
In this paper, a model based on the lognormal diffusion process with exogenous factors was considered, aiming to describe the dynamics of the basic Consumer Price Index (CPI) in Colombia. To this end, a Bayesian procedure was employed for the selection of factors using real data from different economic sources such as the Central Bank (Banco de la República de Colombia), among others. A model with five exogenous factors (economic variables) was obtained, carrying out maximum likelihood estimation for its parameters. Fitting and forecasting procedures under different conditions showed that the proposed model outperformed the predictions made by the Central Bank. In addition, potential future economic scenarios were analyzed for testing purposes. This model provided valuable insight into the main determinants of inflation in Colombia, reflecting the importance of the factors under the control of economic authorities, labor market dynamics, and external economic conditions. This new approach also gave rise to asking questions concerning impact analysis of economic shocks, and the search of possible scenarios for given CPI dynamics.
Citation: Antonio Barrera, Arnold de la Peña Cuao, Juan José Serrano-Pérez, Francisco Torres-Ruiz. Estimating the Consumer Price Index using the lognormal diffusion process with exogenous factors: The Colombian case[J]. AIMS Mathematics, 2025, 10(2): 3334-3380. doi: 10.3934/math.2025155
[1] | Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921 |
[2] | Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439 |
[3] | Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451 |
[4] | Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017 |
[5] | Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181 |
[6] | Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424 |
[7] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[8] | Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229 |
[9] | M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604 |
[10] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
In this paper, a model based on the lognormal diffusion process with exogenous factors was considered, aiming to describe the dynamics of the basic Consumer Price Index (CPI) in Colombia. To this end, a Bayesian procedure was employed for the selection of factors using real data from different economic sources such as the Central Bank (Banco de la República de Colombia), among others. A model with five exogenous factors (economic variables) was obtained, carrying out maximum likelihood estimation for its parameters. Fitting and forecasting procedures under different conditions showed that the proposed model outperformed the predictions made by the Central Bank. In addition, potential future economic scenarios were analyzed for testing purposes. This model provided valuable insight into the main determinants of inflation in Colombia, reflecting the importance of the factors under the control of economic authorities, labor market dynamics, and external economic conditions. This new approach also gave rise to asking questions concerning impact analysis of economic shocks, and the search of possible scenarios for given CPI dynamics.
Lots of physical phenomena can be expressed by non-linear partial differential equations (PDE), including, inter alia, dissipative and dispersive PDE. In this paper, we consider the Kuramoto-Sivashinsky (KS) equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t)0≤s≤1,0≤t≤T,γ>0, | (1.1) |
ϕ(0,t)=0,ϕ(1,t)=0,ϕss(0,t)=0,ϕss(1,t)=0,0<t<T, | (1.2) |
ϕ(s,0)=φ(s),0≤s≤1, | (1.3) |
where γ∈R is the constant.
The KS equation plays an important role in physics such as in diffusion, convection and so on. Lots of attention has been paid by researchers in recent years. An H1-Galerkin mixed finite element method for the KS equation was proposed in [1], lattice Boltzmann models for the Kuramoto-Sivashinsky equation were studied in [2], Backward difference formulae (BDF) methods for the KS equation were investigate in [3]. Stability regions and results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations were given in [4,5], respectively. In [6], an improvised quintic B-spline extrapolated collocation technique was used to solve the KS equation, and the stability of the technique was analyzed using the von Neumann scheme, which was found to be unconditionally stable. In [7], a septic Hermite collocation method (SHCM) was proposed to simulate the KS equation, and the nonlinear terms of the KS equation were linearized using the quasi-linearization process. In [8], a semidiscrete approach was presented to solve the variable-order (VO) time fractional 2D KS equation, and the differentiation operational matrices and the collocation technique were used to get a linear system of algebraic equations. In [9] the discrete Legendre polynomials (LPs) and the collocation scheme for nonlinear space-time fractional KdV-Burgers-Kuramoto equation were presented.
