Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Review

Nonclassical dynamical behavior of solutions of partial differential-difference equations

  • Received: 29 July 2024 Revised: 25 December 2024 Accepted: 10 January 2025 Published: 24 January 2025
  • MSC : 47F05, 35B40

  • For partial differential-difference equations, a review of results regarding the relation between the type of the equation and dynamical properties of its solutions is provided. This includes the case of elliptic equations with timelike independent variables: Their solutions acquire dynamical properties (more exactly, behave as solutions of parabolic equations). The following approach to classify differential-difference equations into types, based on the property of differential-difference operators to be Fourier multipliers is applied in the following manner: An operator is treated to be elliptic if the real part of its symbol is positive, while the parabolic and hyperbolic types are defined correspondingly. It is shown that the proposed approach (being a natural extension of the classical notion of the ellipticity) is reasonable. On the other hand, fundamental novelties (compared with the classical theory of partial differential equations) occur as well. We provide conditions which guarantee the following results. For the half-space (half-plane) Dirichlet problem for elliptic equations, integral representations (of the Poisson type) of solutions are constructed, which are infinitely differentiable outside the boundary hyperplane (plane), and the asymptotic closeness of solutions (as the timelike independent variable unboundedly increases) takes place. For the Cauchy problem for parabolic equations, the same is valid, but we deal with the classical time instead of the timelike independent variable. For hyperbolic equations, multiparameter families of infinitely smooth global solutions are constructed. The said (sufficient) conditions restrict the sign of the real part of the symbol for the differential-difference operator with respect to spatial or spacelike independent variables. In a number of special cases, they might be weakened such that symbols with sign-changing real parts are admitted. The objective of the study is to observe the current stage of the classification issues for partial differential-difference equations in terms of the aforementioned approach: The ellipticity of a Fourier multiplier is defined by means of the sign (of there real part) of its symbol. Since both differential and translation operators are Fourier multipliers, methods of Fourier analysis are applicable in this study: We apply the Fourier transformation to the original partial differential-difference equation, solve the obtained ordinary differential equation, and apply the inverse Fourier transformation to the obtained solution. The main contribution obtained within this study is an efficient (workable) type concept for the fundamentally new extension of the class of partial differential equations, which is the class of partial differential-difference equations.

    Citation: Andrey Muravnik. Nonclassical dynamical behavior of solutions of partial differential-difference equations[J]. AIMS Mathematics, 2025, 10(1): 1842-1858. doi: 10.3934/math.2025085

    Related Papers:

    [1] Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu . A class of hypersurfaces in En+1s satisfying ΔH=λH. AIMS Mathematics, 2022, 7(1): 39-53. doi: 10.3934/math.2022003
    [2] Mutaz Al-Sabbagh . Surfaces of coordinate finite II-type. AIMS Mathematics, 2025, 10(3): 6258-6269. doi: 10.3934/math.2025285
    [3] Yanlin Li, Erhan Güler, Magdalena Toda . Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Mathematics, 2024, 9(7): 18732-18745. doi: 10.3934/math.2024911
    [4] Derya Sağlam, Cumali Sunar . Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature. AIMS Mathematics, 2023, 8(2): 5036-5048. doi: 10.3934/math.2023252
    [5] Mohammed Guediri, Sharief Deshmukh . Hypersurfaces in a Euclidean space with a Killing vector field. AIMS Mathematics, 2024, 9(1): 1899-1910. doi: 10.3934/math.2024093
    [6] Hanan Alohali, Sharief Deshmukh . Some generic hypersurfaces in a Euclidean space. AIMS Mathematics, 2024, 9(6): 15008-15023. doi: 10.3934/math.2024727
    [7] Yanlin Li, Nasser Bin Turki, Sharief Deshmukh, Olga Belova . Euclidean hypersurfaces isometric to spheres. AIMS Mathematics, 2024, 9(10): 28306-28319. doi: 10.3934/math.20241373
    [8] Hassan Al-Zoubi, Bendehiba Senoussi, Mutaz Al-Sabbagh, Mehmet Ozdemir . The Chen type of Hasimoto surfaces in the Euclidean 3-space. AIMS Mathematics, 2023, 8(7): 16062-16072. doi: 10.3934/math.2023819
    [9] Sharief Deshmukh, Mohammed Guediri . Characterizations of Euclidean spheres. AIMS Mathematics, 2021, 6(7): 7733-7740. doi: 10.3934/math.2021449
    [10] Jin Liu, Botao Wang . A rigidity result for 2-dimensional λ-translators. AIMS Mathematics, 2023, 8(10): 24947-24956. doi: 10.3934/math.20231272
  • For partial differential-difference equations, a review of results regarding the relation between the type of the equation and dynamical properties of its solutions is provided. This includes the case of elliptic equations with timelike independent variables: Their solutions acquire dynamical properties (more exactly, behave as solutions of parabolic equations). The following approach to classify differential-difference equations into types, based on the property of differential-difference operators to be Fourier multipliers is applied in the following manner: An operator is treated to be elliptic if the real part of its symbol is positive, while the parabolic and hyperbolic types are defined correspondingly. It is shown that the proposed approach (being a natural extension of the classical notion of the ellipticity) is reasonable. On the other hand, fundamental novelties (compared with the classical theory of partial differential equations) occur as well. We provide conditions which guarantee the following results. For the half-space (half-plane) Dirichlet problem for elliptic equations, integral representations (of the Poisson type) of solutions are constructed, which are infinitely differentiable outside the boundary hyperplane (plane), and the asymptotic closeness of solutions (as the timelike independent variable unboundedly increases) takes place. For the Cauchy problem for parabolic equations, the same is valid, but we deal with the classical time instead of the timelike independent variable. For hyperbolic equations, multiparameter families of infinitely smooth global solutions are constructed. The said (sufficient) conditions restrict the sign of the real part of the symbol for the differential-difference operator with respect to spatial or spacelike independent variables. In a number of special cases, they might be weakened such that symbols with sign-changing real parts are admitted. The objective of the study is to observe the current stage of the classification issues for partial differential-difference equations in terms of the aforementioned approach: The ellipticity of a Fourier multiplier is defined by means of the sign (of there real part) of its symbol. Since both differential and translation operators are Fourier multipliers, methods of Fourier analysis are applicable in this study: We apply the Fourier transformation to the original partial differential-difference equation, solve the obtained ordinary differential equation, and apply the inverse Fourier transformation to the obtained solution. The main contribution obtained within this study is an efficient (workable) type concept for the fundamentally new extension of the class of partial differential equations, which is the class of partial differential-difference equations.



    Chen [11,12,13,14] originally proposed the notion of submanifolds of finite order immersed in m-space Em or pseudo-Euclidean m -space Emν employing a finite number of eigenfunctions of their Laplacian. This subject has subsequently undergone thorough investigation.

    Takahashi established that a Euclidean submanifold is classified as 1-type if and only if it is minimal or minimal within a hypersphere of Em. The study of 2-type submanifolds on closed spheres was conducted by [9,10,12]. Garay further [26] examined Takahashi's theorem in Em. Cheng and Yau [18] focused on hypersurfaces with constant curvature, while Chen and Piccinni [15] concentrated on submanifolds with a Gauss map of finite type in Em. Dursun [22] introduced hypersurfaces with a pointwise 1-type Gauss map in En+1. Aminov [2] delved into the geometry of submanifolds. Within the domain of space forms, Chen et al. [16] dedicated four decades to the investigation of 1-type submanifolds and the 1-type Gauss map.

    In E3, Takahashi [43] explored the concept of minimal surfaces, where spheres and minimal surfaces with Δr=λr, λR are the exclusive types of surfaces. Ferrandez et al. [23] identified that surfaces ΔH=A3×3H are either the minimal sections of a sphere or a right circular cylinder. Choi and Kim [19] examined the minimal helicoid with a pointwise 1-type Gauss map of the first kind. Garay [25] derived a category of finite type surfaces that are revolution-based. Dillen et al. [20] investigated the unique surfaces characterized by Δr=A3×3r+B3×1, which include minimal surfaces, spheres, and circular cylinders. Stamatakis and Zoubi [42] established the properties of surfaces of revolution defined by ΔIIIx=A3×3x. Kim et al. [36] focused on the Cheng-Yau operator and the Gauss map of surfaces of revolution.

    In E4, Moore [40,41] conducted two studies on general rotational surfaces. Hasanis and Vlachos [35] examined hypersurfaces with a harmonic mean curvature vector field. Cheng and Wan [17] focused on complete hypersurfaces with constant mean curvature. Arslan et al. [3] explored the Vranceanu surface with a pointwise 1-type Gauss map. Arslan et al. [4] investigated generalized rotational surfaces and [5] introduced tensor product surfaces with a pointwise 1-type Gauss map. Yoon [44] established certain relations involving the Clifford torus. Güler et al. [30] delved into helicoidal hypersurfaces, while Güler et al. [29] studied the Gauss map and the third Laplace-Beltrami operator of rotational hypersurfaces. Güler [28] investigated rotational hypersurfaces characterized by ΔIR=A4×4R. Furthermore, Güler [27] obtained the fundamental form IV and curvature formulas of the hypersphere.

    In Minkowski 4-space E41, Ganchev and Milousheva [24] explored the analogous surfaces to those in [40,41]. Arvanitoyeorgos et al. [8] investigated the mean curvature vector field, where they established ΔH=αH with a constant α. Arslan and Milousheva [6] focused on meridian surfaces of elliptic or hyperbolic type with a pointwise 1-type Gauss map. Arslan et al. [7] examined rotational λ-hypersurfaces in Euclidean spaces. Güler et al. [31,32,33,34] worked the concept of bi-rotational hypersurfaces. Li and Güler studied a family of hypersurfaces of revolution distinguished by four parameters in the five-dimensional pseudo-Euclidean space E52 [39].

    The aim of this paper is to present a family of hypersurfaces of revolution in the seven-dimensional pseudo-Euclidean space E73. This family, denoted as r, is characterized by six parameters. The paper focuses on computing various matrices associated with r, including the fundamental form, Gauss map, and shape operator. The Cayley-Hamilton theorem is employed to determine the curvatures of r. Furthermore, the paper establishes equations that describe the relationship between the mean curvature and Gauss-Kronecker curvature of r. Additionally, the paper explores the connection between the Laplace-Beltrami operator of r and a 7×7 matrix.

    In Section 2, we provide an explanation of the fundamental concepts of seven-dimensional pseudo-Euclidean geometry.

    Section 3 is dedicated to presenting the curvature formulas of a hypersurface in E73.

    In Section 4, we offer a comprehensive definition of the hypersurfaces of revolution family, focusing on their properties and characteristics.

    In Section 5, we discuss the Laplace-Beltrami operator of a smooth function in E73 and utilize the previously discussed family to compute it.

    Finally, we serve a conclusion in the last section.

    In this paper, we use the following notations, formulas, eqations, etc.

    For clarity, Emv represents a pseudo-Euclidean m-space with coordinates denoted as (x1,x2,,xm) with index v. The canonical pseudo-Euclidean metric tensor on Emv is represented by ˜g and defined as ˜g= =vi=1dx2i+mi=v+1dx2i. Let ˜M be an m-dimensional semi-Riemannian submanifold, and is embedded in Emv, and the Levi-Civita connections [38] associated with M are denoted as ˜,, respectively. We utilize X,Y,Z, and W to denote vector fields tangent to M, and ξ,ς to represent vector fields normal to M.

    The Gauss formula and the Weingarten formula is given by

    ˜XY=XY+h(X,Y), ˜Xξ=Aξ(X)+DXξ,

    where h represents the second fundamental form of M, A denotes the shape operator, and D corresponds to the normal connection of M. The shape operator Aξ is a symmetric endomorphism of the tangent space TpM at each point pM for each ξTpM. The shape operator and the second fundamental form are related by the equation.

    h(X,Y),ξ=AξX,Y.

    The Gauss equation is determined by

    R(X,Y,)Z,W=h(Y,Z),h(X,W)h(X,Z),h(Y,W),

    where R describes the curvature tensor associated with the Levi-Civita connection , and h denotes the second fundamental form of M. The Codazzi equation is given by

    (ˉXh)(Y,Z)=(ˉYh)(X,Z),

    where ˉh denotes the covariant derivative of h w.r.t. the Levi-Civita connection , and X,Y,Z represent tangent vector fields on M. The curvature tensor RD associated with the normal connection D is not explicitly mentioned in the given equations. The covariant derivative of h is defined by

    (ˉXh)(Y,Z)=DXh(Y,Z)h(XY,Z)h(Y,XZ),

    where D represents the normal connection of M.

    Let M be an oriented hypersurface in En+1 with its shape operator S, and position vector x. Consider a local orthonormal frame field {e1,e2,,en} consisting of principal directions of M coinciding with the principal curvature ki for i=1,2,,n. Let the dual basis of this frame field be {f1,f2,,fn}. Then, the first structural equation of Cartan is determined by

    dθi=ni=1θjωij,i,j=1,2,,n,

    where ωij indicates the connection forms coinciding with the chosen frame field. By the Codazzi equation, we derive the equations.

    ei(kj)=ωij(ej)(kikj),ωij(el)(kikj)=ωil(ej)(kikl)

    for different i,j,l=1,2,,n.

    We let sj=σj(k1,k2,,kn), where σj denotes the j-th elementary symmetric function defined by

    σj(a1,a2,,an)=1i1<i2<<ijnai1ai2aij.

    We consider the notation

    rji=σj(k1,k2,,ki1,ki+1,ki+2,,kn).

    According to the given definition, we have r0i=1 and sn+1=sn+2==0. The function sk is referred to as the k -th mean curvature of the oriented hypersurface M. The mean curvature H=1ns1 is also defined, and the Gauss-Kronecker curvature of M is K=sn. If sj0, the hypersurface M is known as j -minimal.

    In Euclidean (n+1)-space, getting the i-th curvature formulas Ki (see [1,37] for details), where i=0,,n, we have the following characteristic polynomial equation PS(λ)=0 of S:

    nk=0(1)kskλnk=det(SλIn)=0. (2.1)

    Here i=0,,n, In indicates the identity matrix. Hence, we reveal the curvature formulas as (ni)Ki=si.

    Let r=r(u,v,w,α,β,γ) be an immersion from M6E6 to E73.

    Definition 1. An inner product of υ1=(υ11,υ12,,υ17),, υ2=(υ21,υ22,,υ27) of E73 is determined by

    υ1,υ2=υ11υ21υ12υ22+υ13υ23υ14υ24+υ15υ25υ16υ26+υ17υ27.

    Definition 2. A sixtuple vector product of υ1=(υ11,υ12,,υ17), υ2=(υ21,υ22,,υ27),, υ6=(υ61,υ62,,υ67) of E73 is defined by

    υ1×υ2××υ6=det(e1e2e3e4e5e6e7υ11υ12υ13υ14υ15υ16υ17υ21υ22υ23υ24υ25υ26υ27υ31υ32υ33υ34υ35υ36υ37υ41υ42υ43υ44υ45υ46υ47υ51υ52υ53υ54υ55υ56υ57υ61υ62υ63υ64υ65υ66υ67).

    Definition 3. The product matrix (gij)1· (hij) describes the shape operator matrix S of hypersurface r in pseudo-Euclidean 7-space E73,  where, (gij)6×6 and (hij)6×6 describe the first and the second fundamental form matrices, respectively, and gij=ri,rj, hij=rij,G, i,j=1,2,,6, ru=ru when i=1, ruv=2ruv when i=1 and j=2, etc., ek denotes the natural base elements of E7. Here,

    G=ru×rv×rw×rα×rβ×rγ (2.2)

    determines the Gauss map of the hypersurface \mathfrak{r} .

    In this section, we reveal the curvature formulas of any hypersurface \mathfrak{r} = \mathfrak{r}(u, v, w, \alpha, \beta, \gamma) in \mathbb{E}_{3}^{7}.

    Theorem 1. A hypersurface \mathfrak{r} in \mathbb{E}_{3}^{7} has the following curvature formulas, \mathcal{K}_{0} = 1 by definition,

    \begin{equation} 6\mathcal{K}_{1} = -\frac{\mathfrak{a}_{5}}{\mathfrak{a}_{6}},{\text{ }}15 \mathcal{K}_{2} = \frac{\mathfrak{a}_{4}}{\mathfrak{a}_{6}},{\text{ }}20\mathcal{ K}_{3} = -\frac{\mathfrak{a}_{3}}{\mathfrak{a}_{6}},{\text{ }}15\mathcal{K}_{4} = \frac{\mathfrak{a}_{2}}{\mathfrak{a}_{6}},{\text{ }}6\mathcal{K}_{5} = -\frac{ \mathfrak{a}_{1}}{\mathfrak{a}_{6}},{\text{ }}\mathcal{K}_{6} = \frac{\mathfrak{a }_{0}}{\mathfrak{a}_{6}}, \end{equation} (3.1)

    where \mathfrak{a}_{6}\lambda ^{6}+\mathfrak{a}_{5}\lambda ^{5}+ \mathfrak{a}_{4}\lambda ^{4}+\mathfrak{a}_{3}\lambda ^{3}+\mathfrak{a} _{2}\lambda ^{2}+\mathfrak{a}_{1}\lambda +\mathfrak{a}_{0} = 0 denotes the characteristic polynomial equation P_{\mathcal{S}}(\lambda) = 0 of the shape operator matrix \mathcal{S} , \mathfrak{a} _{6} = \det \left(\mathfrak{g}_{ij}\right) , \mathfrak{a}_{0} = \det \left(\mathfrak{h}_{ij}\right) , and \left(\mathfrak{g} _{ij}\right) , \left(\mathfrak{h}_{ij}\right) are the first, and the second fundamental form matrices, respectively.

    Proof. The solution matrix \left(\mathfrak{g}_{ij}\right) ^{-1} · \left(\mathfrak{h}_{ij}\right) supplies the shape operator matrix \mathcal{S} of hypersurface \mathfrak{r} in pseudo-Euclidean 7-space \mathbb{E}_{3}^{7} . In \mathbb{E} _{3}^{7} , computing the curvature formula \mathcal{K}_{i} , where i = 0, 1, \cdots, 6, we reveal the characteristic polynomial equation \det (\mathcal{S} -\lambda \mathcal{I}_{6}) = 0 of \mathcal{S} . Then, we obtain

    \begin{eqnarray*} \binom{6}{0}\mathcal{K}_{0} & = &1, \\ \binom{6}{1}\mathcal{K}_{1} & = &\sum\limits_{i = 1}^{6}k_{i} = -\frac{\mathfrak{a} _{5}}{\mathfrak{a}_{6}}, \\ \binom{6}{2}\mathcal{K}_{2} & = &\sum\limits_{1 = i_{1} < i_{2}}^{6}k_{i_{1}}k_{i_{2}} = \frac{\mathfrak{a}_{4}}{ \mathfrak{a}_{6}}, \\ \binom{6}{3}\mathcal{K}_{3} & = &\sum\limits_{1 = i_{1} < i_{2} < i_{3}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}} = -\frac{ \mathfrak{a}_{3}}{\mathfrak{a}_{6}}, \\ \binom{6}{4}\mathcal{K}_{4} & = &\sum \limits_{1 = i_{1} < i_{2} < i_{3} < i_{4}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}}k_{i_{4}} = \frac{\mathfrak{a}_{2}}{\mathfrak{a}_{6}}, \\ \binom{6}{5}\mathcal{K}_{5} & = &\sum \limits_{1 = i_{1} < i_{2} < i_{3} < i_{4} < i_{5}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}}k_{i_{4}}k_{i_{5}} = - \frac{\mathfrak{a}_{1}}{\mathfrak{a}_{6}}, \\ \binom{6}{6}\mathcal{K}_{6} & = &\prod\limits_{i = 1}^{6}k_{i} = \frac{\mathfrak{a} _{0}}{\mathfrak{a}_{6}}. \end{eqnarray*}

    Definition 4. A space-like hypersurface \mathfrak{r} is called j -maximal if \mathcal{K}_{j} = 0 , where j = 1, ..., 6.

    Theorem 2. A hypersurface \mathfrak{r} = \mathfrak{r} (u, v, w, \alpha, \beta, \gamma) in \mathbb{E}_{3}^{7} has the following relation

    \begin{equation*} \mathcal{K}_{0}\mathbb{VII}-6\mathcal{K}_{1}\mathbb{VI}+15\mathcal{K}_{2} \mathbb{V}-20\mathcal{K}_{3}\mathbb{IV}+15\mathcal{K}_{4}\mathbb{III}-6 \mathcal{K}_{5}\mathbb{II}+\mathcal{K}_{6}\mathbb{I} = \mathcal{O}_{6}, \end{equation*}

    where \mathbb{I}, \mathbb{II}, \cdots, \mathbb{VII} determines the fundamental form matrices, \mathcal{O}_{6} represents the zero matrix having order 6\times 6 of the hypersurface.

    Proof. Regarding n = 6 in \left(2.1\right) , it works.

    In this section, we define the hypersurfaces of revolution family (HRF), then find its differential geometric properties in pseudo-Euclidean 7-space \mathbb{E}_{3}^{7} . An HR in Riemannian space forms were given in [21].

    An HRF M of Euclidean \left(n+1\right) -space constructed by a hypersurface \hbar around rotating axis \mathcal{\ell } does not meet \hbar is acquired by taking the orbit of \mathcal{\ell } under the orthogonal transformations of \left(n+1\right) -space.

    To consctruct an HRF, we start with the generating hypersurface given by \hbar = \hbar \left(u, v, w\right) = \left(\eta, 0, \psi, 0, \phi, 0, \varphi \right), and apply the rotation matrix \mathfrak{R} = diag \left(\mathcal{R}_{\alpha }, \mathcal{R}_{\beta }, \mathcal{R}_{\gamma }, 1\right) with the elements given by \mathcal{R}_{k} = \left(\begin{array}{cc} \cosh k & \sinh k \\ \sinh k & \cosh k \end{array} \right), k = \alpha, \beta, \gamma, respectively, and \mathfrak{R}{\text{ · }}\mathcal{\ell } = \mathcal{\ell } , \det \mathfrak{R} = 1. Therefore, we state the HRF given by \mathfrak{r} = \mathfrak{R} · \hbar ^{T} when \hbar rotates about axis \mathcal{ \ell } = \overrightarrow{e_{7}} = (0, 0, 0, 0, 0, 0, 1). We then present the following.

    Definition 5. An HRF is an immersion \mathfrak{r} : M^{6} \subset \mathbb{E}^{6}\longrightarrow \mathbb{E}_{3}^{7} with rotating axis \overrightarrow{e_{7}} , defined by

    \begin{equation} \mathfrak{r}(u,v,w,\alpha ,\beta ,\gamma ) = \left( \eta \cosh \alpha ,\eta \sinh \alpha ,\psi \cosh \beta ,\psi \sinh \beta ,\phi \cosh \gamma ,\phi \sinh \gamma ,\varphi \right) , \end{equation} (4.1)

    where \eta, \psi, \phi, \varphi denote the differentiable functions, depend on u, v, w\in \mathbb{R} , 0\leq \alpha, \beta, \gamma < 2\pi.

    Considering the first derivatives of HRF given by Eq \left(4.1\right) w.r.t. u, v, w, \alpha, \beta, \gamma, respectively, we find the symmetical first fundamental form matrix

    \begin{equation} \left( \mathfrak{g}_{ij}\right) = {\text{diag}}\left( \begin{array}{cccc} \left( \mathfrak{g}_{kl}\right) _{3\times 3}, & \mathfrak{g}_{44}, & \mathfrak{g}_{55}, & \mathfrak{g}_{66} \end{array} \right) , \end{equation} (4.2)

    where

    \begin{eqnarray*} \mathfrak{g}_{11} & = &\eta _{u}^{2}+\psi _{u}^{2}+\phi _{u}^{2}+\varphi _{u}^{2}, \\ \mathfrak{g}_{12} & = &\eta _{u}\eta _{v}+\psi _{u}\psi _{v}+\phi _{u}\phi _{v}+\varphi _{u}\varphi _{v}, \\ \mathfrak{g}_{13} & = &\eta _{u}\eta _{w}+\psi _{u}\psi _{w}+\phi _{u}\phi _{w}+\varphi _{u}\varphi _{w}, \\ \mathfrak{g}_{22} & = &\eta _{v}^{2}+\psi _{v}^{2}+\phi _{v}^{2}+\varphi _{v}^{2}, \\ \mathfrak{g}_{23} & = &\eta _{v}\eta _{w}+\psi _{v}\psi _{w}+\phi _{v}\phi _{w}+\varphi _{v}\varphi _{w}, \\ \mathfrak{g}_{33} & = &\eta _{w}^{2}+\psi _{w}^{2}+\phi _{w}^{2}+\varphi _{w}^{2}, \\ \mathfrak{g}_{44} & = &\eta ^{2},{\text{ }}\mathfrak{g}_{55} = \psi ^{2},{\text{ }} \mathfrak{g}_{66} = \phi ^{2}, \end{eqnarray*}

    and \eta _{u} = \frac{\partial \eta }{\partial u}, \eta _{v} = \frac{\partial \eta }{\partial v}, \eta _{u}^{2} = \frac{\partial ^{2}\eta }{\partial u^{2}}, etc. Hence, {\bf{\hat{g}}} = \det \left(\mathfrak{g}_{ij}\right) = \eta ^{2}\psi ^{2}\phi ^{2}\mathcal{Q}, where

    \begin{equation*} \mathcal{Q} = \left( {\mathcal{G}}_{1}\right) ^{2}+\left( {\mathcal{G}} _{2}\right) ^{2}+\left( {\mathcal{G}}_{3}\right) ^{2}+\left( {\mathcal{G}} _{4}\right) ^{2}, \end{equation*}

    and

    \begin{eqnarray*} {\mathcal{G}}_{1} & = &\left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{2} & = &\left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{3} & = &\left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{4} & = &\left( \eta _{w}\psi _{v}-\eta _{v}\psi _{w}\right) \phi _{u}+\left( \eta _{u}\psi _{w}-\eta _{w}\psi _{u}\right) \phi _{v}+\left( \eta _{v}\psi _{u}-\eta _{u}\psi _{v}\right) \phi _{w}. \end{eqnarray*}

    Since {\bf{\hat{g}}} > 0 , the HRF given by Eq \left(4.1 \right) is a space-like hypersurface.

    Using \left(2.2\right), we obtain the following Gauss map of the HRF determined by Eq \left(4.1\right) :

    \begin{equation} {\mathcal{G}} = \mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\cosh \alpha ,{ \mathcal{G}}_{1}\sinh \alpha ,{\mathcal{G}}_{2}\cosh \beta ,{\mathcal{G}} _{2}\sinh \beta ,{\mathcal{G}}_{3}\cosh \gamma ,{\mathcal{G}}_{3}\sinh \gamma ,{\mathcal{G}}_{4}\right) . \end{equation} (4.3)

    With the help of the second derivatives w.r.t. u, v, w, \alpha, \beta, \gamma, of HRF described by Eq \left(4.1\right), and by using the Gauss map given by Eq \left(4.3\right) , we reveal the following symmetical second fundamental form matrix

    \begin{equation} \left( \mathfrak{h}_{ij}\right) = {\text{diag}}\left( \begin{array}{cccc} \left( \mathfrak{h}_{kl}\right) _{3\times 3}, & \mathfrak{h}_{44}, & \mathfrak{h}_{55}, & \mathfrak{h}_{66} \end{array} \right) , \end{equation} (4.4)

    where

    \begin{eqnarray*} \mathfrak{h}_{11} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uu}+{ \mathcal{G}}_{2}\psi _{uu}+{\mathcal{G}}_{3}\phi _{uu}+{\mathcal{G}} _{4}\varphi _{uu}\right) , \\ \mathfrak{h}_{12} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uv}+{ \mathcal{G}}_{2}\psi _{uv}+{\mathcal{G}}_{3}\phi _{uv}+{\mathcal{G}} _{4}\varphi _{uv}\right) , \\ \mathfrak{h}_{13} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uw}+{ \mathcal{G}}_{2}\psi _{uw}+{\mathcal{G}}_{3}\phi _{uw}+{\mathcal{G}} _{4}\varphi _{uw}\right) , \\ \mathfrak{h}_{22} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{vv}+{ \mathcal{G}}_{2}\psi _{vv}+{\mathcal{G}}_{3}\phi _{vv}+{\mathcal{G}} _{4}\varphi _{vv}\right) , \\ \mathfrak{h}_{23} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{vw}+{ \mathcal{G}}_{2}\psi _{vw}+{\mathcal{G}}_{3}\phi _{vw}+{\mathcal{G}} _{4}\varphi _{vw}\right) , \\ \mathfrak{h}_{33} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{ww}+{ \mathcal{G}}_{2}\psi _{ww}+{\mathcal{G}}_{3}\phi _{ww}+{\mathcal{G}} _{4}\varphi _{ww}\right) , \\ \mathfrak{h}_{44} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{1}\eta ,{\text{ }} \\ \mathfrak{h}_{55} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{2}\psi ,{\text{ }} \\ \mathfrak{h}_{66} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{3}\phi , \end{eqnarray*}

    and \eta _{uu} = \frac{\partial ^{2}\eta }{\partial u^{2}}, \eta _{uv} = \frac{\partial ^{2}\eta }{\partial u\partial v}, ect.. By using \left(4.2\right) and \left(4.4\right) , we compute the following shape operator matrix of \left(4.1\right) :

    \begin{equation*} \mathcal{S} = {\text{diag}}\left( \begin{array}{cccc} \left( {\mathfrak{s}}_{kl}\right) _{3\times 3}, & {\mathfrak{ s}}_{44}, & \mathfrak{s}_{55}, & \mathfrak{s}_{66} \end{array} \right) \end{equation*}

    with the following components

    \begin{eqnarray*} \mathfrak{s}_{11} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{13}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{12} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{23}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{13} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{33}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{21} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{13}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{22} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{23}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{23} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{33}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{31} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{13}\right] /\mathcal{Q}, \\ \mathfrak{s}_{32} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{23}\right] /\mathcal{Q}, \\ \mathfrak{s}_{33} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{33}\right] /\mathcal{Q}, \\ \mathfrak{s}_{44} & = &\frac{\mathfrak{h}_{44}}{\mathfrak{g}_{44}}, \ \mathfrak{s}_{55} = \frac{\mathfrak{h}_{55}}{\mathfrak{g}_{55}}, \ \mathfrak{s}_{66} = \frac{\mathfrak{h}_{66}}{\mathfrak{g}_{66}}. \end{eqnarray*}

    Finally, using \left(3.1\right) , with \left(4.2\right) , \left(4.4\right) , respectively, we find the curvatures of the HRF defined by Eq \left(4.1\right) as follows.

    Theorem 3. Let \mathfrak{r} be an HRF determined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} contains the following curvatures

    \begin{eqnarray*} \mathcal{K}_{1} & = &\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}+\mathfrak{s} _{33}+\mathfrak{s}_{44}+\mathfrak{s}_{55}+\mathfrak{s}_{66}\right) /6, \\ && \\ \mathcal{K}_{6} & = &\left( \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+ \mathfrak{s}_{12}\mathfrak{s}_{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{ s}_{12}\mathfrak{s}_{13}+\mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{ s}_{23}-\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33}\right) \mathfrak{s}_{44} \mathfrak{s}_{55}\mathfrak{s}_{66}. \end{eqnarray*}

    Here, \mathcal{K}_{1} represents the mean curvature, \mathcal{K}_{6} denotes the Gauss-Kronecker curvature.

    Proof. By using the Cayley-Hamilton theorem, we reveal the following characteristic polynomial equation P_{\mathcal{S}}(\lambda) = 0 of \mathcal{S} :

    \begin{equation*} \mathcal{K}_{0}\lambda ^{6}-6\mathcal{K}_{1}\lambda ^{5}+15\mathcal{K} _{2}\lambda ^{4}-20\mathcal{K}_{3}\lambda ^{3}+15\mathcal{K}_{4}\lambda ^{2}-6\mathcal{K}_{5}\lambda +\mathcal{K}_{6} = 0. \end{equation*}

    The curvatures \mathcal{K}_{1} and \mathcal{K}_{6} of \mathfrak{r} are obtained by the above equation.

    Corollary 1. Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} is a 1 -maximal (i.e., has zero mean curvature) iff the following partial differential equation appears

    \begin{equation*} \begin{array}{l} \left( \mathfrak{g}_{44}\mathfrak{g}_{55}\mathfrak{h}_{66}+\mathfrak{g}_{44} \mathfrak{h}_{55}\mathfrak{g}_{66}+\mathfrak{h}_{44}\mathfrak{g}_{55} \mathfrak{g}_{66}\right) Q \\ -2\mathfrak{g}_{44}\mathfrak{g}_{55}\mathfrak{g}_{66}(\mathfrak{g}_{11} \mathfrak{g}_{23}\mathfrak{h}_{23}-\mathfrak{g}_{12}\mathfrak{g}_{13} \mathfrak{h}_{23}+\mathfrak{g}_{12}\mathfrak{h}_{12}\mathfrak{g}_{33}- \mathfrak{g}_{12}\mathfrak{g}_{23}\mathfrak{h}_{13}+\mathfrak{g}_{13} \mathfrak{g}_{22}\mathfrak{h}_{13} \\ -\mathfrak{g}_{13}\mathfrak{h}_{12}\mathfrak{g}_{23}+\mathfrak{g}_{11} \mathfrak{g}_{22}\mathfrak{h}_{33}+\mathfrak{g}_{11}\mathfrak{h}_{22} \mathfrak{g}_{33}+\mathfrak{h}_{11}\mathfrak{g}_{22}\mathfrak{g}_{33}- \mathfrak{h}_{11}\mathfrak{g}_{23}^{2}-\mathfrak{g}_{13}^{2}\mathfrak{h} _{22}-\mathfrak{g}_{12}^{2}\mathfrak{h}_{33}) = 0. \end{array} \end{equation*}

    Corollary 2. Let \mathfrak{r} be a HRF given by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} is a 6 -maximal (i.e., has zero Gauss-Kronecker curvature) iff the following partial differential equation occurs

    \begin{equation*} \begin{array}{l} \lbrack \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+\mathfrak{s}_{12}\mathfrak{ s}_{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{s}_{12}\mathfrak{s}_{13}+ \mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{s}_{23} \\ -\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33}]\mathfrak{s}_{44} \mathfrak{s}_{55}\mathfrak{s}_{66} = 0. \end{array} \end{equation*}

    Corollary 3. Let \mathfrak{r} be a HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} has umbilical point (i.e., \left(\mathcal{K} _{1}\right) ^{6} = \mathcal{K}_{6} ) iff the following partial differential equation holds

    \begin{eqnarray*} &&\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}+\mathfrak{s}_{33}+\mathfrak{s} _{44}+\mathfrak{s}_{55}+\mathfrak{s}_{66}\right) ^{6} \\ &&-46\,656\left\{ \begin{array}{c} \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+\mathfrak{s}_{12}\mathfrak{s} _{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{s}_{12}\mathfrak{s}_{13}+ \mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{s}_{23} \\ -\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33} \end{array} \right\} \mathfrak{s}_{44}\mathfrak{s}_{55}\mathfrak{s}_{66} = 0. \end{eqnarray*}

    Hence, we find the following.

    Example 1. Let \mathfrak{r} be an HRF determined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . When the profile hypersurface \gamma of \mathfrak{r} is parametrized by the unit hypersphere: \eta = \cos u\cos v\cos w , \psi = \sin u\cos v\cos w , \phi = \sin v\cos w , \varphi = \sin w , then \mathcal{S} = \mathcal{I}_{6} and the HRF has the following curvatures \mathcal{K}_{i} = 1 , where i = 0, 1, ..., 6.

    Example 2. Assume \mathfrak{r} be an HRF denoted by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . While the profile hypersurface \gamma of \mathfrak{r} is parametrized by the rational unit hypersphere: \eta = \frac{ 1-u^{2}}{1+u^{2}}\frac{1-v^{2}}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \psi = \frac{2u}{1+u^{2}}\frac{1-v^{2}}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \phi = \frac{2v}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \varphi = \frac{2w}{1+w^{2}} , the HRF has the same results determined by Example 1.

    Example 3. Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . When the generating hypersurface \gamma of \mathfrak{r} is parametrized by the Riemann hypersphere: \eta = \frac{2u}{ u^{2}+v^{2}+w^{2}+1} , \psi = \frac{2v}{u^{2}+v^{2}+w^{2}+1} , \phi = \frac{2w}{u^{2}+v^{2}+w^{2}+1} , \varphi = \frac{ u^{2}+v^{2}+w^{2}-1}{u^{2}+v^{2}+w^{2}+1} , the HRF has \mathcal{S} = -\mathcal{I}_{6}, and has the following curvatures \mathcal{K} _{i} = \left(-1\right) ^{i} , where i = 0, 1, ..., 6.

    Example 4.Considering the pseudo-hypersphere \mathbb{S} _{3}^{6}(\rho): = \left\{ {\bf{p}}\in \mathbb{E}_{3}^{7}\mid \langle {\bf{p}}, {\bf{p}}\rangle = \rho ^{2}\right\}, radius \rho > 0 , parametrized by

    \begin{equation} {\bf{p}}(u,v,w,\alpha ,\beta ,\gamma ) = \left( \begin{array}{c} \rho \cos u\cos v\cos w\cosh \alpha \\ \rho \cos u\cos v\cos w\sinh \alpha \\ \rho \sin u\cos v\cos w\cosh \beta \\ \rho \sin u\cos v\cos w\sinh \beta \\ \rho \sin v\cos w\cosh \gamma \\ \rho \sin v\cos w\sinh \gamma \\ \rho \sin w \end{array} \right) , \end{equation} (4.5)

    we compute \mathcal{S} = \frac{1}{\rho }\mathcal{I}_{6}. Hence, we find the following curvatures \mathcal{K}_{i} = \frac{1}{\rho ^{i}} , where i = 0, 1, ..., 6. Then, the hypersurface {\bf{p}} described by Eq \left(4.5\right) is an umbilical hypersphere (i.e., it supplies \left(\mathcal{K}_{1}\right) ^{6} = \mathcal{K}_{6} ) of \mathbb{E}_{3}^{7} .

    In this section, our focus is on the Laplace-Beltrami operator of a smooth function in \mathbb{E}_{3}^{7} . We will proceed to compute it utilizing the HRF, which is defined by Eq \left(4.1\right) .

    Definition 6. The Laplace-Beltrami operator of a smooth function f = f(x^{1}, x^{2}, ..., x^{6})\mid _{\mathcal{D}} (\mathcal{D} \subset {\mathbb{R}}^{6}) of class C^{6} depends on the first fundamental form \left(\mathfrak{g}_{ij}\right) of a hypersurface \mathfrak{r} , and is the operator defined by

    \begin{equation} \Delta f = \frac{1}{{\bf{\hat{g}}}^{1/2}}\sum\limits_{i,j = 1}^{6}\frac{\partial }{ \partial x^{i}}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{ij}\frac{\partial f }{\partial x^{j}}\right) , \end{equation} (5.1)

    where \left(\mathfrak{g}^{ij}\right) = \left(\mathfrak{g} _{kl}\right) ^{-1} and {\bf{\hat{g}}} = \det \left(\mathfrak{g} _{ij}\right).

    By using the inverse matrix of the first fundamental form matrix \left(\mathfrak{g}_{ij}\right) _{6\times 6}, we have the following.

    For an HRF given by Eq \left(4.1\right), \mathfrak{g}_{ij} = 0 when i\neq j except for i, j < 4. Therefore, the Laplace-Beltrami operator of the HRF \mathfrak{r} = \mathfrak{r}(u, v, w, \alpha, \beta, \gamma) is given by

    \begin{eqnarray} \Delta \mathfrak{r} & = &\frac{1}{{\bf{\hat{g}}}^{1/2}}[\frac{\partial }{ \partial u}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{11}\frac{\partial \mathfrak{r}}{\partial u}\right) +\frac{\partial }{\partial u}\left( {\bf{ \hat{g}}}^{1/2}\mathfrak{g}^{12}\frac{\partial \mathfrak{r}}{\partial v} \right) +\frac{\partial }{\partial u}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g }^{13}\frac{\partial \mathfrak{r}}{\partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial v}\left( {\bf{\hat{g}}} ^{1/2}\mathfrak{g}^{21}\frac{\partial \mathfrak{r}}{\partial u}\right) + \frac{\partial }{\partial v}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{22} \frac{\partial \mathfrak{r}}{\partial v}\right)+\frac{\partial }{\partial v} \left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{23}\frac{\partial \mathfrak{r}}{ \partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial w}\left( {\bf{\hat{g}}} ^{1/2}\mathfrak{g}^{31}\frac{\partial \mathfrak{r}}{\partial u}\right) + \frac{\partial }{\partial w}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{32} \frac{\partial \mathfrak{r}}{\partial v}\right) +\frac{\partial }{\partial w} \left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{33}\frac{\partial \mathfrak{r}}{ \partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial \alpha }\left( {\bf{\hat{ g}}}^{1/2}\mathfrak{g}^{44}\frac{\partial \mathfrak{r}}{\partial \alpha } \right) +\frac{\partial }{\partial \beta }\left( {\bf{\hat{g}}}^{1/2} \mathfrak{g}^{55}\frac{\partial \mathfrak{r}}{\partial \beta }\right) +\frac{ \partial }{\partial \gamma }\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{66} \frac{\partial \mathfrak{r}}{\partial \gamma }\right). \end{eqnarray} (5.2)

    By using the derivatives of the functions in \left(5.2\right) , w.r.t. u, v, w, \alpha, \beta, \gamma, resp., we obtain the following.

    Theorem 4. The Laplace-Beltrami operator of the HRF \mathfrak{r} denoted by Eq \left(4.1\right) is given by \Delta \mathfrak{r} = 6\mathcal{K}_{1}\mathcal{G} , where \mathcal{K}_{1} denotes the mean curvature, \mathcal{G} represents the Gauss map of \mathfrak{r} .

    Proof. By directly computing \left(5.2\right) , we obtain \Delta \mathfrak{r} .

    Theorem 5.Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) . \Delta \mathfrak{r} = \mathcal{A}\mathfrak{r } , where \mathcal{A} denotes the square matrix of order 7 iff \mathfrak{r} has \mathcal{K}_{1} = 0 , i.e., it is a 1 -maximal hypersurface.

    Proof. We found 6\mathcal{K}_{1}\mathcal{G} = \mathcal{A}\mathfrak{r} , and then we have

    \begin{eqnarray*} &&a_{11}\eta \cosh \alpha +a_{12}\eta \sinh \alpha +a_{13}\psi \cosh \beta +a_{14}\psi \sinh \beta +a_{15}\phi \cosh \gamma +a_{16}\phi \sinh \gamma +a_{17}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w} \right] \cosh \alpha , \\ && \\ &&a_{21}\eta \cosh \alpha +a_{22}\eta \sinh \alpha +a_{23}\psi \cosh \beta +a_{24}\psi \sinh \beta +a_{25}\phi \cosh \gamma +a_{26}\phi \sinh \gamma +a_{27}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w} \right] \sinh \alpha , \\ && \\ &&a_{31}\eta \cosh \alpha +a_{32}\eta \sinh \alpha +a_{33}\psi \cosh \beta +a_{34}\psi \sinh \beta +a_{35}\phi \cosh \gamma +a_{36}\phi \sinh \gamma +a_{37}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w} \right] \cosh \beta , \\ && \\ &&a_{41}\eta \cosh \alpha +a_{42}\eta \sinh \alpha +a_{43}\psi \cosh \beta +a_{44}\psi \sinh \beta +a_{45}\phi \cosh \gamma +a_{46}\phi \sinh \gamma +a_{47}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w} \right] \sinh \beta , \\ && \\ &&a_{51}\eta \cosh \alpha +a_{52}\eta \sinh \alpha +a_{53}\psi \cosh \beta +a_{54}\psi \sinh \beta +a_{55}\phi \cosh \gamma +a_{56}\phi \sinh \gamma +a_{57}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w} \right] \cosh \gamma , \\ && \\ &&a_{61}\eta \cosh \alpha +a_{62}\eta \sinh \alpha +a_{63}\psi \cosh \beta +a_{64}\psi \sinh \beta +a_{65}\phi \cosh \gamma +a_{66}\phi \sinh \gamma +a_{67}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w} \right] \sinh \gamma , \\ && \\ &&a_{71}\eta \cosh \alpha +a_{72}\eta \sinh \alpha +a_{73}\psi \cosh \beta +a_{74}\psi \sinh \beta +a_{75}\phi \cosh \gamma +a_{76}\phi \sinh \gamma +a_{77}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{w}\psi _{v}-\eta _{v}\psi _{w}\right) \phi _{u}+\left( \eta _{u}\psi _{w}-\eta _{w}\psi _{u}\right) \phi _{v}+\left( \eta _{v}\psi _{u}-\eta _{u}\psi _{v}\right) \phi _{w} \right] , \end{eqnarray*}

    where \mathcal{A} = \left(a_{ij}\right) is the 7\times 7 matrix, \Upsilon = 6\mathcal{K}_{1}{\bf{\hat{g}}}^{-1/2}, where {\bf{\hat{g}}} = \eta ^{2}\psi ^{2}\phi ^{2}\mathcal{Q}. Derivating above ODEs twice w.r.t. \alpha , we obtain the following a_{i7} = 0, \Upsilon = 0, where i = 1, 2, ..., 7. Then, we get \left(a_{i1}\cosh \alpha +a_{i2}\sinh \alpha \right) \eta = 0, where i = 1, 2, ..., 7. The functions \cosh and \sinh are linear independent on \alpha , then all the components of the matrix \mathcal{A} are 0 . Since \Upsilon = 6\mathcal{K}_{1}{\bf{\hat{g}}} ^{-1/2}, then \mathcal{K}_{1} = 0 . This means, \mathfrak{r} is a 1 -maximal HRF.

    Therefore, we give the following.

    Example 5. Let \mathfrak{r} be an HRF given by Eq \left(4.1\right) , and let the generating hypersurface \gamma of \mathfrak{r} be parametrized by the unit hypersphere determined by Example 1. Then, an HRF \mathfrak{r} supplies \Delta \mathfrak{r} = \mathcal{A}\mathfrak{r} , where \mathcal{A} = -6\mathcal{I}_{7}, \mathcal{I}_{7} denotes identity matrix.

    Example 6. Let \mathfrak{r} be an HRF denoted by Eq \left(4.1\right) , and let the generating hypersurface \gamma of \mathfrak{r} be parametrized by the Riemann hypersphere defined by Example 3. An HRF \mathfrak{r} has the same results denoted by Example 5.

    This research has presented a detailed analysis of a family of hypersurfaces of revolution \mathfrak{r} is characterized by six parameters in the seven-dimensional pseudo-Euclidean space {\mathbb{E}}_{3}^{7} , and its geometric properties have been thoroughly explored.

    The main focus of the paper was on computing and investigating various matrices associated with \mathfrak{r} . The fundamental form, Gauss map, and shape operator matrices were derived, providing essential information about the local geometry of the hypersurfaces. By utilizing the Cayley-Hamilton theorem, the curvatures of \mathfrak{r} were determined, facilitating a comprehensive understanding of their intrinsic curvature properties. Moreover, the paper established equations that describe the relationship between the mean curvature and Gauss-Kronecker curvature of \mathfrak{r} . These equations shed light on the geometric behavior of the hypersurfaces and offer valuable insights into their intrinsic properties. Additionally, the paper investigated the connection between the Laplace-Beltrami operator of \mathfrak{r} and a specific 7\times 7 matrix. This exploration further deepened our understanding of the geometric structure and differential properties of the hypersurface family.

    In summary, this research contributes to the understanding of hypersurfaces of revolution in {\mathbb{E}}_{3}^{7} .

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that they have no conflicts of interest to report regarding the present study.



    [1] A. B. Muravnik, Wiener Tauberian theorem and half-space problems for parabolic and elliptic equations, AIMS Math., 9 (2024), 8174–8191. https://doi.org/10.3934/math.2024397 doi: 10.3934/math.2024397
    [2] A. L. Skubachevskiĭ, Elliptic functional differential equations and applications, Basel-Boston-Berlin: Birkhäuser, 1997.
    [3] A. L. Skubachevskiĭ, Nonclassical boundary-value problems. Ⅰ, J. Math. Sci., 155 (2008), 199–334. https://doi.org/10.1007/s10958-008-9218-9 doi: 10.1007/s10958-008-9218-9
    [4] A. L. Skubachevskiĭ, Nonclassical boundary-value problems. Ⅱ, J. Math. Sci., 166 (2010), 377–561. https://doi.org/10.1007/s10958-010-9873-5 doi: 10.1007/s10958-010-9873-5
    [5] A. L. Skubachevskiĭ, Boundary-value problems for elliptic functional-differential equations and their applications, Russ. Math. Surv., 71 (2016), 801–906. https://doi.org/10.1070/RM9739 doi: 10.1070/RM9739
    [6] V. D. Repnikov, S. D. Eidel'man, Necessary and sufficient conditions for the establishment of a solution of the Cauchy problem, Sov. Math., Dokl., 7 (1966), 388–391.
    [7] A. B. Muravnik, Functional differential parabolic equations: Integral transformations and qualitative properties of solutions of the Cauchy problem, J. Math. Sci., 216 (2016), 345–496. https://doi.org/10.1007/s10958-016-2904-0 doi: 10.1007/s10958-016-2904-0
    [8] I. M. Gel'fand, G. E. Shilov, Fourier transforms of rapidly increasing functions and questions of uniqueness of the solution of Cauchy problem, Uspekhi Matem. Nauk., 8 (1953), 3–54 (in Russian).
    [9] A. B. Muravnik, On hyperbolic equations with arbitrarily directed translations of potentials, Math. Notes, 115 (2024), 772–778. https://doi.org/10.1134/S0001434624050122 doi: 10.1134/S0001434624050122
    [10] A. B. Muravnik, Multidimensional hyperbolic equations with nonlocal potentials: Families of global solutions, Mathematics, 12 (2024), 2091. https://doi.org/10.3390/math12132091 doi: 10.3390/math12132091
    [11] N. V. Zaitseva, A. B. Muravnik, A classical solution to a hyperbolic differential-difference equation with a translation by an arbitrary vector, Russ. Math., 67 (2023), 29–34. https://doi.org/10.3103/S1066369X23050110 doi: 10.3103/S1066369X23050110
    [12] A. B. Muravnik, Half-plane differential-difference elliptic problems with general-kind nonlocal potentials, Complex Var. Elliptic, 67 (2022), 1101–1120. https://doi.org/10.1080/17476933.2020.1857372 doi: 10.1080/17476933.2020.1857372
    [13] A. B. Muravnik, Asymptotic properties of solutions of two-dimensional differential-difference elliptic problems, J. Math. Sci., 259 (2021), 897–907. https://doi.org/10.1007/s10958-021-05667-x doi: 10.1007/s10958-021-05667-x
    [14] A. B. Muravnik, Differential-difference elliptic equations with nonlocal potentials in half-spaces, Mathematics, 11 (2023), 2698. https://doi.org/10.3390/math11122698 doi: 10.3390/math11122698
    [15] V. V. Liiko, A. B. Muravnik, Elliptic equations with arbitrarily directed translations in half-spaces, B. Irkutsk State U. M., 43 (2023), 64–77. https://doi.org/10.26516/1997-7670.2023.43.64 doi: 10.26516/1997-7670.2023.43.64
    [16] F. O. Porper, S. D. Eidel'man, Theorems on the proximity of solutions of parabolic equations and the stabilization of the solution of the Cauchy problem, Sov. Math. Dokl., 16 (1975), 288–292.
    [17] F. O. Porper, S. D. Eidel'man, The asymptotic behavior of classical and generalized solutions of one-dimensional second-order parabolic equations, Trans. Mosc. Math. Soc., 36 (1979), 83–131.
    [18] F. O. Porper, S. D. Eidel'man, Theorems on the asymptotic proximity of solutions of many-dimensional parabolic second-order equations, Russ. Math. Surv., 35 (1980), 227–228. https://doi.org/10.1070/RM1980v035n01ABEH001599 doi: 10.1070/RM1980v035n01ABEH001599
    [19] A. G. Sorokina, Closeness of solutions of Cauchy's problem for second-order parabolic equations, Math. Notes, 34 (1983), 541–546. https://doi.org/10.1007/BF01160869 doi: 10.1007/BF01160869
    [20] F. O. Porper, S. D. Eidel'man, Two-sided estimates of fundamental solutions of second-order parabolic equations, and some applications, Russ. Math. Surv., 39 (1984), 119–178. https://doi.org/10.1070/RM1984v039n03ABEH003164 doi: 10.1070/RM1984v039n03ABEH003164
    [21] V. D. Repnikov, Asymptotic proximity and stabilization of solutions of a parabolic equation, Differ. Equ., 24 (1988), 115–121.
    [22] F. O. Porper, S. D. Eidel'man, Theorems on the asymptotic proximity of fundamental solutions of parabolic equations, Sov. Math. Dokl., 344 (1995), 586–589.
    [23] F. O. Porper, S. D. Eidel'man, On asymptotic proximity of solutions of the Cauchy problem for second-order parabolic equations, Ukr. Math. J., 47 (1995), 798–807.
    [24] A. L. Skubachevskiĭ, Some nonlocal elliptic boundary-value problems, Differ Equ., 18 (1983), 1132–1139.
    [25] A. L. Skubachevskiĭ, Smoothness of generalized solutions of the first boundary-value problem for an elliptic difference-differential equation, Math. Notes, 34 (1983), 537–541.
    [26] V. V. Zhikov, M. M. Sirazhudinov, The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem, Math. USSR-Sb., 44 (1983), 149–166.
    [27] V. D. Repnikov, Limit relations between solutions of some equations of hyperbolic, parabolic, and elliptic types, Differ. Uravn., 27 (1991), 165–167.
    [28] V. N. Denisov, Asymptotic behavior of the solutions of elliptic equations, Russian Acad. Sci. Dokl. Math., 47 (1993), 333–337.
  • This article has been cited by:

    1. Meraj Ali Khan, Ibrahim Al-Dayel, Foued Aloui, Shyamal Kumar Hui, Contact CR-Warped Product Submanifold of a Sasakian Space Form with a Semi-Symmetric Metric Connection, 2024, 16, 2073-8994, 190, 10.3390/sym16020190
    2. Yanlin Li, Fatemah Mofarreh, Abimbola Abolarinwa, Norah Alshehri, Akram Ali, Bounds for Eigenvalues of q-Laplacian on Contact Submanifolds of Sasakian Space Forms, 2023, 11, 2227-7390, 4717, 10.3390/math11234717
    3. Zewen Li, Donghe Pei, Null cartan geodesic isophote curves in Minkowski 3-space, 2024, 21, 0219-8878, 10.1142/S0219887824501421
    4. Sahar H. Nazra, Rashad A. Abdel-Baky, A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space, 2023, 15, 2073-8994, 1986, 10.3390/sym15111986
    5. Yanlin Li, Erhan Güler, Magdalena Toda, Family of right conoid hypersurfaces with light-like axis in Minkowski four-space, 2024, 9, 2473-6988, 18732, 10.3934/math.2024911
    6. Boyuan Xu, Donghe Pei, Generalized null Cartan helices and principal normal worldsheets in Minkowski 3-space, 2024, 39, 0217-7323, 10.1142/S0217732324500408
    7. Esmaeil Peyghan, Davood Seifipour, Ion Mihai, On the Geometry of Kobayashi–Nomizu Type and Yano Type Connections on the Tangent Bundle with Sasaki Metric, 2023, 11, 2227-7390, 3865, 10.3390/math11183865
    8. Ali H. Hakami, Mohd Danish Siddiqi, Significance of Solitonic Fibers in Riemannian Submersions and Some Number Theoretic Applications, 2023, 15, 2073-8994, 1841, 10.3390/sym15101841
    9. Ibrahim Al-Dayel, Meraj Ali Khan, Mohammad Shuaib, Qingkai Zhao, Homology of Warped Product Semi-Invariant Submanifolds of a Sasakian Space Form with Semisymmetric Metric Connection, 2023, 2023, 2314-4785, 1, 10.1155/2023/5035740
    10. Nadia Alluhaibi, Rashad A. Abdel-Baky, Surface Pencil Couple with Bertrand Couple as Joint Principal Curves in Galilean 3-Space, 2023, 12, 2075-1680, 1022, 10.3390/axioms12111022
    11. Meraj Ali Khan, Ibrahim Al-Dayel, Foued Aloui, Ricci Curvature Inequalities for Contact CR-Warped Product Submanifolds of an Odd Dimensional Sphere Admitting a Semi-Symmetric Metric Connection, 2024, 16, 2073-8994, 95, 10.3390/sym16010095
    12. Yanlin Li, Erhan Güler, Twisted Hypersurfaces in Euclidean 5-Space, 2023, 11, 2227-7390, 4612, 10.3390/math11224612
    13. Samesh Shenawy, Alaa Rabie, Uday Chand De, Carlo Mantica, Nasser Bin Turki, Semi-Conformally Flat Singly Warped Product Manifolds and Applications, 2023, 12, 2075-1680, 1078, 10.3390/axioms12121078
    14. Wei Zhang, Pengcheng Li, Donghe Pei, Circular evolutes and involutes of spacelike framed curves and their duality relations in Minkowski 3-space, 2024, 9, 2473-6988, 5688, 10.3934/math.2024276
    15. Marija S. Najdanović, Characterization of dual curves using the theory of infinitesimal bending, 2024, 47, 0170-4214, 8626, 10.1002/mma.10035
    16. Erhan Güler, G. Muhiuddin, Investigating Helical Hypersurfaces Within 7‐Dimensional Euclidean Space, 2024, 2024, 2314-4629, 10.1155/2024/3459717
    17. Erhan Güler, A helicoidal hypersurfaces family in five-dimensional euclidean space, 2024, 38, 0354-5180, 3813, 10.2298/FIL2411813G
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(519) PDF downloads(82) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog