Research article

On the sum of matrices of special linear group over finite field

  • Received: 12 December 2024 Revised: 29 January 2025 Accepted: 11 February 2025 Published: 25 February 2025
  • MSC : 11B13, 11C20, 11T24

  • Let Fq be a finite field of q elements. For nN with n2, let Mn:=Matn(Fq) be the ring of matrices of order n over Fq, Gn,1:=Sln(Fq) be the special linear group over Fq. In this paper, by using the technique of Fourier transformation, we obtain a formula for the number of representations of any element of Mn as the sum of k matrices in Gn,1. As a corollary, we give another proof of the number of the third power moment of the classic Kloosterman sum.

    Citation: Yifan Luo, Qingzhong Ji. On the sum of matrices of special linear group over finite field[J]. AIMS Mathematics, 2025, 10(2): 3642-3651. doi: 10.3934/math.2025168

    Related Papers:

    [1] Yifan Luo, Qingzhong Ji . Correction: On the sum of matrices of special linear group over finite field. AIMS Mathematics, 2025, 10(3): 5246-5247. doi: 10.3934/math.2025241
    [2] Chih-Hung Chang, Ya-Chu Yang, Ferhat Şah . Reversibility of linear cellular automata with intermediate boundary condition. AIMS Mathematics, 2024, 9(3): 7645-7661. doi: 10.3934/math.2024371
    [3] Jing Xia . Note on subdirect sums of $ \{i_0\} $-Nekrasov matrices. AIMS Mathematics, 2022, 7(1): 617-631. doi: 10.3934/math.2022039
    [4] Xiaofeng Guo, Jianyu Pan . Approximate inverse preconditioners for linear systems arising from spatial balanced fractional diffusion equations. AIMS Mathematics, 2023, 8(7): 17284-17306. doi: 10.3934/math.2023884
    [5] Shakir Ali, Amal S. Alali, Atif Ahmad Khan, Indah Emilia Wijayanti, Kok Bin Wong . XOR count and block circulant MDS matrices over finite commutative rings. AIMS Mathematics, 2024, 9(11): 30529-30547. doi: 10.3934/math.20241474
    [6] Yanpeng Zheng, Xiaoyu Jiang . Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix. AIMS Mathematics, 2022, 7(7): 11647-11662. doi: 10.3934/math.2022649
    [7] Yousef Alkhamees, Badr Alhajouj . Structure of a chain ring as a ring of matrices over a Galois ring. AIMS Mathematics, 2022, 7(9): 15824-15833. doi: 10.3934/math.2022866
    [8] Wenxia Wu, Yunnan Li . Classification of irreducible based modules over the complex representation ring of $ S_4 $. AIMS Mathematics, 2024, 9(7): 19859-19887. doi: 10.3934/math.2024970
    [9] Wenjia Guo, Yuankui Ma, Tianping Zhang . New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums. AIMS Mathematics, 2021, 6(2): 1596-1606. doi: 10.3934/math.2021095
    [10] B. Amutha, R. Perumal . Public key exchange protocols based on tropical lower circulant and anti circulant matrices. AIMS Mathematics, 2023, 8(7): 17307-17334. doi: 10.3934/math.2023885
  • Let Fq be a finite field of q elements. For nN with n2, let Mn:=Matn(Fq) be the ring of matrices of order n over Fq, Gn,1:=Sln(Fq) be the special linear group over Fq. In this paper, by using the technique of Fourier transformation, we obtain a formula for the number of representations of any element of Mn as the sum of k matrices in Gn,1. As a corollary, we give another proof of the number of the third power moment of the classic Kloosterman sum.



    Let R be a finite ring with 1R, and let R denote the multiplicative group of units in R. Let k be an integer with k2 and let S denote the cardinality of any finite set S. For any cR, we define

    Sk(R,c):={(x1,x2,,xk)(R)k | ki=1xi=c},

    and

    Nk(R,c):=Sk(R,c).

    For a positive integer n, let Z/nZ be the ring of residue classes modulo n. In 2000, Deaconescu [3] obtained a formula for N2(Z/nZ,c). In 2009, Sander [13] gave a generalization of the above result. In fact, for any integer c, he determined the number of representations of c as a sum of two units, two nonunits, a unit and a nonunit, respectively, in Z/nZ.

    For a positive integer n with divisors k1,k2,...,kt(t2) and cZ, let

    Sn;k1,k2,,kt(c):={(x1,x2,,xt) |1xin/ki,(xi,n/ki)=1,i=1,2,,t,ti=1kixic(modn)}.

    We define Nn;k1,k2,,kt(c):=Sn;k1,k2,,kt(c). In 2013, Sander and Sander [14] gave a formula for Nn;k1,k2(c). In 2014, Sun and Yang [15] obtained a formula for Nn;k1,k2,,kt(c). In 2017, Ji and Zhang [17] extended Sander's results to the residue ring of a Dedekind ring.

    For a finite ring R with identity 1, a unit uR is called an exunit if 1uR. We write R for the set of all exunits of R. We define Nk(R,c) to be the number of representations of any cR as a sum of k exunits of R. Namely,

    Nk(R,c):={(x1,x2,,xk)(R)k | ki=1xi=c}.

    In 2017, Yang and Zhao [16] gave an explicit formula for Nk(R,c) with R=Z/nZ. In 2018, Miguel [11] generalized the Yang-Zhao results to any finite commutative ring R with identity.

    In this paper, we shall extend the above results to the ring of matrices over a finite field Fq of q elements. The theory of matrices used in this paper can be found in [5]. What we focus on is the number of representations of a matrix as a sum of k matrices. Readers who are interested in algorithms can refer to [12]. The theory of matrices also has many applications in other fields, such as graph theory, for example, [1,6,8].

    Let Mn:=Matn(Fq), Gn:=Gln(Fq), i.e., the general linear group over Fq. For any uFq and 0rn, define

    Gn,u:={xMn|det(x)=u},Mn,r:={xMn|rank(x)=r}.

    Specifically, Gn=Mn,n, Gn,1=Sln(Fq), i.e., the special linear group over Fq. For any matrix AMn and kN, we define

    Sn,k(A):={(x1,x2,,xk)Gkn,1 | ki=1xi=A},

    and

    Nn,k(A)=Sn,k(A).

    Let a,b be non-negative integers with ab. The q-binomial coefficient is defined as:

    (ab)q=(a)q!(b)q!(ab)q!,

    where (0)q!=1,(a)q=qa1q1 and (a)q!=(1)q(2)q(a)q when a1. Let ψ be a fixed nontrivial additive character of Fq, e.g., take

    ψ(x)=exp(2πiptrFq/Fp(x)),xFq.

    Define

    Kn(ψ,y):=x1x2xn=yψ(x1+x2++xn), for yFq

    be the Kloosterman sum over Fq. Our first main result is:

    Theorem 1.1. Let kN and AMn,r with determinant u. Then, we have

    Nn,k(A)=qk(n2)Mn(vFq(n2)Kn(ψ,v)kKn(ψ,uv)+1(q1)kn1l=0(1)l(k+1)q(l2)(nl)qnli=1(qi1)k),

    if u0 and

    Nn,k(A)=qk(n2)Mn((1)rq(n2)q1nri=1(qi1)vFKn(ψ,v)k+n1l=0(1)kl(q1)knli=1(qi1)k(min{r,l}i=max{0,ln+r}(1)iq(i2)+r(li)(ri)qMnr,li)),

    if u=0.

    Let k be a positive integer and q be an odd prime power. Define

    V(k):=uFqK2(ψ,u)k

    to be the k-th power moment of the classic Kloosterman sum. Let η() be the Legendre symbol over Fq. We also give another proof of the number of V(3) (see[7], Section 4.4):

    Theorem 1.2. V(3)=η(3q)q2+2q+1.