In order to avoid the Runge's phenomenon, barycentric interpolation [10,11,12] was developed. In recent years, linear rational interpolation (LRI) was proposed by Floater [13,14,15], and error of linear rational interpolation was also proved. The barycentric interpolation collocation method (BICM) has been developed by Wang et al.[22,23,24,25], and the algorithm of BICM has been used for linear/non-linear problems [21]. Volterra integro-differential equation (VIDE)[16,20], heat equation (HE) [17], biharmonic equation (BE) [18], the Kolmogorov-Petrovskii-Piskunov (KPP) equation [19], fractional differential equations [20], fractional reaction-diffusion equation [28], semi-infinite domain problems [27] and biharmonic equation [26], plane elastic problems [29] have been studied by the linear barycentric interpolation collocation method (LBICM), and their convergence rates also have been proved.
In order to solve the KS equation efficiently, the LBRIM is presented. Because the nonlinear part of the KS equation cannot be solved directly, three kinds of linearization methods, including direct linearization, partial linearization and Newton linearization, are presented. Then, the nonlinear part of the KS equation is translated into the linear part, three kinds of iterative schemes are presented, and matrix equation of the linearization schemes are constructed. The convergence rate of the LBRCM for the KS equation is also given. At last, two numerical examples are presented to validate the theoretical analysis.
In the following, the KS equation is changed into the linear equation by the linearization scheme, including direct linearization, partial linearization and Newton linearization.
For the Kuramoto-Sivashinskyr equation with the initial value of nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ0∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ0∂s=φ(s,t), | (2.1) |
and then we get the linear scheme as
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2=−ϕn−1∂ϕn−1∂s+φ(s,t),a≤s≤b,0≤t≤T. | (2.2) |
By the partial linearization, nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ∂s=φ(s,t), | (2.3) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn−1∂ϕn∂s=φ(s,t),a≤s≤b,0≤t≤T. | (2.4) |
For the initial value ϕ∂ϕ∂s=ϕ0∂ϕ0∂s+(∂ϕ0∂s+ϕ0∂ϕ0∂s)(ϕ−ϕ0), we have
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ0∂s+ϕ0∂ϕ0∂sϕ=φ(s,t)+ϕ0∂ϕ0∂sϕ0, | (2.5) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn∂ϕn−1∂s+ϕn−1∂ϕn−1∂sϕn=φ(s,t)+ϕn−1∂ϕn−1∂sϕn−1, | (2.6) |
where n=1,2,⋯.
Interval [a,b] is divided into a=s0<s1<s2<⋯<sm−1<sm=b, for uniform partition with hs=b−am and nonuniform partition to be the second kind of Chebychev point. Time [0,T] is divided into 0=t0<t1<t2<⋯<tn−1<tn=T and ht=Tn for uniform partition. Then, we take ϕnm(s,t) to approximate ϕ(s,t) as
ϕnm(s,t)=m∑i=0n∑j=0ri(s)rj(t)ϕij | (3.1) |
where ϕij=ϕ(si,tj),
ri(s)=wis−sim∑j=0wjs−sj,rj(t)=wjt−tjn∑i=0wit−ti | (3.2) |
is the barycentric interpolation basis [26], and
wi=∑k∈Ji(−1)kk+ds∏j=k,j≠i1si−sj,wj=∑k∈Jj(−1)kk+dt∏i=k,k≠j1tj−ti | (3.3) |
where Ji={k∈I,i−ds≤k≤i},I={0,1,⋯,m−ds}. See [26]. We get the barycentric rational interpolation.
For the case
wi=1∏i≠k(si−sk),wj=1∏j≠k(tj−tk), | (3.4) |
we get the barycentric Lagrange interpolation.
So,
r′j(si)=wj/wisi−sj,j≠i,r′i(si)=−∑j≠ir′j(si), | (3.5) |
r(k)j(si)=k(r(k−1)i(si)r′i(sj)−r(k−1)i(sj)si−sj),j≠i, | (3.6) |
r(k)i(si)=−∑j≠ir(k)j(si). | (3.7) |
Then, we have
D(0,1)ij=r′i(tj), | (3.8) |
D(1,0)ij=r′i(sj), | (3.9) |
D(k,0)ij=r(k)i(sj),k=2,3,⋯. | (3.10) |
Combining (3.1) and (2.2), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In]ϕn=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1, | (3.11) |
and then we have
Lϕn=Ψn−1 | (3.12) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In, |
Ψn−1=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1 |
and ⊗ is the Kronecher product [17].
Combining (3.1) and (2.4), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ, | (3.13) |
n=1,2,⋯, and then we have
Lϕ=Ψ | (3.14) |
where L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In.
Combining (3.1) and (2.6), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1, | (3.15) |
and then we get
Lϕ=Ψn−1 | (3.16) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In, |
and
Ψn−1=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1. |
In this part, an error estimate of the KS equation is given with rn(s)=n∑i=0ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (3.2), and ϕi=ϕ(si). We also define
e(s):=ϕ(s)−rn(s)=(s−si)⋯(s−si+d)ϕ[si,si+1,…,si+d,s]. | (4.1) |
Then, we have the following.
Lemma 1. For e(s) defined by (4.1) and ϕ(s)∈Cd+2[a,b], there is
|e(k)(s)|≤Chd−k+1,k=0,1,⋯. | (4.2) |
For KS equation, rational interpolation function of ϕ(s,t) is defined as rmn(s,t)
rmn(s,t)=m+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj)ϕi,jm+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj) | (4.3) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (4.4) |
We define e(s,t) to be the error of ϕ(s,t) as
e(s,t):=ϕ(s,t)−rmn(s,t)=(s−si)⋯(s−si+ds)ϕ[si,si+1,…,si+d1,s,t]+(t−tj)⋯(t−tj+dt)ϕ[s,tj,tj+1,…,tj+d2,t]. | (4.5) |
With similar analysis of Lemma 1, we have the following
Theorem 1. For e(s,t) defined as (4.5) and ϕ(s,t)∈Cds+2[a,b]×Cdt+2[0,T], we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t),k1,k2=0,1,⋯. | (4.6) |
We take the direct linearization of the KS equation as an example prove the convergence rate. Let ϕ(sm,tn) be the approximate function of ϕ(s,t) and L be a bounded operator. There holds
Lϕ(sm,tn)=φ(sm,tn), | (4.7) |
and
limm,n→∞ϕ(sm,tn)=ϕ(s,t). | (4.8) |
Then, we get the following
Theorem 2. For ϕ(sm,tn):Lϕ(sm,tn)=φ(s,t) and L defined as (4.7), there
|ϕ(s,t)−ϕ(sm,tn)|≤C(hds−3+τdt). |
Proof. As
Lϕ(s,t)−Lϕ(sm,tn)=∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2−ϕ0∂ϕ0∂s−φ(s,t)−[∂ϕ(sm,tn)∂t+γ∂4ϕ(sm,tn)∂s4+∂2ϕ(sm,tn)∂s2+ϕ0(sm,tn)∂ϕ0(sm,tn)∂s−φ(s,t)]=∂ϕ∂t−∂ϕ∂t(sm,tn)+γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]+∂2ϕ∂s2−∂2ϕ∂s2(sm,tn)+[ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn)]:=E1(s,t)+E2(s,t)+E3(s,t)+E4(s,t). | (4.9) |
Here,
E1(s,t)=∂ϕ∂t−∂ϕ∂t(sm,tn), |
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)], |
E3(s,t)=∂2ϕ∂s2−∂2ϕ∂s2(sm,tn), |
E4(s,t)=ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn). |
With E2(s,t), we have
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,t)+∂4ϕ∂s4(sm,t)−∂4ϕ∂s4(sm,tn)]=m−ds∑i=0(−1)i∂4ϕ∂s4[si,si+1,…,si+d1,sm,t]m−ds∑i=0λi(s)+n−dt∑j=0(−1)j∂4ϕ∂s4[tj,tj+1,…,tj+d2,sm,tn]n−dt∑j=0λj(t)=∂4e∂s4(sm,t)+∂4e∂s4(sm,tn). |
For E2(s,t) we get
|E2(s,t)|≤|∂4e∂s4(sm,x)+∂4e∂s4(sm,tn)|≤C(hds−3+τdt+1). | (4.10) |
Then, we have
|E1(s,t)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.11) |
Similarly, for E3(s,t) we have
E3(s,t)=∂2ϕ∂s2(s,t)−∂2ϕ∂s2(sm,tn)=∂2e∂s2(s,tn)+∂2e∂s2(sm,tn), | (4.12) |
and
|E3(s,t)|≤|∂2e∂s2(s,tn)+∂2e∂s2(sm,tn)|≤C(hds−1+τdt+1). | (4.13) |
For E4(s,t) we get
|E4(s,t)|=|ϕ0∂ϕ∂s−ϕ0(sm,tn)∂ϕ∂s(sm,tn)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.14) |
Combining (4.9) and (4.11)–(4.14) together, the proof of Theorem 2 is completed.
All the examples are carried on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz operating system, 16 G radon access running memory and a 512 G solid state disk memory. All simulation experiments were realized by the software Matlab (Version: R2016a). In this part, two examples are presented to test the theorem.
Example 1. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t) |
with the condition is
ϕ(0,t)=0,ϕ(1,t)=0, |
and
ϕ(s,0)=sin(2πs). |
ϕss(0,t)=0,ϕss(1,t)=0, |
and
φ(s,t)=e−tsin(2πs)[2πe−tcos(2πs)−1+16π4−4π2]. |
The solution of the KS equation is
ϕ(s,t)=e−tsin(2πs). |
In Figures 1–3, errors of unform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented. In Figures 4–6, errors of non-uniform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented.
In Tables 1 and 2, errors of LBCM and LBRCM for the KS equation with boundary condition dealt with by the method of substitution and method of addition are given. From Table 1, we know that the accuracy of LBCM is higher than LBRCM, and from Table 2 the accuracy of the method of additional is higher than the method of substitution.
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
In Table 3, we choose the Newton linearization to solve the KS equation, and the error of LBRCM for uniform and nonuniform partitions are presented with t=0.3,0.9,2,4,8,16.
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
The errors of LBRCM of uniform and Chebyshev partitions are presented with (m,n,ds,dt)=(8,8,7,7),(16,16,15,15). From the table, comparing (m,n)=(8,8) with (m,n)=(16,16), the accuracy was higher when the number became bigger.
In the following table, we take Newton linearization to present numerical results. From Tables 4 and 5, with errors of Newton linearization for uniform partition dt=6;t=1 are given and convergence rate is O(hds). From Table 5, with space variable s,ds=6, and there is superconvergence rate O(hds−1) at t=1.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
For Tables 6 and 7, the errors of Chebyshev partition for Newton linearization with s and t are presented. For dt=6, the convergence rate is O(hds) in Table 6, while in Table 7, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
Example 2. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=0, |
with the analytic solution
ϕ(s,t)=c+15√1119√19[−3tanh√112√19(s−ct+s0)+tanh3√112√19(s−ct+s0)], |
and boundary condition
ϕ(−10,t)=c+15√1119√19[−3tanh√112√19(−10−ct+s0)+tanh3√112√19(−10−ct+s0)], |
ϕ(10,t)=c+15√1119√19[−3tanh√112√19(10−ct+s0)+tanh3√112√19(10−ct+s0)], |
and initial condition
ϕ(s,0)=c+15√1119√19[−3tanh√112√19(s+s0)+tanh3√112√19(s+s0)], |
with c=2,x0=10.
In Figures 7–9, errors of direct linearization, partial linearization, Newton linearization with m=n=19 KS equation are presented, respectively.
In the following table, direct linearization is chosen to present numerical results. From Tables 8 and 9, errors of direct linearization for uniform partition dt=7 with different ds are given and the convergence rate is O(hds−1). From Table 9, with space variable s,ds=7, and there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
For Tables 10 and 11, the errors of Chebyshev partition for direct linearization with s and t are presented. For dt=7, the convergence rate is O(hds) in Table 10, while in Table 11, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
In this paper, LBRCM is used to solve the (1+1) dimensional SK equation. Three kinds of linearization methods are taken to translate the nonlinear part into a linear part. Matrix equations of the discrete SK equation are obtained from corresponding linearization schemes. The convergence rate of LBRCM is also presented. In the future work, LBRCM can be developed for the (2+1) dimensional SK equation and other partial differential equations classes, including Kolmogorov-Petrovskii-Piskunov (KPP) equation and, fractional reaction-diffusion equation and so on.
The work of Jin Li was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors also gratefully acknowledges the helpful comments and suggestions of the reviewers, which have improved the presentation.
The author declares no conflict of interest.
[1] |
P. Chávez, G. Rodríguez, Time changing effects of external shocks on macroeconomic fluctuations in Perú: Empirical application using regime-switching VAR models with stochastic volatility, Rev. World Econ., 159 (2023), 505–544. https://doi.org/10.1007/s10290-022-00474-1 doi: 10.1007/s10290-022-00474-1
![]() |
[2] |
P. Clavijo-Cortés, Is unemployment hysteretic or structural? A Bayesian model selection approach, Empir. Econ., 65 (2023), 2837–2866. https://doi.org/10.1007/s00181-023-02433-7 doi: 10.1007/s00181-023-02433-7
![]() |
[3] | Z. Xie, Research on Bayesian financial panel data model based on BP neural network, In: 2023 International Conference on Electronics and Devices, Computational Science (ICEDCS), 2023,645–648. https://doi.org/10.1109/ICEDCS60513.2023.00124 |
[4] |
J. M. Montaud, J. Dávalos, N. Pécastaing, Socioeconomic risks of extreme El Niño event-related road damages in Perú, Environ. Model Assess., 27 (2022), 831–851. https://doi.org/10.1007/s10666-022-09830-9 doi: 10.1007/s10666-022-09830-9
![]() |
[5] |
F. A. R. Gomes, L. C. M. Melo, G. P. Soave, Flexible markov-switching models with evolving regime-specific parameters: An application to Brazilian business cycles, Appl. Econ., 56 (2024), 1705–1722. https://doi.org/10.1080/00036846.2024.2305621 doi: 10.1080/00036846.2024.2305621
![]() |
[6] |
Q. Cui, S. Rong, F. Zhang, X. Wang, Exploring and predicting China's Consumer Price Index with its influence factors via big data analysis, J. Intell. Fuzzy Syst., 46 (2024), 891–901. https://doi.org/10.3233/JIFS-234102 doi: 10.3233/JIFS-234102
![]() |
[7] |
P. Wang, Y. Shen, L. Zhang, Y. Kang, Equilibrium investment strategy for a DC pension plan with learning about stock return predictability, Insur. Math. Econ., 100 (2021), 384–407. https://doi.org/10.1016/j.insmatheco.2021.07.001 doi: 10.1016/j.insmatheco.2021.07.001
