. He attempted to simultaneously represent pairs of positive even integers N1 and N2 with N2<N1≪N2, in the form
{N1=p21+p22+p33+p34+p45+p46+2v1+⋯+2vkN2=p27+p28+p39+p310+p411+p412+2v1+⋯+2vk. | (1.2) |
In [5], he proved that the simultaneous equations (1.2) are solvable for k=105. In 2024, Han, Liu, and Yue [3] improved the value of k to 36.
In this paper, we shall continue to improve the results of [3] and [24] and establish the following sharper results:
Theorem 1. For k=30, the simultaneous equations (1.2) are solvable for every sufficiently large positive even integers N1 and N2 satisfying N2<N1≪N2.
Theorem 2. For k=14, the Eq (1.1) is solvable for every sufficiently large positive even integer N.
In this paper, we assume that N1 and N2 are sufficiently large even integers satisfying N2<N1≪N2. We fix a positive constant η satisfying η≤10−100. Let ε be an arbitrarily small positive number, and the value of ε may change from line to line. The letter p, with or without a subscript, is reserved for a prime number. As usual, we use e(α) to denote e2πiα, and φ(n) stands for the Euler function. Moreover, we write
P+i,j=((16+η)Nj)1i,P−i,j=((16−η)Nj)1i,L=log(N1/logN1)log2,Si,j(α)=∑P−i,j≤p≤P+i,je(piα)logp,H(α)=∑1≤v≤Le(2vα). |
In order to apply the circle method, we set
Pj=N320−2εjandQj=N1720+εj. | (2.1) |
Then we can define
M=M1×M2={(α1,α2):α1∈M1,α2∈M2},m=[1Q1,1+1Q1]×[1Q2,1+1Q2]∖M,mj=[1Qj,1+1Qj]∖Mj, | (2.2) |
where
Mj=⋃q≤Pjq⋃a=1(a,q)=1Mj(q,a),Mj(q,a)=(aq−1qQj,aq+1qQj]. | (2.3) |
Now let
R(k,N1,N2)=∑(logp1)(logp2)…(logp12) |
be the weighted number of solutions of (1.2) in (p1,…,p12,v1,…,vk) with
P−2,1≤p1,p2≤P+2,1,P−3,1≤p3,p4≤P+3,1,P−4,1≤p5,p6≤P+4,1,P−2,2≤p7,p8≤P+2,2,P−3,2≤p9,p10≤P+3,2,P−4,2≤p11,p12≤P+4,2,1≤v1,…,vk≤L. |
Then by orthogonality, we have
R(k,N1,N2)=∫10∫10∏1≤j≤2(S22,j(αj)S23,j(αj)S24,j(αj)e(−αjNj))Hk(α1+α2)dα1dα2=(∬M+∬m)∏1≤j≤2(S22,j(αj)S23,j(αj)S24,j(αj)e(−αjNj))Hk(α1+α2)dα1dα2:=R1(k,N1,N2)+R2(k,N1,N2). | (2.4) |
For k≥30, we shall prove
R1(k,N1,N2)≥9.946N761N762I2Lk,|R2(k,N1,N2)|≤8.6372N761N762I2Lk, | (2.5) |
where I is the positive constant defined as (3.4).
We first state some auxiliary results. Let
Ck(q,a)=q∑m=1(m,q)=1e(amkq),B(n,q)=q∑a=1(a,q)=1C22(q,a)C23(q,a)C24(q,a)e(−anq),A(n,q)=1φ6(q)B(n,q),S(n)=∞∑q=1A(n,q),gk(λ)=∫16+η16−ηe(tλ)t1k−1dt,J(n)=∫∞−∞g2(λ)2g3(λ)2g4(λ)2e(−nλ)dλ. |
Lemma 3.1. Let Mj be defined as (2.3). Then we have
∫MjS22,j(α)S23,j(α)S24,j(α)e(−nα)dα=S(n)J(nNj)N76j22⋅32⋅42+O(N76jL−1), |
where S(n)≫1 for n≡0(mod2).
Proof. Let
Jj(n)=∑m1+m2+⋯+m6=n(16−η)Nj≤mi≤(16+η)Nj(1≤i≤6)(m1m2)−12(m3m4)−23(m5m6)−34. |
It follows from [13, Lemma 2.1] that
∫MjS2,j(α)2S3,j(α)2S4,j(α)2e(−nα)dα=S(n)Jj(n)22⋅32⋅42+O(N76jL−1), |
and S(n)≫1 for n≡0(mod2). Therefore, it suffices to show that
Jj(n)=J(nNj)N76j+O(N76jL−1). | (3.1) |
Write
uk,j(λ)=∫((16+η)Nj)1k((16−η)Nj)1ke(tkλ)dt,vk,j(λ)=1k∑(16−η)Nj≤m≤(16+η)Njm1k−1e(mλ). |
Then we can deduce from the orthogonality that
Jj(n)22⋅32⋅42=∫12−12v2,j(λ)2v3,j(λ)2v4,j(λ)2e(−nλ)dλ=∫|λ|≤logNjNjv2,j(λ)2v3,j(λ)2v4,j(λ)2e(−nλ)dλ+O(∫12logNjNj1λ6N236jdλ)=∫|λ|≤logNjNju2,j(λ)2u3,j(λ)2u4,j(λ)2e(−nλ)dλ+O(N76jlog−5Nj), | (3.2) |
where the elementary estimates
vk,j(λ)≪|λ|−1N1−kkj,uk,j(λ)=1k∫(16+η)Nj(16−η)Nje(tλ)t1k−1dt=vk,j(λ)+O(1) |
are used. Since uk,j(λ)=1kN1kj∫16+η16−ηe(tNjλ)t1k−1dt=1kN1kjgk(Njλ). Then we have
∫|λ|≤logNjNju2,j(λ)2u3,j(λ)2u4,j(λ)2e(−nλ)dλ=N136j22⋅32⋅42∫|λ|≤logNjNjg2(Njλ)2g3(Njλ)2g4(Njλ)2e(−nλ)dλ=N76j22⋅32⋅42∫|λ|≤logNjg2(λ)2g3(λ)2g4(λ)2e(−nNjλ)dλ=N76jJ(nNj)22⋅32⋅42+O(N76j∫∞logNj1λ6dλ)=N76jJ(nNj)22⋅32⋅42+O(N76jlog−5Nj), | (3.3) |
where the bound gk(λ)≪|λ|−1 (see [17, Lemma 4.3]) is used. Now (3.1) follows from (3.2) and (3.3).
Lemma 3.2. Let
I=∫⋯∫−η<ui<η(1≤i≤5)−η<u1+u2+u3+u4+u5<η1du1…du5. | (3.4) |
Suppose that nNj=1+O(1logNj). Then we have
(i)I≥(η5)5>0,(ii)J(nNj)≥(16+2η)−236I. |
Proof. For (i), it is easy to see that
I≥∫⋯∫−η10<ui<η10(1≤i≤5)−η<u1+u2+u3+u4+u5<η1du1…du5=∫⋯∫−η10<ui<η10(1≤i≤5)1du1…du5=(η5)5>0. |
For (ii), write t6=s−5∑i=1ti, then we have
J(nNj)=∫∞−∞g22(λ)g23(λ)g24(λ)e(−nNjλ)dλ=∫16+η16−η…∫16+η16−η(t1t2)−12(t3t4)−23(t5t6)−34dt1…dt6∫∞−∞e(λ(6∑i=1ti−nNj))dλ=∫1+6η1−6ηϕ(s)ds∫∞−∞e(λ(s−nNj))dλ, |
where
ϕ(s)=∫⋯∫16−η<ti<16+η(1≤i≤5)16−η<s−t1−t2−t3−t4−t5<16+η(t1t2)−12(t3t4)−23t−345(s−5∑i=1ti)−34dt1…dt5. |
Note that ∫R−Re(λu)dλ=sin2πRuπu. Thus
J(nNj)=limR→∞∫1+6η1−6ηϕ(s)sin2πR(s−nNj)π(s−nNj)ds. | (3.5) |
Since ϕ(s) is bounded and 1−6η<nNj=1+O(1logNj)<1+6η. Hence, we can deduce from the Fourier's integral theorem (see [1, P.22]) that
limR→∞∫1+6η1−6ηϕ(s)sin2πR(s−nNj)π(s−nNj)ds=ϕ(nNj). | (3.6) |
For ϕ(nNj), by the trivial estimate, we can obtain
ϕ(nNj)=∫⋯∫16−η<ti<16+η(1≤i≤5)16−η<nNj−t1−t2−t3−t4−t5<16+η(t1t2)−12(t3t4)−23t−345(nNj−5∑i=1ti)−34dt1…dt5≥(16+η)−236∫⋯∫16−η<ti<16+η(1≤i≤5)16−η<nNj−t1−t2−t3−t4−t5<16+η1dt1…dt5. | (3.7) |
Let ti=ui+16, then we have
∫⋯∫16−η<ti<16+η(1≤i≤5)16−η<nNj−t1−t2−t3−t4−t5<16+η1dt1…dt5=∫⋯∫−η<ui<η(1≤i≤5)16−η<nNj−56−u1−u2−u3−u4−u5<16+η1du1…du5=∫⋯∫−η<ui<η(1≤i≤5)1−nNj−η<u1+u2+u3+u4+u5<1−nNj+η1du1…du5=I+R, | (3.8) |
where I is defined as (3.4) and
R=∫⋯∫−η<ui<η(1≤i≤5)η<u1+u2+u3+u4+u5<1−nNj+η1du1…du5+∫⋯∫−η<ui<η(1≤i≤5)1−nNj−η<u1+u2+u3+u4+u5<−η1du1…du5. |
From the condition 1−nNj=O(1logNj), we can obtain
R≪∫η−ηdu1∫η−ηdu2∫η−ηdu3∫η−η(1−nNj)du4≪1logNj. | (3.9) |
Now by combining (3.5)–(3.9), we obtain
J(nNj)≥(16+η)−236(I+O(1logNj))≥(16+2η)−236I. |
Lemma 3.3. Suppose that (a,p)=1. Then we have
(i)|Cj(p,a)|≤(j−1)p12+1,(ii)C3(p,a)=−1,ifp≡2(mod3). |
Proof. It follows easily from [18, Lemma 4.3].
Lemma 3.4. We have
(1+A(n,17))∏p≥23(1+A(n,p))≥0.9792. |
Proof. For p=17 or 23≤p≤199, we can directly calculate min1≤n≤p(1+A(n,p)) by computer and obtain that
1+A(n,17)≥0.9994659,1+A(n,23)≥0.9999786,…,1+A(n,199)≥0.9999972. |
Thus
(1+A(n,17))∏23≤p≤199(1+A(n,p))≥0.994943. | (3.10) |
For 199<p≤105, if p≡2(mod3) and (a,p)=1, then we can deduce from Lemma 3.3 (i) and (ii) that
1+A(n,p)≥1−p−1∑a=1|C22(p,a)C24(p,a)|(p−1)6≥1−(√p+1)2(3√p+1)2(p−1)5. | (3.11) |
If p≡1(mod3), then by Lemma 3.3 (i), we have
1+A(n,p)≥1−(√p+1)2(2√p+1)2(3√p+1)2(p−1)5. | (3.12) |
Combining (3.11) and (3.12), we can deduce from numerical calculation that
∏199<p≤105(1+A(n,p))≥∏199<p≤105p≡1(mod3)(1−(√p+1)2(2√p+1)2(3√p+1)2(p−1)5)×∏199<p≤105p≡2(mod3)(1−(√p+1)2(3√p+1)2(p−1)5)≥0.98425×0.999989≥0.984239. | (3.13) |
For p>105, it follows from [13, Section 3, P.443] that
∏p>105(1+A(n,p))≥∏p>105(1−1(p−1)2)37≥0.99994. | (3.14) |
Now we can conclude from (3.10) and (3.13)–(3.14) that
(1+A(n,17))∏p≥23(1+A(n,p))≥0.994943×0.984239×0.99994≥0.9792. |
Lemma 3.5. Let
Ξ(N1,N2,k)={(n1,n2):{n1=N1−2v1−2v2⋯−2vkn2=N2−2v1−2v2⋯−2vk,1≤v1,…,vk≤L},Ξ(N1,k)={n:n=N1−2v1−2v2⋯−2vk,1≤v1,…,vk≤L}. |
Then for N1≡N2≡0(mod2), we have
(i)∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)S(n1)S(n2)≥3.57Lk,ifk≥30,(ii)∑n∈Ξ(N1,k)n≡0(mod2)S(n)≥1.91267Lk,ifk≥14. |
Proof. According to [13,(3.3)], we have
S(n)=∏p≥2(1+A(n,p)). | (3.15) |
Set C=0.9792 and P={3,5,7,11,13,19}. Then by applying Lemma 3.4, we obtain
S(n)≥C(1+A(n,2))∏p∈P(1+A(n,p))=2C∏p∈P(1+A(n,p)), | (3.16) |
where the obvious fact 1+A(n,2)=2 for n≡0(mod2) is used. Write q=∏p∈Pp=285285, t=N2−N1. Thus
∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)S(n1)S(n2)≥4C2∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)∏p∈P(1+A(n1,p))(1+A(n2,p))=4C2∑1≤j≤q∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)n1≡j(modq)n2≡t+j(modq)∏p∈P(1+A(n1,p))(1+A(n2,p))=4C2∑1≤j≤q∏p∈P(1+A(j,p))(1+A(t+j,p))∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)n1≡j(modq)n2≡t+j(modq)1. | (3.17) |
Let S denote the innermost sum in (3.17). Since N1≡N2≡0(mod2), we have
S=∑1≤v1,…,vk≤LN1−2v1−⋯−2vk≡j(modq)N2−2v1−⋯−2vk≡N2−N1+j(modq)1=∑1≤v1,…,vk≤L2v1+⋯+2vk≡N1−j(modq)1. |
Let ρ(q) denote the smallest positive integer ρ such that 2ρ≡1(modq). Thus
S=(Lρ(q)+O(1))k∑1≤v1,…,vk≤ρ(q)2v1+⋯+2vk≡N1−j(modq)1=(Lρ(q)+O(1))k1qq∑r=1e(r(j−N1)q)(∑1≤v≤ρ(q)e(r2vq))k. | (3.18) |
When q=285285 and k≥30, with the help of a computer, we can verify that ρ(q)=180 and
q−1∑r=1(1ρ(q)|∑1≤v≤ρ(q)e(r2vq)|)k≤285284∑r=1(1180|∑1≤v≤180e(r2v285285)|)30≤2.37×10−6. | (3.19) |
Therefore, from (3.18) and (3.19), we have
S≥(Lρ(q)+O(1))k1q(ρk(q)−q−1∑r=1|∑1≤v≤ρ(q)e(r2vq)|k)≥Lkq(1−q−1∑r=1(1ρ(q)|∑1≤v≤ρ(q)e(r2vq)|)k)+O(Lk−1)≥Lkq(1−2.37×10−6)+O(Lk−1)≥0.999997Lkq. | (3.20) |
Inserting (3.20) into (3.17), we obtain
∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)S(n1)S(n2)≥4C2×0.999997Lkq∑1≤j≤q∏p∈P(1+A(j,p))(1+A(t+j,p)). | (3.21) |
Note that q=∏p∈Pp, we can deduce from the Chinese remainder theorem that
∑1≤j≤q∏p∈P(1+A(j,p))(1+A(j+t,p))=∑1≤j1≤3∑1≤j2≤5∑1≤j3≤7∑1≤j4≤11∑1≤j5≤13∑1≤j6≤19(1+A(j1,3))(1+A(j1+t,3))×(1+A(j2,5))(1+A(j2+t,5))…(1+A(j6,19))(1+A(j6+t,19))=∏p∈P(∑1≤j≤p(1+A(j,p))(1+A(j+t,p)))≥∏p∈Pmin1≤t≤p(∑1≤j≤p(1+A(j,p))(1+A(j+t,p))). | (3.22) |
By the numerical calculation, we can obtain
∏p∈Pmin1≤t≤p(∑1≤j≤p(1+A(j,p))(1+A(j+t,p)))≥265611.695. | (3.23) |
Thus, we can conclude from (3.21)–(3.23) that
∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)S(n1)S(n2)≥4C2×0.999997×265611.695Lkq≥3.57Lk. | (3.24) |
The proof of (ii) is similar. From (3.16)–(3.17), we have
∑n∈Ξ(N1,k)n≡0(mod2)S(n)≥2C∑n∈Ξ(N1,k)n≡0(mod2)∏p∈P(1+A(n,p))=2C∑1≤j≤q∏p∈P(1+A(j,p))∑n∈Ξ(N1,k)n≡0(mod2)n≡j(modq)1. | (3.25) |
The innermost sum can be estimated using the same method as in (3.18)–(3.20), except by replacing k≥30 with k≥14. By numerical calculation, we have
∑n∈Ξ(N1,k)n≡0(mod2)n≡j(modq)1≥Lkq(1−285284∑r=1(1180|∑1≤v≤180e(r2v285285)|)14)+O(Lk−1)≥Lkq(1−0.023347)+O(Lk−1)≥0.976652Lkq. | (3.26) |
Similar to (3.22), we have
∑1≤j≤q∏p∈P(1+A(j,p))=∏p∈P(∑1≤j≤p(1+A(j,p))). | (3.27) |
Moreover, by applying the bound ∑1≤j≤pe(−ajp)=0 for a≠0(modp), we can obtain
∑1≤j≤p(1+A(j,p))=p+∑1≤a≤p−1C22(p,a)C23(p,a)C24(p,a)∑1≤j≤pe(−ajp)(p−1)6=p. | (3.28) |
Now by combining (3.25)–(3.28), we can derive that
∑n∈Ξ(N1,k)n≡0(mod2)S(n)≥2C×0.976652Lkq∏p∈P(∑1≤j≤p(1+A(j,p)))≥1.91267Lkq∏p∈Pp=1.91267Lk. |
Proposition 3.1. Suppose that k≥30 and N1≡N2≡0(mod2). Then we have
R1(k,N1,N2)≥9.946I2N761N762Lk. | (3.29) |
Proof. Note that Hk(α1+α2)e(−N1α1−α2N2)=∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)e(−n1α1)e(−n2α2), then by Lemma 3.1, Lemma 3.2 (ii) and Lemma 3.5 (i), we have
R1(k,N1,N2)=∬M∏1≤j≤2S22,j(αj)S23,j(αj)S24,j(αj)Hk(α1+α2)e(−α1N1−α2N2)dα1dα2=∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)∫M1S22,1(α1)S23,1(α1)S24,1(α1)e(−n1α1)dα1×∫M2S22,2(α2)S23,2(α2)S24,2(α2)e(−n2α2)dα2=∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)(S(n1)S(n2)J(n1N1)J(n2N2)N761N76224⋅34⋅44+O(N761N762L−1))≥(16+2η)−233I2N761N76224⋅34⋅44∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)S(n1)S(n2)+O(N761N762Lk−1)≥9.946I2N761N762Lk, | (3.30) |
where the trivial bound ∑(n1,n2)∈Ξ(N1,N2,k)n1≡n2≡0(mod2)1≪Lk is used.
In this section, we will give the upper bound for R2(k,N1,N2). For this purpose, we need to introduce a further division of the minor arcs m. Let
E(u)={(α1,α2)∈m:|H(α1+α2)|≥uL}. |
Then we have
|R2(k,N1,N2)|≤∬m|∏1≤j≤2S22,j(αj)S23,j(αj)S24,j(αj)Hk(α1+α2)|dα1dα2=(∬m∖E(u)+∬m⋂E(u))|∏1≤j≤2S22,j(αj)S23,j(αj)S24,j(αj)Hk(α1+α2)|dα1dα2:=R3(k,N1,N2,u)+R4(k,N1,N2,u). | (4.1) |
In order to estimate R3(k,N1,N2,u), we define
M∗j(q,a)=(aq−logNjNj,aq+logNjNj],M∗j=⋃q≤logNjq⋃a=1(a,q)=1M∗j(q,a),m∗j=[1Qj,1+1Qj]∖M∗j,J∗=∫∞−∞|g2(λ)2g3(λ)2g4(λ)2|dλ,A∗(q)=1φ6(q)q∑a=1(a,q)=1|C22(q,a)C23(q,a)C24(q,a)|,S∗=∞∑q=1A∗(q). |
Lemma 4.1. We have
S∗≤3.394. |
Proof. See [22, Lemma 3.1].
Lemma 4.2. We have
∫M∗j|S2,j(α)2S3,j(α)2S4,j(α)2|dα=S∗J∗N76j22⋅32⋅42+O(N76jL−1). |
Proof. It follows from the standard major arcs techniques in the Waring-Goldbach problem.
Lemma 4.3. We have
∫10|S2,j(α)2S3,j(α)2S4,j(α)2|dα≤(8+2η)S∗J∗N76j22⋅32⋅42. |
Proof. Let
J∗j=∑m1−m2+m3−m4+m5−m6=0(16−η)Nj≤mi≤(16+η)Nj(1≤i≤6)(m1m2)−12(m3m4)−23(m5m6)−34. |
Then from [22, Proof of Lemma 4.1, P.417] with k=4, we have
∫10|S2,j(α)2S3,j(α)2S4,j(α)2|dα≤(8+η)S∗J∗j22⋅32⋅42. | (4.2) |
For J∗j, it follows from the same argument leading to (3.2) and (3.3) that
J∗j22⋅32⋅42=∫12−12|v2,j(λ)2v3,j(λ)2v4,j(λ)2|dλ=∫|λ|≤logNjNj|u2,j(λ)2u3,j(λ)2u4,j(λ)2|dλ+O(N76jlog5Nj)=J∗N76j22⋅32⋅42+O(N76jlog5Nj). | (4.3) |
Now by substituting (4.3) into (4.2), we obtain
∫10|S2,j(α)2S3,j(α)2S4,j(α)2|dα≤(8+η)S∗J∗N76j22⋅32⋅42+O(N76jlog5Nj)≤(8+2η)S∗J∗N76j22⋅32⋅42. |
Lemma 4.4. We have
∫m∗j|S2,j(α)2S3,j(α)2S4,j(α)2|dα≤(7+3η)S∗J∗N76j22⋅32⋅42. |
Proof. By Lemmas 4.2 and 4.3, we have
∫m∗j|S2,j(α)2S3,j(α)2S4,j(α)2|dα=∫10|S2,j(α)2S3,j(α)2S4,j(α)2|dα−∫M∗j|S2,j(α)2S3,j(α)2S4,j(α)2|dα≤(8+2η)−122⋅32⋅42S∗J∗N76j+O(N76jL−1)≤(7+3η)S∗J∗N76j22⋅32⋅42. |
Lemma 4.5. Let I be defined as (3.4). Then we have
J∗≤(16−η)−236I. | (4.4) |
Proof. The proof of Lemma 4.5 is similar to that of Lemma 3.2 (ii). Let t6=t1−t2+t3−t4+t5−s, then we can obtain
J∗=∫∞−∞|g22(λ)g23(λ)g24(λ)|dλ=∫6η−6ηϕ∗(s)ds∫∞−∞e(λs)dλ, | (4.5) |
where
ϕ∗(s)=∫⋯∫16−η<ti<16+η(1≤i≤5)16−η<t1−t2+t3−t4+t5−s<16+η(t1t2)−12(t3t4)−23t−345(t1−t2+t3−t4+t5−s)−34dt1…dt5. |
Applying the Fourier integral theorem, we can obtain
∫6η−6ηϕ∗(s)ds∫∞−∞e(λs)dλ=limR→∞∫6η−6ηϕ∗(s)sin2πRsπsds=ϕ∗(0). | (4.6) |
Write ti=ui+16. Thus
ϕ∗(0)=∫⋯∫16−η<ti<16+η(1≤i≤5)16−η<t1−t2+t3−t4+t5<16+η(t1t2)−12(t3t4)−23t−345(t1−t2+t3−t4+t5)−34dt1…dt5≤(16−η)−236∫⋯∫−η<ui<η(1≤i≤5)−η<u1−u2+u3−u4+u5<η1du1…du5. | (4.7) |
Making the change of variables u2=−s2,u4=−s4, we find that
∫⋯∫−η<ui<η(1≤i≤5)−η<u1−u2+u3−u4+u5<η1du1du2…du5=∫⋯∫−η<u1,s2,u3,s4,u5<η−η<u1+s2+u3+s4+u5<η1du1ds2…du5=I. | (4.8) |
Now the desired result follows from (4.5)–(4.8).
Proposition 4.1. We have
R3(k,N1,N2,u)≤2021.835ukI2N761N762Lk. |
Proof. Note that |H(α1+α2)|<uL for (α1,α2)∈m∖E(u). Then we have
R3(k,N1,N2,u)≤(uL)k∬m∖E(u)∏1≤j≤2|S22,j(αj)S23,j(αj)S24,j(αj)|dα1dα2. | (4.9) |
It is easy to see that m1⊆m∗1,m2⋃(M2∖M∗2)⊆m∗2 and m2⋂(M2∖M∗2)=∅. Hence
∬m1dα1dα2=∫M11dα1∫m21dα2+∫m11dα1∫m21dα2+∫m11dα1∫M21dα2=∫101dα1∫m21dα2+∫m11dα1∫M21dα2=∫101dα1∫m21dα2+∫m11dα1∫M2∖M∗21dα2+∫m11dα1∫M∗21dα2≤∫101dα1∫m21dα2+∫101dα1∫M2∖M∗21dα2+∫m∗11dα1∫M∗21dα2≤∫101dα1∫m∗21dα2+∫m∗11dα1∫M∗21dα2. | (4.10) |
From (4.9)–(4.10) and Lemmas 4.1–4.5, we can obtain
R3(k,N1,N2,u)≤(uL)k∫10|S22,1(α1)S23,1(α1)S24,1(α1)|dα1∫m∗2|S22,2(α2)S23,2(α2)S24,2(α2)|dα2+(uL)k∫m∗1|S22,1(α1)S23,1(α1)S24,1(α1)|dα1∫M∗2|S22,2(α2)S23,2(α2)S24,2(α2)|dα2≤(uL)k((8+2η)(7+3η)24⋅34⋅44(S∗J∗)2N761N762+(7+3η)(1+η)24⋅34⋅44(S∗J∗)2N761N762)≤(16−η)−233(63+50η)24⋅34⋅44×3.3942ukN761N762I2Lk≤2021.835ukN761N762I2Lk. | (4.11) |
Lemma 4.6. We have
(i)∫mj|S2,j(α)2S3,j(α)3S4,j(α)2|dα≪N3524+εj,(ii)∫10|S2,j(α)2S4,j(α)4|dα≪N1+εj,(iii)∫10|S2,j(α)2S3,j(α)2S4,j(α)2|dα≪N76+εj. |
Proof. See [24, Lemma 4.5 and Lemma 4.1].
Lemma 4.7. Let
\begin{eqnarray*} \mathcal{E}^*{(u)} = \left\{\alpha \in(0,1]:|H(\alpha)| \geq u L\right\}. \end{eqnarray*} |
Write meas(\mathcal{E}^*(u)) for the measure of the set \mathcal{E}^*(u) . Then we have
\begin{eqnarray*} meas(\mathcal{E}^*(0.83372131685))\leq N_1^{-\frac{2}{3}-10^{-20}}. \end{eqnarray*} |
Proof. See [6, Lemma 5 and (3.10)].
Proposition 4.2. Let u = 0.83372131685 . Then we have
\begin{eqnarray*} \mathcal{R}_4(k,N_1,N_2,u)\ll N^{{\frac{7}{6}}}_1N^{{\frac{7}{6}}}_2L^{k-1}. \end{eqnarray*} |
Proof. For brevity, we write
\begin{eqnarray*} F_2(\alpha_1) = \int_{\alpha_2\in\mathfrak{m}_2\atop{|H(\alpha_1+\alpha_2)|\geq uL}}\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)\bigg|d\alpha_2,\\ F_1(\alpha_2) = \int_{\alpha_1\in\mathfrak{m}_1\atop{|H(\alpha_1+\alpha_2)|\geq uL}}\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|d\alpha_1. \end{eqnarray*} |
From the definition of \mathfrak{m} and \mathcal{E}{(u)} , we have
\begin{eqnarray} &&\mathcal{R}_4(k,N_1,N_2,u)\\ &\ll& L^k\left(\iint\limits_{(\alpha_1,\alpha_2)\in [0,1]\times\mathfrak{m}_2\atop{|H(\alpha_1+\alpha_2)|\geq uL}}+\iint\limits_{(\alpha_1,\alpha_2)\in \mathfrak{m}_1\times [0,1]\atop{|H(\alpha_1+\alpha_2)|\geq uL}}\right)\bigg|\prod\limits_{1\leq j\leq 2}S^2_{2,j}(\alpha_j)S^2_{3,j}(\alpha_j)S^2_{4,j}(\alpha_j)\bigg|d\alpha_1d\alpha_2\\ & = &L^k\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)F_2(\alpha_1)\bigg|d\alpha_1\\ &&+L^k\int_0^1\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)F_1(\alpha_2)\bigg|d\alpha_2, \end{eqnarray} | (4.12) |
where the trivial bound H(\alpha_1+\alpha_2)\ll L is used. By applying Hölder's inequality, Hua's inequality and Lemma 4.6 (i), (ii), we can obtain
\begin{eqnarray} F_2(\alpha_1)&\ll&\left(\int_{0}^{1}|S^2_{2,2}(\alpha_2)S^4_{4,2}(\alpha_2)|d\alpha_2\right)^{\frac{1}{6}}\left(\int_{0}^{1}|S_{2,2}^4(\alpha_2)|d\alpha_2\right)^{\frac{1}{12}}\\ &&\times\left(\int_{\mathfrak{m}_2}|S^2_{2,2}(\alpha_2)S^3_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)|d\alpha_2\right)^{\frac{2}{3}}\left(\int_{\alpha_2\in [0,1] \atop{|H(\alpha_1+\alpha_2)|\geq uL}}1 d\alpha_2\right)^{\frac{1}{12}}\\ &\ll&N_2^{\frac{11}{9}+\varepsilon}\left(\int_{\alpha_2\in [0,1] \atop{|H(\alpha_1+\alpha_2)|\geq uL}}1 d\alpha_2\right)^{\frac{1}{12}}. \end{eqnarray} | (4.13) |
Thus
\begin{eqnarray} &&\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)F_2(\alpha_1)\bigg|d\alpha_1\\ &\ll& N_2^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|\left(\int_{\alpha_2\in [0,1]\atop{|H(\alpha_1+\alpha_2)|\geq uL}}1 d\alpha_2\right)^{\frac{1}{12}}d\alpha_1\\ & = & N_2^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|\left(\int_{\beta\in[\alpha_1,1+\alpha_1]\atop{|H(\beta)|\geq uL}}1 d\beta\right)^{\frac{1}{12}}d\alpha_1, \end{eqnarray} | (4.14) |
where we used the integral transformation \beta = \alpha_1+\alpha_2 . Note that H(\beta) is of period one. Hence
\begin{eqnarray} \int_{\beta\in[\alpha_1,1+\alpha_1]\atop{|H(\beta)|\geq uL}}1 d\beta = \int_{\beta\in[0,1]\atop{|H(\beta)|\geq uL}}1 d\beta. \end{eqnarray} | (4.15) |
On substituting (4.15) into (4.14), we obtain
\begin{eqnarray} &&\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)F_2(\alpha_1)\bigg|d\alpha_1\\ &\ll\!\!\!\!\!\! &N_2^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|\left(\int_{\beta\in[0,1]\atop{|H(\beta)|\geq uL}}1 d\beta\right)^{\frac{1}{12}}d\alpha_1\\ &\ll&\!\!\!\! N_2^{\frac{11}{9}+\varepsilon}N_1^{-\frac{1}{18}-10^{-22}}\!\!\!\int_0^1\!\!\bigg|S^2_{2,1}(\alpha_1)S^2_{3,1}(\alpha_1)S^2_{4,1}(\alpha_1)\bigg|d\alpha_1\!\ll\! N_2^{\frac{11}{9}+\varepsilon}N_1^{\frac{10}{9}-10^{-23}}, \end{eqnarray} | (4.16) |
where Lemma 4.7 and Lemma 4.6 (iii) are used. In a similar manner, we have
\begin{eqnarray} &&\int_0^1\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)F_1(\alpha_2)\bigg|d\alpha_2\\ &\ll&N_1^{\frac{11}{9}+\varepsilon}\int_0^1\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)\bigg|\left(\int_{\beta\in[0,1]\atop{|H(\beta)|\geq uL}}1 d\beta\right)^{\frac{1}{12}}d\alpha_2\\ &\ll&N_1^{\frac{7}{6}-10^{-22}+\varepsilon}\int_0^1\bigg|S^2_{2,2}(\alpha_2)S^2_{3,2}(\alpha_2)S^2_{4,2}(\alpha_2)\bigg|d\alpha_2\ll N_1^{\frac{7}{6}-10^{-23}}N_2^{\frac{7}{6}+\varepsilon}. \end{eqnarray} | (4.17) |
Since N_2 < N_1\ll N_2 , then we can conclude from (4.12) and (4.16)–(4.17) that
\begin{eqnarray*} \mathcal{R}_4(k,N_1,N_2,u)\ll L^kN_2^{\frac{11}{9}+\varepsilon}N_1^{\frac{10}{9}-10^{-23}}+L^kN_1^{\frac{7}{6}-10^{-23}}N_2^{\frac{7}{6}+\varepsilon}\ll N^{{\frac{7}{6}}}_1N^{{\frac{7}{6}}}_2L^{k-1}. \end{eqnarray*} |
Now we turn to give the estimate for |\mathcal{R}_2(k, N_1, N_2)| . Suppose that k\geq 30 . Then by combining (4.1) and Propositions 4.1–4.2 with u = 0.83372131685 , we have
\begin{eqnarray} |\mathcal{R}_2(k,N_1,N_2)| &\leq& \mathcal{R}_3(k,N_1,N_2,u)+\mathcal{R}_4(k,N_1,N_2,u)\\ &\leq&2021.835\times0.83372131685^{30}I^2N^{{\frac{7}{6}}}_1N^{{\frac{7}{6}}}_2L^k+ O\left(N_1^{\frac{7}{6}}N_2^{\frac{7}{6}}L^{k-1}\right)\\ &\leq&8.6372I^2N^{{\frac{7}{6}}}_1N^{{\frac{7}{6}}}_2L^k. \end{eqnarray} | (4.18) |
When k\geq 30 , by combining Proposition 3.1, (2.4), and (4.18), we can obtain
\begin{eqnarray} \mathcal{R}(k,N_1,N_2)&\geq&\mathcal{R}_1(k,N_1,N_2)-|\mathcal{R}_2(k,N_1,N_2)|\\ &\geq& (9.946-8.6372)I^2N_1^{\frac{7}{6}}N_2^{\frac{7}{6}}L^k\\ & > &1.308I^2N_1^{\frac{7}{6}}N_2^{\frac{7}{6}}L^k > 0, \end{eqnarray} | (5.1) |
where Lemma 3.2 (i) is used in the last step. Now the proof of Theorem 1 is completed.
We sketch the proof of Theorem 2, since the idea of the proof is similar to that of Theorem 1. We only give the changes that are necessary for our Theorem 2. Let
\begin{eqnarray*} \mathcal{R}(k,N_1) = \sum\limits_{N_1 = p_1^2+p_2^2+p_3^3+p_4^3+p_5^4+p_6^4+2^{v_{1}}+\dots+2^{v_{k}}\atop{P^-_{2,1}\leq p_1,p_2\leq P^+_{2,1},\,\,P^-_{3,1}\leq p_3,\,p_4\leq P^+_{3,1},\atop{P^-_{4,1}\leq p_5,\,p_6\leq P^+_{4,1},\,\,1\leq v_1,\dots,v_k\leq L}}}(\log p_1)\dots(\log p_6). \end{eqnarray*} |
Suppose that k\geq 14 and u = 0.83372131685 . Then from the orthogonality, we have
\begin{eqnarray} &&\mathcal{R}(k,N_1)\\ & = &\left(\int_ {\mathfrak{M}_1}+\int_ {\mathfrak{m}_1\backslash\mathcal{E}^*{(u)}}+\int_ {\mathfrak{m}_1\bigcap\mathcal{E}^*{(u)}}\right)S_{2,1}(\alpha)^2S_{3,1}(\alpha)^2S_{4,1}(\alpha)^2H(\alpha)^{k}e(-N_1\alpha)d\alpha\\ &: = &\mathcal{R}_1(k,N_1)+\mathcal{R}_2(k,N_1,u)+\mathcal{R}_3(k,N_1,u). \end{eqnarray} | (6.1) |
Applying Lemmas 3.1–3.2 and Lemma 3.5 (ii), we have
\begin{eqnarray} \mathcal{R}_1(k,N_1) & = &\sum\limits_{n\in \Xi(N_1, k)\atop{n\equiv 0\pmod 2}}\left(\frac{\mathfrak{S}(n)\mathfrak{J}\bigg({\frac{n}{N}_1}\bigg)N_1^{\frac{7}{6}}}{2^{2}\cdot3^2\cdot4^2}+O\left(N_1^{\frac{7}{6}}L^{-1}\right)\right)\\ &\geq&\frac{\big({\frac{1}{6}}+2\eta\big)^{-\frac{23}{6}}IN_1^{{\frac{7}{6}}}}{2^{2}\cdot3^2\cdot4^2}\sum\limits_{n\in \Xi(N_1, k)\atop{n\equiv 0\pmod 2}}\mathfrak{S}(n)+O\left(N_1^{\frac{7}{6}}L^{-1}\sum\limits_{n\in \Xi(N_1, k)\atop{n\equiv 0\pmod 2}}1\right)\\ &\geq& 3.192498IN_1^{{\frac{7}{6}}}L^k+O\left(N_1^{\frac{7}{6}}L^{k-1}\right) \geq 3.19249IN_1^{{\frac{7}{6}}}L^k. \end{eqnarray} | (6.2) |
Since \mathfrak{m}_1\backslash\mathcal{E}^*{(u)}\subset\mathfrak{m}_1^* , we can deduce from Lemma 4.1 and Lemmas 4.4–4.5 that
\begin{eqnarray} \mathcal{R}_2(k,N_1,u) &\leq&(u L)^k\int_{\mathfrak{m}_1\backslash\mathcal{E}^*{(u)}}|S_{2,1}(\alpha)^2S_{3,1}(\alpha)^2S_{4,1}(\alpha)^2|d\alpha\\ &\leq& \frac{(7+3\eta)u^kL^k}{2^2\cdot3^2\cdot4^2}\mathfrak{S}^*\mathfrak{J}^*N_1^{\frac{7}{6}}\leq 39.6553u^kIN_1^{\frac{7}{6}}L^k. \end{eqnarray} | (6.3) |
Moreover, by Hölder's inequality, Hua's inequality, and Lemmas 4.6–4.7, we have
\begin{eqnarray} \mathcal{R}_3(k,N_1,u)&\ll& L^k\left(\int_{0}^{1}|S_{2,1}(\alpha)^2S_{4,1}(\alpha)^4|d\alpha\right)^{\frac{1}{6}}\left(\int_{0}^{1}|S_{2,1}^4(\alpha)|d\alpha\right)^{\frac{1}{12}}\\ &&\times\left(\int_{\mathfrak{m}_1}|S_{2,1}(\alpha)^2S_{3,1}(\alpha)^3S_{4,1}(\alpha)^2|d\alpha\right)^{\frac{2}{3}}\left(\int_{\mathcal{E}^*{(0.83372131685)}}1d\alpha\right)^{\frac{1}{12}}\\ &\ll& N_1^{\frac{1}{6}+\frac{1}{12}+\frac{35}{36}-\frac{1}{18}-10^{-22}+\varepsilon}\ll N_1^{\frac{7}{6}-\varepsilon}. \end{eqnarray} | (6.4) |
From (6.1)–(6.4), we can conclude that
\begin{eqnarray} \mathcal{R}(k,N_1)&\geq& \mathcal{R}_1(k,N_1)-|\mathcal{R}_2(k,N_1,u)|-|\mathcal{R}_3(k,N_1,u)|\\ &\geq& (3.19249-39.6553\times0.83372131685^{14})IN_1^{{\frac{7}{6}}}L^{k}+O(N_1^{{\frac{7}{6}}-\varepsilon})\\ & > &0.08IN_1^{{\frac{7}{6}}}L^{k}. \end{eqnarray} |
Now the proof of Theorem 2 is complete.
The author declares that he has not used Artificial Intelligence (AI) tools in the creation of this article.
The author thanks the referees for their time and comments. The author would like to express the most sincere gratitude to Professor Yingchun Cai for his valuable advice and constant encouragement.
The author declares that there is no conflict of interest regarding the publication of this paper.
[1] | H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, 2 Eds., Cambridge: Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511542893 |
[2] |
P. X. Gallagher, Primes and powers of 2, Invent. Math., 29 (1975), 125–142. https://doi.org/10.1007/BF01390190 doi: 10.1007/BF01390190
![]() |
[3] |
X. Han, H. F. Liu, R. Y. Yue, Goldbach-Linnik type problems involving unequal powers of primes and powers of 2, Bull. Belg. Math. Soc. Simon Stevin, 31 (2024), 220–237. https://doi.org/10.36045/j.bbms.231113 doi: 10.36045/j.bbms.231113
![]() |
[4] |
D. R. Heath-Brown, J.-C. Puchta, Integers represented as a sum of primes and powers of two, Asian J. Math., 6 (2002), 535–565. https://doi.org/10.4310/AJM.2002.v6.n3.a7 doi: 10.4310/AJM.2002.v6.n3.a7
![]() |
[5] |
E. X. Huang, On pairs of equations with unequal powers of primes, Czech. Math. J., 73 (2023), 1219–1228. https://doi.org/10.21136/CMJ.2023.0470-22 doi: 10.21136/CMJ.2023.0470-22
![]() |
[6] |
A. Languasco, A. Zaccagnini, On a Diophantine problem with two primes and s powers of two, Acta Arith., 145 (2010), 193–208. https://doi.org/10.4064/aa145-2-7 doi: 10.4064/aa145-2-7
![]() |
[7] |
H. Z. Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes, Acta Arith., 92 (2000), 229–237. https://doi.org/10.4064/aa-92-3-229-237 doi: 10.4064/aa-92-3-229-237
![]() |
[8] |
H. Z. Li, The number of powers of 2 in a representation of large even integers by sums of such powers and of two primes II, Acta Arith., 96 (2001), 369–379. https://doi.org/10.4064/aa96-4-7 doi: 10.4064/aa96-4-7
![]() |
[9] | Yu. V. Linnik, Prime numbers and powers of two, (Russian), Trudy Matematicheskogo Instituta imeni VA Steklova 38 (1951), 151–169. |
[10] | Yu. V. Linnik, Addition of prime numbers with powers of one and the same number, (Russian), Matematicheskii Sbornik, 32 (1953), 3–60. |
[11] | J. Y. Liu, M. C. Liu, T. Z. Wang, The number of powers of two in a representation of large even integers II, Sci. China Ser. A-Math., 41 (1998), 1255–1271. https://doi.org/10.1007/BF02882266 |
[12] |
Z. X. Liu, G. S. Lü, Density of two squares of primes and powers of 2, Int. J. Number Theory, 7 (2011), 1317–1329. https://doi.org/10.1142/S1793042111004605 doi: 10.1142/S1793042111004605
![]() |
[13] |
Z. X. Liu, Goldbach-Linnik type problems with unequal powers of primes, J. Number Theory, 176 (2017), 439–448. https://doi.org/10.1016/j.jnt.2016.12.009 doi: 10.1016/j.jnt.2016.12.009
![]() |
[14] |
X. D. Lü, On unequal powers of primes and powers of 2, Ramanujan J., 50 (2019), 111–121. https://doi.org/10.1007/s11139-018-0128-2 doi: 10.1007/s11139-018-0128-2
![]() |
[15] |
J. Pintz, I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem. I, Acta Arith., 109 (2003), 169–194. https://doi.org/10.4064/aa109-2-6 doi: 10.4064/aa109-2-6
![]() |
[16] |
J. Pintz, I. Z. Ruzsa, On Linnik's approximation to Goldbach's problem. II., Acta Math. Hungar., 161 (2020), 569–582. https://doi.org/10.1007/s10474-020-01077-8 doi: 10.1007/s10474-020-01077-8
![]() |
[17] | E. C. Titchmarsh, D. R. Heath-Brown, The theory of the Riemann zeta-function, 2 Eds., Oxford: Oxford University Press, 1986. |
[18] | R. C. Vaughan, The Hardy–Littlewood method, 2 Eds., Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511470929 |
[19] |
T. Z. Wang, On Linnik's almost Goldbach theorem, Sci. China Ser. A-Math., 42 (1999), 1155–1172. https://doi.org/10.1007/BF02875983 doi: 10.1007/BF02875983
![]() |
[20] |
R. Zhang, Goldbach-Linnik type problems with mixed powers of primes, Ramanujan J., 60 (2023), 1069–1080. https://doi.org/10.1007/s11139-022-00662-5 doi: 10.1007/s11139-022-00662-5
![]() |
[21] |
L. L. Zhao, On the Waring-Goldbach problem for fourth and sixth powers, Proc. Lond. Math. Soc., 108 (2014), 1593–1622. https://doi.org/10.1112/plms/pdt072 doi: 10.1112/plms/pdt072
![]() |
[22] |
L. L. Zhao, On unequal powers of primes and powers of 2, Acta Math. Hungar., 146 (2015), 405–420. https://doi.org/10.1007/s10474-015-0535-4 doi: 10.1007/s10474-015-0535-4
![]() |
[23] |
X. D. Zhao, Goldbach-Linnik type problems on cubes of primes, Ramanujan J., 57 (2022), 239–251. https://doi.org/10.1007/s11139-020-00303-9 doi: 10.1007/s11139-020-00303-9
![]() |
[24] |
L. Zhu, Goldbach-Linnik type problems with unequal powers of primes, J. Korean Math. Soc., 59 (2022), 407–420. https://doi.org/10.4134/JKMS.j210371 doi: 10.4134/JKMS.j210371
![]() |