    This paper is organized as follows: In Section 2, we shall prove some lemmas that will be used in the proofs of our main results. In Sections 3 and 4, we shall give the proofs of Theorem 1.1 and Theorem 1.2, respectively.

    Lemma 2.1. Let A,BMn and kN. If there exist C,DMn such that B=CAD and det(C)det(D)=1, then, we have Nn,k(A)=Nn,k(B).

    Consider the map

    f:Sn,k(A)Sn,k(B),(x1,x2,,xk)(Cx1D,Cx2,D,,CxkD).

    Clearly, f is bijective. So we have Nn,k(A)=Nn,k(B).

    Corollary 2.2. Let kN and A,BMn with det(A)=det(B)=u0. Then, we have Nn,k(A)=Nn,k(B).

    The following two results (Lemma 2.3 and Theorem 2.4) are well-known.

    Lemma 2.3. [9] For any uFq and 1r<n, we have

    Gn=n1i=0(qnqi), Gn,u=Gnq1, Mn,r=r1i=0(qnqi)2qrqi.

    Theorem 2.4. Let AMn. Then there exist P,QGn,1(Fq) such that

    PAQ=diag(d1,d2,,dr,0,,0),

    where r=rank(A).

    Lemma 2.5. Let A,BMn,r with r<n. Then, there exist P,QGn,1, such that PAQ=B. Hence, we have Nn,k(A)=Nn,k(B) for any kN.

    By Theorem 2.4, there exist P1,Q1,P2,Q2Sln(Fq), such that

    P1AQ1=A:=diag(d1,d2,,dr,0,,0),
    P2BQ2=B:=diag(e1,e2,,er,0,,0),

    where ei,di0,i=1,,r. Set

    C=diag(e1d11,e2d12,,erd1r,ri=1die1i,1,,1).

    Then, CGn,1, AC=B. Let P=P12P1, Q=Q1CQ12. Then P,QGn,1 and PAQ=B. Then, by Lemma 2.1, we have Nn,k(A)=Nn,k(B).

    Next, we consider the Gauss sum over some matrix groups. Let S be a subset of Mn and let ψ be a fixed nontrivial additive character of Fq. For any AMn, define

    GS(ψ,A):=xSψ(tr(xA)).

    If there exist P,QGn such that A=PBQ, then, for any rn, we have

    GMn,r(ψ,A)=xMn,rψ(tr(xPBQ))=xMn,rψ(tr(QxPB))=yMn,rψ(tr(yB))=GMn,r(ψ,B).

    Similarly, if there exist P,QGn,1 such that A=PBQ, then we have GGn,1(ψ,A)=GGn,1(ψ,B).

    Theorem 2.6. ([10], Theorem 2.4) Let AMn,r with det(A)=u. Then, we have

    GGn,1(ψ,A)={q(n2)Kn(ψ,u),if r=n,(1)rq1q(n2)nri=1(qi1),if r<n.

    Theorem 2.7. ([2], Theorem 1.1) Let AMn,r and 0sn. Then, we have

    GMn,s(ψ,A)=min{r,s}i=max{0,sn+r}(1)iq(i2)+r(si)(ri)qMnr,si.

    In particular, if r=n, then, we have

    GMn,s(ψ,A)=(1)sq(s2)(ns)q.

    Next, we recall some facts on the Fourier transformation. Let H be a finite abelian group, and let ˆH=:Hom(H,C) be the character group of H. Clearly, HˆH. For any function f:HC, the function

    ˆf:ˆHC, χxHf(x)¯χ(x),   χˆH

    is called the Fourier transformation of f.

    Lemma 2.8. ([4], Proposition 2.1.1.2) Let ˆf be the Fourier transformation of f:HC. Then, we have

    f=1ˆHχˆHˆf(¯χ)χ.

    Now, we consider the case n=k=2 and q is odd.

    Lemma 2.9. Let AM2 with det(A)=u and O be the zero matrix of M2. Assume q is odd. Then, we have

    N2,2(A)={q(q1)(q+1),ifA=O,q(q1),ifu=0,AO,q(q+η(u24uq)),ifu0.

    Consider the equation

    x1+x2=A,x1,x2G2,1,AM2.

    Case 1. A=O. For any x1G2,1, Ox1=x1G2,1. By Lemma 2.3, we have

    N2,2(O)=G2,1=q(q1)(q+1).

    Case 2. u=0,AO. By Lemma 2.5, it is sufficient to compute N2,2([1000]). Let x1=[abcd]. Then, x2=[1abcd]. We have det(x1)=1,det(x2)=1, i.e.,

    adbc=1,addbc=1.

    So, we have d=0. For any aFq and bFq, then c is uniquely determined by b. Hence, N2,2(A)=q(q1).

    Case 3. u0. By Corollary 2.2, it is sufficient to compute N2,2([u001]). Let x1=[abcd]. Then, x2=[uabc1d]. We have

    adbc=1,uuda+adbc=1.

    So,

    a=uud,bc=ad1=ud2+ud1.

    Let us consider the equation about d:

    ud2+ud1=0. (2.1)

    The determinant of Eq (2.1) is u24u.

    Assume η(u24uq)=0, i.e., u24u=0, u=4. Then, Eq (2.1) has only one solution 12Fq. If d=12, there are 2q1 such pairs (b,c). If d12, for any bFq, c is uniquely determined by b. So,

    N2,2(A)=2q1+(q1)(q1)=q2.

    Assume η(u24uq)=1, i.e., Eq (2.1) has two solutions d1,d2Fq. If d=d1,d2, there are 2q1 pairs (b,c). If dd1,d2, there are q1 pairs (b,c). So,

    N2,2(A)=2(2q1)+(q2)(q1)=q(q+1).

    Assume η(u24uq)=1, i.e., Eq (2.1) has no solutions. It is obvious that

    N2,2(A)=q(q1).

    Let S be a finite set. For any map f:SMn and xMn, we define

    Pf(x):=f1(x)S,

    where f1(x) is the set of all the inverse images of x. Let ^Mn:=Hom(Mn,C) be the additive character group of Mn. Then, we have

    ˆPf(χ)=xMnPf(x)¯χ(x)=1SsS¯χ(f(s)),   χ^Mn. (3.1)

    By Lemma 2.8, we have

    Pf(x)=1^Mnχ^MnˆPf(¯χ)χ(x). (3.2)

    Fix k1. Let ϕ:Gn,1Mn be the inclusion map, and

    φ:Gkn,1Mn,(x1,x2,,xk)x1+x2++xk.

    Clearly,

    Nn,k(A)=(Gn,1)kPφ(A),   AMn. (3.3)

    By Eq (3.1), for all χ^Mn, we have

    ˆPφ(χ)=1(Gn,1)k(x1,x2,,xk)Gkn,1¯χ(x1+x2++xk)=1(Gn,1)k(x1,x2,,xk)Gkn,1¯χ(x1)¯χ(x2)¯χ(xk)=(1(Gn,1)x1Gn,1¯χ(x1))k=ˆPϕ(χ)k.

    Next, we consider ˆPϕ(χ). Let ψ be the canonical additive character of Fq. Then the map

    _,_:Mn×MnFqC,(x1,x2)tr(x1x2)ψ(tr(x1x2))

    is a non-degenerated symmetric bilinear map. Hence, _,_ induces an group isomorphism:

    ρ:Mn^Mn,yχy:=_,y.

    So, we have

    ˆPϕ(¯χy)=1Gn,1xGn,1¯¯χy(x)=1Gn,1xGn,1χy(x)=1Gn,1GGn,1(ψ,y).

    Define

    Iu:=diag(u,1,,1)Gn,u,uFq,
    Jl:=diag(1,,1,0,,0)Mn,l,0l<n.

    By Theorem 2.6, we have

    GGn,v(ψ,Iu)=yGn,vψ(tr(yIu))=xGn,1ψ(tr(xIvIu))=GGn,1(ψ,Iuv)=q(n2)Kn(ψ,uv), (3.4)
    GGn,u(ψ,Jr)=GGn,1(ψ,IuJr)=(1)rq1q(n2)nri=1(qi1). (3.5)

    By Corollary 2.2 and Lemma 2.5, it is sufficient to consider A as one of the Iu and Jr with uFq,r<n. Let A=Iu or Jr. Then, we have

    Nn,k(A)(3.3)__(Gn,1)kPφ(A)(3.2)__(Gn,1)kMnχ^MnˆPφ(¯χ)χ(A)=(Gn,1)kMn(vFqxGn,vˆPϕ(¯χx)kχx(A)+n1l=0xMn,lˆPϕ(¯χx)kχx(A))=(Gn,1)kMn(vFqxGn,v(1Gn,1GGn,1(ψ,x))kχx(A)+n1l=0xMn,l(1Gn,1GGn,1(ψ,x))kχx(A))=1Mn(vFq(GGn,1(ψ,Iv))kxGn,vχx(A)+n1l=0GGn,1(ψ,Jl)kxMn,lχx(A))=1Mn(vFq(GGn,1(ψ,Iv))kGGn,v(ψ,A)+n1l=0GGn,1(ψ,Jl)kGMn,l(ψ,A))Theorem2.6__1Mn(vFq(q(n2)Kn(ψ,v))kGGn,v(ψ,A)+n1l=0((1)lq(n2)q1nli=1(qi1))kGMn,l(ψ,A))Theorem2.7__(3.4)(3.5){qk(n2)Mn(vFqq(n2)Kn(ψ,v)kKn(ψ,uv)+1(q1)kn1l=0(1)l(k+1)q(l2)(nl)qnli=1(qi1)k),ifu0,qk(n2)Mn((1)rq(n2)q1nri=1(qi1)vFqKn(ψ,v)k+n1l=0(1)kl(q1)k×nli=1(qi1)k(min{r,l}i=max{0,ln+r}(1)iq(i2)+r(li)(ri)qMnr,li)),ifu=0.

    Let O be the zero matrix of M2 and I be the identity matrix of M2. By Theorem 1.1, we have

    N2,k(O)=qkM2((q21)k+(1)k(q1)(q+1)2+q(q1)(q+1)uFqK2(ψ,u)k),

    i.e.,

    V(k)=uFqK2(ψ,u)k=1q(q1)(q+1)(N2,k(O)M2qk(q21)k(1)k(q1)(q+1)2)=1q(q1)(q+1)(q4kN2,k(O)(q21)k(1)k(q1)(q+1)2).

    Consider the equation

    x1+x2++xk1=Oxk,   xiG2,1,i=1,,k.

    For any xkG2,1, we have OxkG2,1. So, we have

    N2,k+1(O)=G2,1N2,k(I).

    By Lemmas 2.9 and 2.3, we have

    N2,3(O)=G2,1N2,2(I)=q2(q1)(q+1)(q+η(3q)).

    Hence, we obtain

    V(3)=q3(q1)(q+1)(q+η(3q))(q21)3(1)3(q1)(q+1)2q(q1)(q+1)=η(3q)q2+2q+1.

    Yifan Luo: Methodology, Conceptualization, Writing-original draft preparation, Supervision, Writing, Formal analysis, Resources; Qingzhong Ji: Supervision, Conceptualization, Validation, Reviewing, Editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The article is supported by NSFC (Nos. 12071209, 12231009). The authors would like to thank the referees for reading the manuscript carefully and providing valuable comments and suggestions.

    The authors declare no conflicts of interest.