![]() |
[8] |
Y. Zhu, M. Escobar-Anel, M. Davison, A polynomial-affine approximation for dynamic portfolio choice, Comput. Econ., 62 (2023), 1177–1213. https://doi.org/10.1007/s10614-022-10297-9 doi: 10.1007/s10614-022-10297-9
![]() |
[9] |
S. Liu, Y. Yang, H. Zhang, Y. Wu, Variance swap pricing under Markov-modulated jump-diffusion model, Discrete Dyn. Nat. Soc., 2021 (2021), 9814605. https://doi.org/10.1155/2021/9814605 doi: 10.1155/2021/9814605
![]() |
[10] |
L. Tao, Y. Lai, Y. Ji, X. Tao, Asian option pricing under sub-fractional Vasicek model, Quant. Finan. Econ., 7 (2023), 403–419. https://doi.org/10.3934/QFE.2023020 doi: 10.3934/QFE.2023020
![]() |
[11] |
K. Alakkari, S. Yadav, P. Mishra, Measuring economic uncertainty in Syria: An approach to the stochastic volatility model, Indian J. Econ. Dev., 18 (2022), 281–291. https://doi.org/10.35716/IJED/21242 doi: 10.35716/IJED/21242
![]() |
[12] |
D. Liang, B. Ewing, E. Cardella, L. Song, Probabilistic modeling of small business recovery after a hurricane: A case study of 2017 Hurricane Harvey, Nat. Hazards Rev., 24 (2023), 05022012. https://doi.org/10.1061/(asce)nh.1527-6996.0000602 doi: 10.1061/(asce)nh.1527-6996.0000602
![]() |
[13] | B. Herzog, Modeling inflation dynamics with fractional Brownian motions and Lévy processes, In: Linear and non-linear financial econometrics-theory and practice, 2020. https://doi.org/10.5772/intechopen.92292 |
[14] |
F. Mehrdoust, I. Noorani, Implied higher order moments in the Heston model: A case study of S & P500 index, Decisions Econ. Finan., 46 (2023), 477–504. https://doi.org/10.1007/s10203-023-00396-z doi: 10.1007/s10203-023-00396-z
![]() |
[15] | A. González, L. Mahadeva, J. D. Prada, D. Rodríguez, Policy analysis tool applied to Colombian needs: Patacon model description, Borradores de Economía, num.656, 2011, Banco de la República de Colombia. https://doi.org/10.32468/be.656 |
[16] | J. A. Cárdenas-Cárdenas, D. J. Cristiano-Botia, N. Martínez-Cortés, Colombian inflation forecast using long short-term memory approach, Borradores de Economía, num.1241, 2023, Banco de la República de Colombia. https://doi.org/10.32468/be.1241 |
[17] |
H.Y. Rodríguez Pinzón, Estudio del fenómeno de inflación importada vía precios del petróleo y su aplicación al caso colombiano mediante el uso de modelos VAR para el periodo 2000–2009, Estudios Gerenciales, 27 (2011), 79–97. https://doi.org/10.1016/S0123-5923(11)70182-6 doi: 10.1016/S0123-5923(11)70182-6
![]() |
[18] | E. González Molano, L. F. Melo Velandia, A. G. Olarte, Pronósticos directos de la inflación colombiana, Borradores de Economía, num.458, 2007, Banco de la República de Colombia. https://doi.org/10.32468/be.458 |
[19] | C. R. Jaramillo Herrera, J. Tovar, Incidencia del impuesto al valor agregado sobre los precios en Colombia, Documentos CEDE 2830, 2007. |
[20] |
M. C. Aristizábal, Evaluación asimétrica de una red neuronal: Aplicación al caso de la inflación en Colombia, Lecturas de Economía, 65 (2009), 73–116. https://doi.org/10.17533/udea.le.n65a2641 doi: 10.17533/udea.le.n65a2641
![]() |
[21] | E. Villa, M. A. Misas, A. F. Giraldo, Inflation targeting and an optimal Taylor rule for an open economy: Evidence for Colombia 1990–2011, Lat. Am. J. Econ., 51 (2014), 41–83. |
[22] |
I. Luz-Sant'Ana, P. Román-Román, F. Torres-Ruiz, Modeling oil production and its peak by means of a stochastic diffusion process based on the Hubbert curve, Energy, 133 (2017), 455–470. http://doi.org/10.1016/j.energy.2017.05.125 doi: 10.1016/j.energy.2017.05.125
![]() |
[23] |
A. Di Crescenzo, P. Paraggio, F. Torres-Ruiz, A Bertalanffy-Richards growth model perturbed by a time-dependent pattern, statistical analysis and applications, Commun. Nonlinear Sci., 139 (2024), 108258. https://doi.org/10.1016/j.cnsns.2024.108258 doi: 10.1016/j.cnsns.2024.108258
![]() |
[24] |
A. Barrera, P. Román-Román, F. Torres-Ruiz, Hyperbolastic models from a stochastic differential equation point of view, Mathematics, 9 (2021), 1835. http://doi.org/10.3390/math9161835 doi: 10.3390/math9161835
![]() |
[25] |
G. Albano, V. Giorno, V., P. Román-Román, F. Torres-Ruiz, Study of a general growth model, Commun. Nonlinear Sci. Numer. Simul., 107 (2022), 106100. http://doi.org/10.1016/j.cnsns.2021.106100 doi: 10.1016/j.cnsns.2021.106100
![]() |
[26] |
P. Román-Román, J. J. Serrano-Pérez, F. Torres-Ruiz, Some notes about inference for the lognormal diffusion process with exogenous factors, Mathematics, 6 (2018), 85. http://doi.org/10.3390/math6050085 doi: 10.3390/math6050085
![]() |
[27] | G. Tintner, J. K. Sengupta, Stochastic economics: Stochastic processes, control, and programming, New York: Academic Press, 1972. https://doi.org/10.1016/C2013-0-11604-2 |
[28] |
R. Gutiérrez, P. Román, D. Romero, F. Torres, Forecasting for the univariate lognormal diffusion process with exogenous factors, Cybernet. Syst., 34 (2003), 709–724. http://doi.org/10.1080/716100279 doi: 10.1080/716100279
![]() |
[29] | C. E. Land, Hypothesis tests and interval estimates, In: Lognormal distributions: Theory and applications, New York: Marcel Dekker, 1988, 87–112. https://doi.org/10.1201/9780203748664 |
[30] |
R. Gutiérrez, P. Román, F. Torres, Inference on some parametric functions in the univariate lognormal diffusion process with exogenous factors, Test, 10 (2001), 357–373. http://doi.org/10.1007/bf02595702 doi: 10.1007/bf02595702
![]() |
[31] |
R. Gutiérrez, N. Rico, P. Román, F. Torres, Approximate and generalized confidence bands for the mean and mode functions of the lognormal diffusion process, Comput. Stat. Data An., 51 (2007), 4038–4053. http://doi.org/10.1016/j.csda.2006.12.027 doi: 10.1016/j.csda.2006.12.027
![]() |
[32] |
F. J. Girón, M. L. Martínez, E. Moreno, F. Torres, Objective testing procedures in linear models: Calibration of the p-values, Scand. J. Stat., 33 (2006), 765–784. http://doi.org/10.1111/j.1467-9469.2006.00514.x doi: 10.1111/j.1467-9469.2006.00514.x
![]() |
[33] | E. Moreno, F. J. Vázquez-Polo, M. A. Negrín, Bayesian cost-effectiveness analysis of medical treatments, Boca Raton: Chapman and Hall/CRC, 2019. https://doi.org/10.1201/9781315188850 |
[34] |
E. Moreno, J. J. Serrano-Pérez, F. Torres-Ruiz, Consistency of Bayes factors for linear models, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 119 (2025), 20. http://doi.org/10.1007/s13398-024-01685-x doi: 10.1007/s13398-024-01685-x
![]() |
1. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |