Let Fq be a finite field of q elements. For n∈N∗ with n≥2, let Mn:=Matn(Fq) be the ring of matrices of order n over Fq, Gn,1:=Sln(Fq) be the special linear group over Fq. In this paper, by using the technique of Fourier transformation, we obtain a formula for the number of representations of any element of Mn as the sum of k matrices in Gn,1. As a corollary, we give another proof of the number of the third power moment of the classic Kloosterman sum.
Citation: Yifan Luo, Qingzhong Ji. On the sum of matrices of special linear group over finite field[J]. AIMS Mathematics, 2025, 10(2): 3642-3651. doi: 10.3934/math.2025168
[1] | Yifan Luo, Qingzhong Ji . Correction: On the sum of matrices of special linear group over finite field. AIMS Mathematics, 2025, 10(3): 5246-5247. doi: 10.3934/math.2025241 |
[2] | Chih-Hung Chang, Ya-Chu Yang, Ferhat Şah . Reversibility of linear cellular automata with intermediate boundary condition. AIMS Mathematics, 2024, 9(3): 7645-7661. doi: 10.3934/math.2024371 |
[3] | Jing Xia . Note on subdirect sums of $ \{i_0\} $-Nekrasov matrices. AIMS Mathematics, 2022, 7(1): 617-631. doi: 10.3934/math.2022039 |
[4] | Xiaofeng Guo, Jianyu Pan . Approximate inverse preconditioners for linear systems arising from spatial balanced fractional diffusion equations. AIMS Mathematics, 2023, 8(7): 17284-17306. doi: 10.3934/math.2023884 |
[5] | Shakir Ali, Amal S. Alali, Atif Ahmad Khan, Indah Emilia Wijayanti, Kok Bin Wong . XOR count and block circulant MDS matrices over finite commutative rings. AIMS Mathematics, 2024, 9(11): 30529-30547. doi: 10.3934/math.20241474 |
[6] | Yanpeng Zheng, Xiaoyu Jiang . Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix. AIMS Mathematics, 2022, 7(7): 11647-11662. doi: 10.3934/math.2022649 |
[7] | Yousef Alkhamees, Badr Alhajouj . Structure of a chain ring as a ring of matrices over a Galois ring. AIMS Mathematics, 2022, 7(9): 15824-15833. doi: 10.3934/math.2022866 |
[8] | Wenxia Wu, Yunnan Li . Classification of irreducible based modules over the complex representation ring of $ S_4 $. AIMS Mathematics, 2024, 9(7): 19859-19887. doi: 10.3934/math.2024970 |
[9] | Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095 |
[10] | B. Amutha, R. Perumal . Public key exchange protocols based on tropical lower circulant and anti circulant matrices. AIMS Mathematics, 2023, 8(7): 17307-17334. doi: 10.3934/math.2023885 |
Let Fq be a finite field of q elements. For n∈N∗ with n≥2, let Mn:=Matn(Fq) be the ring of matrices of order n over Fq, Gn,1:=Sln(Fq) be the special linear group over Fq. In this paper, by using the technique of Fourier transformation, we obtain a formula for the number of representations of any element of Mn as the sum of k matrices in Gn,1. As a corollary, we give another proof of the number of the third power moment of the classic Kloosterman sum.
Let R be a finite ring with 1∈R, and let R∗ denote the multiplicative group of units in R. Let k be an integer with k≥2 and let ♯S denote the cardinality of any finite set S. For any c∈R, we define
Sk(R,c):={(x1,x2,…,xk)∈(R∗)k | k∑i=1xi=c}, |
and
Nk(R,c):=♯Sk(R,c). |
For a positive integer n, let Z/nZ be the ring of residue classes modulo n. In 2000, Deaconescu [3] obtained a formula for N2(Z/nZ,c). In 2009, Sander [13] gave a generalization of the above result. In fact, for any integer c, he determined the number of representations of c as a sum of two units, two nonunits, a unit and a nonunit, respectively, in Z/nZ.
For a positive integer n with divisors k1,k2,...,kt(t⩾2) and c∈Z, let
Sn;k1,k2,…,kt(c):={(x1,x2,…,xt) |1≤xi≤n/ki,(xi,n/ki)=1,i=1,2,…,t,t∑i=1kixi≡c(modn)}. |
We define Nn;k1,k2,…,kt(c):=♯Sn;k1,k2,…,kt(c). In 2013, Sander and Sander [14] gave a formula for Nn;k1,k2(c). In 2014, Sun and Yang [15] obtained a formula for Nn;k1,k2,…,kt(c). In 2017, Ji and Zhang [17] extended Sander's results to the residue ring of a Dedekind ring.
For a finite ring R with identity 1, a unit u∈R∗ is called an exunit if 1−u∈R∗. We write R∗∗ for the set of all exunits of R. We define N′k(R,c) to be the number of representations of any c∈R as a sum of k exunits of R. Namely,
N′k(R,c):=♯{(x1,x2,…,xk)∈(R∗∗)k | k∑i=1xi=c}. |
In 2017, Yang and Zhao [16] gave an explicit formula for N′k(R,c) with R=Z/nZ. In 2018, Miguel [11] generalized the Yang-Zhao results to any finite commutative ring R with identity.
In this paper, we shall extend the above results to the ring of matrices over a finite field Fq of q elements. The theory of matrices used in this paper can be found in [5]. What we focus on is the number of representations of a matrix as a sum of k matrices. Readers who are interested in algorithms can refer to [12]. The theory of matrices also has many applications in other fields, such as graph theory, for example, [1,6,8].
Let Mn:=Matn(Fq), Gn:=Gln(Fq), i.e., the general linear group over Fq. For any u∈F∗q and 0≤r≤n, define
Gn,u:={x∈Mn|det(x)=u},Mn,r:={x∈Mn|rank(x)=r}. |
Specifically, Gn=Mn,n, Gn,1=Sln(Fq), i.e., the special linear group over Fq. For any matrix A∈Mn and k∈N∗, we define
Sn,k(A):={(x1,x2,…,xk)∈Gkn,1 | k∑i=1xi=A}, |
and
Nn,k(A)=♯Sn,k(A). |
Let a,b be non-negative integers with a≥b. The q-binomial coefficient is defined as:
(ab)q=(a)q!(b)q!(a−b)q!, |
where (0)q!=1,(a)q=qa−1q−1 and (a)q!=(1)q(2)q⋯(a)q when a⩾1. Let ψ be a fixed nontrivial additive character of Fq, e.g., take
ψ(x)=exp(2πiptrFq/Fp(x)),∀x∈Fq. |
Define
Kn(ψ,y):=∑x1x2⋯xn=yψ(x1+x2+⋯+xn), for y∈F∗q |
be the Kloosterman sum over Fq. Our first main result is:
Theorem 1.1. Let k∈N∗ and A∈Mn,r with determinant u. Then, we have
Nn,k(A)=qk(n2)♯Mn(∑v∈F∗q(n2)Kn(ψ,v)kKn(ψ,uv)+1(q−1)kn−1∑l=0(−1)l(k+1)q(l2)(nl)qn−l∏i=1(qi−1)k), |
if u≠0 and
Nn,k(A)=qk(n2)♯Mn((−1)rq(n2)q−1n−r∏i=1(qi−1)⋅∑v∈F∗Kn(ψ,v)k+n−1∑l=0(−1)kl(q−1)kn−l∏i=1(qi−1)k⋅(min{r,l}∑i=max{0,l−n+r}(−1)iq(i2)+r(l−i)(ri)q⋅♯Mn−r,l−i)), |
if u=0.
Let k be a positive integer and q be an odd prime power. Define
V(k):=∑u∈F∗qK2(ψ,u)k |
to be the k-th power moment of the classic Kloosterman sum. Let η(−) be the Legendre symbol over Fq. We also give another proof of the number of V(3) (see[7], Section 4.4):
Theorem 1.2. V(3)=η(−3q)q2+2q+1.
This paper is organized as follows: In Section 2, we shall prove some lemmas that will be used in the proofs of our main results. In Sections 3 and 4, we shall give the proofs of Theorem 1.1 and Theorem 1.2, respectively.
Lemma 2.1. Let A,B∈Mn and k∈N∗. If there exist C,D∈Mn such that B=CAD and det(C)⋅det(D)=1, then, we have Nn,k(A)=Nn,k(B).
Consider the map
f:Sn,k(A)→Sn,k(B),(x1,x2,…,xk)↦(Cx1D,Cx2,D,…,CxkD). |
Clearly, f is bijective. So we have Nn,k(A)=Nn,k(B).
Corollary 2.2. Let k∈N∗ and A,B∈Mn with det(A)=det(B)=u≠0. Then, we have Nn,k(A)=Nn,k(B).
The following two results (Lemma 2.3 and Theorem 2.4) are well-known.
Lemma 2.3. [9] For any u∈F∗q and 1≤r<n, we have
♯Gn=n−1∏i=0(qn−qi), ♯Gn,u=♯Gnq−1, ♯Mn,r=r−1∏i=0(qn−qi)2qr−qi. |
Theorem 2.4. Let A∈Mn. Then there exist P,Q∈Gn,1(Fq) such that
PAQ=diag(d1,d2,…,dr,0,…,0), |
where r=rank(A).
Lemma 2.5. Let A,B∈Mn,r with r<n. Then, there exist P,Q∈Gn,1, such that PAQ=B. Hence, we have Nn,k(A)=Nn,k(B) for any k∈N∗.
By Theorem 2.4, there exist P1,Q1,P2,Q2∈Sln(Fq), such that
P1AQ1=A′:=diag(d1,d2,…,dr,0,…,0), |
P2BQ2=B′:=diag(e1,e2,…,er,0,…,0), |
where ei,di≠0,i=1,…,r. Set
C=diag(e1d−11,e2d−12,…,erd−1r,r∏i=1die−1i,1,…,1). |
Then, C∈Gn,1, A′C=B′. Let P=P−12P1, Q=Q1CQ−12. Then P,Q∈Gn,1 and PAQ=B. Then, by Lemma 2.1, we have Nn,k(A)=Nn,k(B).
Next, we consider the Gauss sum over some matrix groups. Let S be a subset of Mn and let ψ be a fixed nontrivial additive character of Fq. For any A∈Mn, define
GS(ψ,A):=∑x∈Sψ(tr(xA)). |
If there exist P,Q∈Gn such that A=PBQ, then, for any r≤n, we have
GMn,r(ψ,A)=∑x∈Mn,rψ(tr(xPBQ))=∑x∈Mn,rψ(tr(QxPB))=∑y∈Mn,rψ(tr(yB))=GMn,r(ψ,B). |
Similarly, if there exist P,Q∈Gn,1 such that A=PBQ, then we have GGn,1(ψ,A)=GGn,1(ψ,B).
Theorem 2.6. ([10], Theorem 2.4) Let A∈Mn,r with det(A)=u. Then, we have
GGn,1(ψ,A)={q(n2)Kn(ψ,u),if r=n,(−1)rq−1q(n2)n−r∏i=1(qi−1),if r<n. |
Theorem 2.7. ([2], Theorem 1.1) Let A∈Mn,r and 0≤s≤n. Then, we have
GMn,s(ψ,A)=min{r,s}∑i=max{0,s−n+r}(−1)iq(i2)+r(s−i)(ri)q⋅♯Mn−r,s−i. |
In particular, if r=n, then, we have
GMn,s(ψ,A)=(−1)sq(s2)(ns)q. |
Next, we recall some facts on the Fourier transformation. Let H be a finite abelian group, and let ˆH=:Hom(H,C∗) be the character group of H. Clearly, H≅ˆH. For any function f:H→C, the function
ˆf:ˆH→C, χ↦∑x∈Hf(x)¯χ(x), ∀χ∈ˆH |
is called the Fourier transformation of f.
Lemma 2.8. ([4], Proposition 2.1.1.2) Let ˆf be the Fourier transformation of f:H→C. Then, we have
f=1♯ˆH∑χ∈ˆHˆf(¯χ)χ. |
Now, we consider the case n=k=2 and q is odd.
Lemma 2.9. Let A∈M2 with det(A)=u and O be the zero matrix of M2. Assume q is odd. Then, we have
N2,2(A)={q(q−1)(q+1),ifA=O,q(q−1),ifu=0,A≠O,q(q+η(u2−4uq)),ifu≠0. |
Consider the equation
x1+x2=A,x1,x2∈G2,1,A∈M2. |
Case 1. A=O. For any x1∈G2,1, O−x1=x1∈G2,1. By Lemma 2.3, we have
N2,2(O)=♯G2,1=q(q−1)(q+1). |
Case 2. u=0,A≠O. By Lemma 2.5, it is sufficient to compute N2,2([1000]). Let x1=[abcd]. Then, x2=[1−a−b−c−d]. We have det(x1)=1,det(x2)=1, i.e.,
ad−bc=1,ad−d−bc=1. |
So, we have d=0. For any a∈Fq and b∈F∗q, then c is uniquely determined by b. Hence, N2,2(A)=q(q−1).
Case 3. u≠0. By Corollary 2.2, it is sufficient to compute N2,2([u001]). Let x1=[abcd]. Then, x2=[u−a−b−c1−d]. We have
ad−bc=1,u−ud−a+ad−bc=1. |
So,
a=u−ud,bc=ad−1=−ud2+ud−1. |
Let us consider the equation about d:
−ud2+ud−1=0. | (2.1) |
The determinant of Eq (2.1) is u2−4u.
Assume η(u2−4uq)=0, i.e., u2−4u=0, u=4. Then, Eq (2.1) has only one solution 12∈Fq. If d=12, there are 2q−1 such pairs (b,c). If d≠12, for any b∈F∗q, c is uniquely determined by b. So,
N2,2(A)=2q−1+(q−1)(q−1)=q2. |
Assume η(u2−4uq)=1, i.e., Eq (2.1) has two solutions d1,d2∈Fq. If d=d1,d2, there are 2q−1 pairs (b,c). If d≠d1,d2, there are q−1 pairs (b,c). So,
N2,2(A)=2(2q−1)+(q−2)(q−1)=q(q+1). |
Assume η(u2−4uq)=−1, i.e., Eq (2.1) has no solutions. It is obvious that
N2,2(A)=q(q−1). |
Let S be a finite set. For any map f:S→Mn and x∈Mn, we define
Pf(x):=♯f−1(x)♯S, |
where f−1(x) is the set of all the inverse images of x. Let ^Mn:=Hom(Mn,C∗) be the additive character group of Mn. Then, we have
ˆPf(χ)=∑x∈MnPf(x)¯χ(x)=1♯S∑s∈S¯χ(f(s)), χ∈^Mn. | (3.1) |
By Lemma 2.8, we have
Pf(x)=1♯^Mn∑χ∈^MnˆPf(¯χ)χ(x). | (3.2) |
Fix k≥1. Let ϕ:Gn,1→Mn be the inclusion map, and
φ:Gkn,1→Mn,(x1,x2,…,xk)↦x1+x2+⋯+xk. |
Clearly,
Nn,k(A)=(♯Gn,1)k⋅Pφ(A), ∀A∈Mn. | (3.3) |
By Eq (3.1), for all χ∈^Mn, we have
ˆPφ(χ)=1(♯Gn,1)k∑(x1,x2,…,xk)∈Gkn,1¯χ(x1+x2+⋯+xk)=1(♯Gn,1)k∑(x1,x2,…,xk)∈Gkn,1¯χ(x1)⋅¯χ(x2)⋯¯χ(xk)=(1(♯Gn,1)∑x1∈Gn,1¯χ(x1))k=ˆPϕ(χ)k. |
Next, we consider ˆPϕ(χ). Let ψ be the canonical additive character of Fq. Then the map
⟨_,_⟩:Mn×Mn→Fq→C∗,(x1,x2)↦tr(x1x2)↦ψ(tr(x1x2)) |
is a non-degenerated symmetric bilinear map. Hence, ⟨_,_⟩ induces an group isomorphism:
ρ:Mn→^Mn,y↦χy:=⟨_,y⟩. |
So, we have
ˆPϕ(¯χy)=1♯Gn,1∑x∈Gn,1¯¯χy(x)=1♯Gn,1∑x∈Gn,1χy(x)=1♯Gn,1GGn,1(ψ,y). |
Define
Iu:=diag(u,1,…,1)∈Gn,u,u∈F∗q, |
Jl:=diag(1,…,1,0,…,0)∈Mn,l,0≤l<n. |
By Theorem 2.6, we have
GGn,v(ψ,Iu)=∑y∈Gn,vψ(tr(yIu))=∑x∈Gn,1ψ(tr(xIvIu))=GGn,1(ψ,Iuv)=q(n2)Kn(ψ,uv), | (3.4) |
GGn,u(ψ,Jr)=GGn,1(ψ,IuJr)=(−1)rq−1q(n2)n−r∏i=1(qi−1). | (3.5) |
By Corollary 2.2 and Lemma 2.5, it is sufficient to consider A as one of the Iu and Jr with u∈F∗q,r<n. Let A=Iu or Jr. Then, we have
Nn,k(A)(3.3)__(♯Gn,1)k⋅Pφ(A)(3.2)__(♯Gn,1)k♯Mn⋅∑χ∈^MnˆPφ(¯χ)χ(A)=(♯Gn,1)k♯Mn⋅(∑v∈F∗q∑x∈Gn,vˆPϕ(¯χx)kχx(A)+n−1∑l=0∑x∈Mn,lˆPϕ(¯χx)kχx(A))=(♯Gn,1)k♯Mn⋅(∑v∈F∗q∑x∈Gn,v(1♯Gn,1GGn,1(ψ,x))kχx(A)+n−1∑l=0∑x∈Mn,l(1♯Gn,1GGn,1(ψ,x))kχx(A))=1♯Mn⋅(∑v∈F∗q(GGn,1(ψ,Iv))k∑x∈Gn,vχx(A)+n−1∑l=0GGn,1(ψ,Jl)k∑x∈Mn,lχx(A))=1♯Mn⋅(∑v∈F∗q(GGn,1(ψ,Iv))kGGn,v(ψ,A)+n−1∑l=0GGn,1(ψ,Jl)kGMn,l(ψ,A))Theorem2.6__1♯Mn⋅(∑v∈F∗q(q(n2)Kn(ψ,v))kGGn,v(ψ,A)+n−1∑l=0((−1)lq(n2)q−1n−l∏i=1(qi−1))kGMn,l(ψ,A))Theorem2.7__(3.4)(3.5){qk(n2)♯Mn(∑v∈F∗qq(n2)Kn(ψ,v)kKn(ψ,uv)+1(q−1)kn−1∑l=0(−1)l(k+1)q(l2)(nl)qn−l∏i=1(qi−1)k),ifu≠0,qk(n2)♯Mn((−1)rq(n2)q−1n−r∏i=1(qi−1)⋅∑v∈F∗qKn(ψ,v)k+n−1∑l=0(−1)kl(q−1)k×n−l∏i=1(qi−1)k(min{r,l}∑i=max{0,l−n+r}(−1)iq(i2)+r(l−i)(ri)q♯Mn−r,l−i)),ifu=0. |
Let O be the zero matrix of M2 and I be the identity matrix of M2. By Theorem 1.1, we have
N2,k(O)=qk♯M2((q2−1)k+(−1)k(q−1)(q+1)2+q(q−1)(q+1)∑u∈F∗qK2(ψ,u)k), |
i.e.,
V(k)=∑u∈F∗qK2(ψ,u)k=1q(q−1)(q+1)(N2,k(O)⋅♯M2qk−(q2−1)k−(−1)k(q−1)(q+1)2)=1q(q−1)(q+1)(q4−kN2,k(O)−(q2−1)k−(−1)k(q−1)(q+1)2). |
Consider the equation
x1+x2+⋯+xk−1=O−xk, xi∈G2,1,i=1,…,k. |
For any xk∈G2,1, we have O−xk∈G2,1. So, we have
N2,k+1(O)=♯G2,1⋅N2,k(I). |
By Lemmas 2.9 and 2.3, we have
N2,3(O)=♯G2,1⋅N2,2(I)=q2(q−1)(q+1)(q+η(−3q)). |
Hence, we obtain
V(3)=q3(q−1)(q+1)(q+η(−3q))−(q2−1)3−(−1)3(q−1)(q+1)2q(q−1)(q+1)=η(−3q)q2+2q+1. |
Yifan Luo: Methodology, Conceptualization, Writing-original draft preparation, Supervision, Writing, Formal analysis, Resources; Qingzhong Ji: Supervision, Conceptualization, Validation, Reviewing, Editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.
The article is supported by NSFC (Nos. 12071209, 12231009). The authors would like to thank the referees for reading the manuscript carefully and providing valuable comments and suggestions.
The authors declare no conflicts of interest.
[1] |
A. Abiad, B. Brimkov, S. Hayat, A. P. Khramova, J. H. Koolen, Extending a conjecture of Graham and Lovász on the distance characteristic polynomial, Linear Algebra Appl., 693 (2024), 63–82. https://doi.org/10.1016/j.laa.2023.03.027 doi: 10.1016/j.laa.2023.03.027
![]() |
[2] |
K. Balasubramanian, K. Kaipa, H. Khurana, On the cardinality of matrices with prescribed rank and partial trace over a finite field, Linear Algebra Appl., 704 (2025), 35–57. https://doi.org/10.1016/j.laa.2024.10.011 doi: 10.1016/j.laa.2024.10.011
![]() |
[3] |
M. Deaconescu, Adding units mod n, Elem. Math., 55 (2000), 123–127. https://doi.org/10.1007/s000170050078 doi: 10.1007/s000170050078
![]() |
[4] | P. Feinsilver, R. Schott, Algebraic structures and operator calculus: Volume II: special functions and computer science, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-0-585-28003-5 |
[5] | F. R. Gantmacher, Matrizentheorie, Berlin, Heidelberg: Springer, 1986. https://doi.org/10.1007/978-3-642-71243-2 |
[6] |
S. Hayat, A. Khan, M. J. F. Alenazi, On some distance spectral characteristics of trees, Axioms, 13 (2024), 494. https://doi.org/10.3390/axioms13080494 doi: 10.3390/axioms13080494
![]() |
[7] | H. Iwaniec, Topics in classical automorphic forms, Providence: American Mathematical Society, 1997. http://doi.org/10.1090/gsm/017 |
[8] |
J. H. Koolen, M. Abdullah, B. Gebremichel, S. Hayat, Distance-regular graphs with exactly one positive q-distance eigenvalue, Linear Algebra Appl., 689 (2024), 230–246. https://doi.org/10.1016/j.laa.2024.02.030 doi: 10.1016/j.laa.2024.02.030
![]() |
[9] |
G. Landsberg, Ueber eine anzahlbestimmung und eine damit zusammenhängende reihe, J. Reine Angew. Math. 1893 (1893), 87–88. https://doi.org/10.1515/crll.1893.111.87 doi: 10.1515/crll.1893.111.87
![]() |
[10] |
Y. Li, S. Hu, Gauss sums over some matrix groups, J. Number Theory, 132 (2012), 2967–2976. http://doi.org/10.1016/j.jnt.2012.06.010 doi: 10.1016/j.jnt.2012.06.010
![]() |
[11] |
C. Miguel, On the sumsets of exceptional units in a finite commutative ring, Monatsh. Math., 186 (2018), 315–320. https://doi.org/10.1007/s00605-017-1070-x doi: 10.1007/s00605-017-1070-x
![]() |
[12] | J. S. Respondek, Fast matrix multiplication with applications, Cham: Springer, 2025. |
[13] |
J. W. Sander, On the addition of units and nonunits (modm), J. Number Theory, 129 (2009), 2260–2266. https://doi.org/10.1016/j.jnt.2009.04.010 doi: 10.1016/j.jnt.2009.04.010
![]() |
[14] |
J. W. Sander, T. Sander, Adding generators in cyclic groups, J. Number Theory, 133 (2013), 705–718. https://doi.org/10.1016/j.jnt.2012.08.021 doi: 10.1016/j.jnt.2012.08.021
![]() |
[15] |
C. F. Sun, Q. H. Yang, On the sumset of atoms in cyclic groups, Int. J. Number Theory, 10 (2014), 1355–1363. https://doi.org/10.1142/S1793042114500328 doi: 10.1142/S1793042114500328
![]() |
[16] |
Q. H. Yang, Q. Q. Zhao, On the sumsets of exceptional units in Zn, Monatsh. Math., 182 (2017), 489–493. https://doi.org/10.1007/s00605-015-0872-y doi: 10.1007/s00605-015-0872-y
![]() |
[17] |
X. Zhang, C. G. Ji, Sums of generators of ideals in residue class ring, J. Number Theory, 174 (2017), 14–25. https://doi.org/10.1016/j.jnt.2016.10.018 doi: 10.1016/j.jnt.2016.10.018
![]() |
1. | Yifan Luo, Qingzhong Ji, Correction: On the sum of matrices of special linear group over finite field, 2025, 10, 2473-6988, 5246, 10.3934/math.2025241 |