    [1] A. Abiad, B. Brimkov, S. Hayat, A. P. Khramova, J. H. Koolen, Extending a conjecture of Graham and Lovász on the distance characteristic polynomial, Linear Algebra Appl., 693 (2024), 63–82. https://doi.org/10.1016/j.laa.2023.03.027 doi: 10.1016/j.laa.2023.03.027
    [2] K. Balasubramanian, K. Kaipa, H. Khurana, On the cardinality of matrices with prescribed rank and partial trace over a finite field, Linear Algebra Appl., 704 (2025), 35–57. https://doi.org/10.1016/j.laa.2024.10.011 doi: 10.1016/j.laa.2024.10.011
    [3] M. Deaconescu, Adding units mod n, Elem. Math., 55 (2000), 123–127. https://doi.org/10.1007/s000170050078 doi: 10.1007/s000170050078
    [4] P. Feinsilver, R. Schott, Algebraic structures and operator calculus: Volume II: special functions and computer science, Dordrecht: Springer, 1994. https://doi.org/10.1007/978-0-585-28003-5
    [5] F. R. Gantmacher, Matrizentheorie, Berlin, Heidelberg: Springer, 1986. https://doi.org/10.1007/978-3-642-71243-2
    [6] S. Hayat, A. Khan, M. J. F. Alenazi, On some distance spectral characteristics of trees, Axioms, 13 (2024), 494. https://doi.org/10.3390/axioms13080494 doi: 10.3390/axioms13080494
    [7] H. Iwaniec, Topics in classical automorphic forms, Providence: American Mathematical Society, 1997. http://doi.org/10.1090/gsm/017
    [8] J. H. Koolen, M. Abdullah, B. Gebremichel, S. Hayat, Distance-regular graphs with exactly one positive q-distance eigenvalue, Linear Algebra Appl., 689 (2024), 230–246. https://doi.org/10.1016/j.laa.2024.02.030 doi: 10.1016/j.laa.2024.02.030
    [9] G. Landsberg, Ueber eine anzahlbestimmung und eine damit zusammenhängende reihe, J. Reine Angew. Math. 1893 (1893), 87–88. https://doi.org/10.1515/crll.1893.111.87 doi: 10.1515/crll.1893.111.87
    [10] Y. Li, S. Hu, Gauss sums over some matrix groups, J. Number Theory, 132 (2012), 2967–2976. http://doi.org/10.1016/j.jnt.2012.06.010 doi: 10.1016/j.jnt.2012.06.010
    [11] C. Miguel, On the sumsets of exceptional units in a finite commutative ring, Monatsh. Math., 186 (2018), 315–320. https://doi.org/10.1007/s00605-017-1070-x doi: 10.1007/s00605-017-1070-x
    [12] J. S. Respondek, Fast matrix multiplication with applications, Cham: Springer, 2025.
    [13] J. W. Sander, On the addition of units and nonunits (modm), J. Number Theory, 129 (2009), 2260–2266. https://doi.org/10.1016/j.jnt.2009.04.010 doi: 10.1016/j.jnt.2009.04.010
    [14] J. W. Sander, T. Sander, Adding generators in cyclic groups, J. Number Theory, 133 (2013), 705–718. https://doi.org/10.1016/j.jnt.2012.08.021 doi: 10.1016/j.jnt.2012.08.021
    [15] C. F. Sun, Q. H. Yang, On the sumset of atoms in cyclic groups, Int. J. Number Theory, 10 (2014), 1355–1363. https://doi.org/10.1142/S1793042114500328 doi: 10.1142/S1793042114500328
    [16] Q. H. Yang, Q. Q. Zhao, On the sumsets of exceptional units in Zn, Monatsh. Math., 182 (2017), 489–493. https://doi.org/10.1007/s00605-015-0872-y doi: 10.1007/s00605-015-0872-y
    [17] X. Zhang, C. G. Ji, Sums of generators of ideals in residue class ring, J. Number Theory, 174 (2017), 14–25. https://doi.org/10.1016/j.jnt.2016.10.018 doi: 10.1016/j.jnt.2016.10.018
  • This article has been cited by:

    1. Yifan Luo, Qingzhong Ji, Correction: On the sum of matrices of special linear group over finite field, 2025, 10, 2473-6988, 5246, 10.3934/math.2025241
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(409) PDF downloads(24) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog